
Reasoning about QoS Contracts

in the Probabilistic Duration Calculus

Dimitar P. Guelev∗and Dang Van Hung†

February 24, 2008

Abstract

The notion of contract was introduced to component-based software development in order to facilitate
the semantically correct composition of components. We extend the form of this notion which is based
on designs to capture probabilistic requirements on execution time. We show how reasoning about such
requirements can be done in an infinite-interval-based system of probabilistic duration calculus.

Introduction

Combining off-the-shelf and dedicated components has become an established approach to achieving reuse,
modularity, productivity and reliability. Contracts facilitate the correct use of components. A contract is
a collection of requirements which are written in terms of the component interface. Contract requirements
should be satisfied by implementations of the component, provided that the items imported from other
components also satisfy the requirements appearing in the contract for them. Four levels of contracts have
been identified in [BJPW99]. These are the syntactical level, the behavioural level, the synchronization level
and the quality of service level. Quality of Service (QoS) is a collective term for non-functional requirements
such as worst-case and average execution time, and the consumption of resources such as memory, power,
bandwidth, etc.

Component models are built around appropriate formalisations of the notions of interface, contract,
component composability, composition, etc. A contract theory for components based on the notion of design
from [HH98] has been proposed in [HLL06, HXZ06] and has become known as the rCOS model. Since designs
capture input-output relations, this model is mostly about the functional requirements on components and
leaves out the QoS level from [BJPW99]. In our previous work we extended the rCOS model to capture
requirements on timing and resources [Dan05, HD07]. We have considered hard requirements, where, e.g.,
missing a deadline is regarded as fatal. We used the Duration Calculus (DC) as our notation. QoS is mainly
concerned with soft requirements, where, e.g., missing a deadline by little and not too often is tolerable.
Handling requirements on the QoS involves reasoning about probability.

In this paper we extend designs to capture probabilistic requirements on execution time and develop
a technique to reason about QoS of real-time embedded systems using an infinite-interval-based system
of probabilistic DC (PDC) which was proposed in [Gue07] as an extension of a corresponding system of
Probabilistic Interval Temporal Logic with infinite intervals (PITL). PDC with infinite intervals subsumes
the systems of PDC from [LRSZ93, DZ99, Gue00b] and has a relatively complete proof system to support
formal reasoning. The fitness of (non-probabilistic) DC for reasoning about real-time systems has been
asserted by numerous case studies [ZZ94, DW96, SX98, Dan98, LH99]. Since DC is interval-based, reasoning
about the behaviour of whole method executions, including their execution time, is relatively straightforward
in DC . By using a probabilistic extension of DC we are able to enjoy this advantage when reasoning about
QoS requirements too.

∗Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bl. 8, Acad G. Bonchev str. 1113 Sofia, Bulgaria,
fax: +359 2 9713649, e-mail gelevdp@math.bas.bg. Work on this paper was done during the D. Guelev’s visit to UNU/IIST in
August-September 2007.

†International Institute of Software Technology of the United Nations University (UNU/IIST), Est. do Engenheiro Trigo
No. 4, P.O. Box 3058, Macao SAR, China, fax: +853 2871 2940, e-mail: dvh@iist.unu.edu

1

1 Preliminaries

We consider only the extended set of the real numbers R = R ∪ {∞} as the flow of time in PITL and
PDC . In order to facilitate the description of repetitive behaviour, we include a least-fixed-point operator
for non-probabilistic formulas, which was introduced in [Pan95] and studied in [Gue00a]. ITL with infinite
intervals [ZDL95, PWX98, SX98, WX04] is the underlying non-probabilistic logic of PITL and PDC . It
extends the syntax of predicate logic by a binary modality (.; .), known as chop.1 Non-logical symbols are
divided into rigid and flexible depending on whether their meaning is required to be the same at all reference
intervals or not. Individual variables are rigid.

An interpretation of a vocabulary L is a function I on L which maps the symbols from L to members of
R, functions and predicates on R, according to the type and arity of symbols. I(s) takes an interval from Ĩ
as an additional argument in case s is flexible. We use the sets of intervals

Ifin = {[τ1, τ2] : τ1, τ2 ∈ R, τ1 ≤ τ2}, Iinf = {[τ,∞] : τ ∈ R} and Ĩ = Ifin ∪ Iinf .

Given σ1 ∈ Ifin and σ2 ∈ Ĩ such that max σ1 = min σ2, σ1; σ2 stands for σ1 ∪ σ2. Given an interpretation I,
the values Iσ(t) of terms t at intervals σ ∈ Ĩ are defined in the usual way, with the reference interval being
an additional argument for flexible symbols. Satisfaction |= is defined with respect to an interpretation and
a reference interval. Flexible relation symbols are interpreted predicates which take the reference interval as
an argument too. The clauses for ⊥, ⇒ and ∃ are the usual ones. The clause for (.; .) is

I, σ |= (ϕ; ψ) iff I, σ1 |= ϕ and I, σ2 |= ψ for some σ1 ∈ Ifin and σ2 ∈ Ĩ such that σ1; σ2 = σ.

0, ∞, + and = are mandatory in ITL vocabularies and always have the usual interpretation. A mandatory
flexible constant ` always evaluates to the length of the reference interval. Infix notation for + and = and
>, ∧, ⇒, ⇔ and ∀ are used in the usual way. ITL-specific abbreviations include

(ϕ1; . . . ; ϕn−1; ϕn) ⇀↽ (ϕ1; . . . (ϕn−1; ϕn) . . .), 3ϕ ⇀↽ (>; ϕ;>) ∨ (>; ϕ), 2ϕ ⇀↽ ¬3¬ϕ.

3 and 2 bind more tightly and (.; .) binds less tightly than the boolean connectives.
A complete proof system for ITL with infinite intervals with respect to an appropriate abstract domain

of durations was presented in [WX04].
Vocabularies for DC with infinite intervals additionally include state variables P, Q, . . .; state expressions

S are boolean combinations of state variables with the logical constants written as 0 and 1 and in turn
appear as the argument of duration terms

∫
S, which are the DC -specific construct in the syntax of DC

terms. Formulas in DC are as in ITL. State variables evaluate to piece-wise constant functions of type
R → {0, 1}. The value Iτ (S) of state expression S at time τ is defined using I(P)(τ) for the involved state
variables P in the usual way. Values of duration terms are defined by the equality

Iσ(
∫

S) =
max σ∫
min σ

Iτ (S)dτ

Iσ(
∫

S) can be ∞ for σ ∈ Iinf . The expression dSe abbreviates ` 6= 0 ∧ ∫ ¬S = 0 and ` can be viewed as an
abbreviation for

∫
1 in DC .

Axioms and rules for DC (with infinite intervals) which are complete relative to validity in real-time ITL
(with infinite intervals), have been presented in [HZ92] (resp. [Gue07].)

The least-fixed-point operator If ϕ1, . . . , ϕn have no negative occurrences of the propositional variables
X1, . . . , Xn and i ∈ {1, . . . , n}, then µiX1 . . . Xn.ϕ1, . . . , ϕn is well-formed and I, σ |= µiX1 . . . Xn.ϕ1, . . . , ϕn

iff σ ∈ Ai, where A1, . . . , An are the smallest subsets of Ĩ which satisfy the equalities

Ai = {σ ∈ Ĩ : Iλσ.σ∈A1,...,λσ.σ∈An

X1, ... ,Xn
, σ |= ϕi}, i = 1, . . . , n.

Iteration, also known as Kleene star, can be defined using µ by the equivalence ϕ∗ ⇀↽ µ1X.` = 0 ∨ (ϕ; X).
I, σ |= ϕ∗ can be defined independently by the condition:

min σ = maxσ or σ = σ1; . . . ;σn and I, σi |= ϕ, i = 1, . . . , n, for some n < ω, σ1, . . . , σn ∈ Ĩ.

1Many authors write chop as ϕ_ψ instead of (ϕ; ψ).

2

Axioms and rules for µ and ∗ in DC were proposed in [Pan95, Gue00a, GD05].
Higher-order quantifiers We use ∃ on flexible constants and state variables with the usual meaning, in

order to describe the semantics of local variables. The deductive power of some axioms and rules for this
usage has been studied in [ZGZ00, Gue00a, GD05].

Probabilistic ITL and DC with infinite intervals (PITL) extends the syntax of ITL terms by probability
terms of the form p(ϕ) where ϕ is a formula. Formula syntax is as in ITL, with µ and higher-order quantifiers
included. A PITL model is based on a collection of interpretations of a given vocabulary L. Each interpre-
tation is meant to describe a possible behaviour of the modelled system. Consider a non-empty set W, a
function I on W into the set of the ITL interpretations of L and a function P of type W×R× 2W → [0, 1].
Let Iw and Pw abbreviate I(w) and λτ,X.P (w, τ, X), respectively, for all w ∈ W. Iw and Pw, w ∈ W, are
intended to represent the set of behaviours and the associated probability distributions for every τ ∈ R in
the PITL models for L.

Definition 1 Let τ ∈ R. Then w ≡τ v iff
Iw(s) = Iv(s) for all rigid symbols s ∈ L, except possibly the individual variables;
Iw(s)(σ, d1, . . . , d#s) = Iv(s)(σ, d1, . . . , d#s) for all flexible s ∈ L, all d1, . . . , d#s ∈ R and all σ ∈ Ĩ such

that max σ ≤ τ ;
Pw(τ ′, X) = P v(τ ′, X) for all X ⊆ W and all τ ′ ≤ τ .

Clearly ≡τ is an equivalence relation on W for all τ ∈ R. Members of W which are τ -equivalent model
the same behaviour up to time τ . If τ1 > τ2, then ≡τ1⊂≡τ2 and w ≡∞ v holds iff Pw = P v and Iw and
Iv agree on all symbols, except possibly some individual variables. [w]≡τ is the set of those v ∈ W which
represent the probabilistic branching of w from time τ onwards.

Definition 2 A general PITL model for L is a tuple of the form 〈W, I, P 〉 where F , W, I and P are as
above and satisfy the following requirements for every w ∈ W:

• W is closed under variants of interpretations. If w ∈ W, x is an individual variable from L and a ∈ R,
then there is a v ∈ W such that P v = Pw and Iv = (Iw)a

x, where (Iw)a
x maps x to a and is the same as Iw

on other symbols.
• The functions Pw are probability measures. For every w ∈ W and τ ∈ R the function λX.Pw(τ,X) is

a probability measure on the boolean algebra 〈2W,∩,∪, ∅,W〉. Furthermore λX.Pw(τ,X) is required to be
concentrated on [w]≡τ : Pw(τ, X) = Pw(τ,X ∩ [w]≡τ) for all X ⊆ W.

Informally, the probability for a behaviour in X ⊆ [w]≡τ to be chosen is Pw(τ,X). Satisfaction |= is
defined in PITL with respect to a model M = 〈W, I, P 〉, a w ∈ W, and a σ ∈ Ĩ. If ψ is a sentence, then

[[ψ]]M,w,σ = {v ∈ [w]≡max σ : M, v, [min σ,∞] |= ψ}.
This means that [[ψ]]M,w,σ consists of the interpretations v which are maxσ-equivalent to w and satisfy ψ at
the infinite interval starting at minσ. In case ψ has free variables x1, . . . , xn, M, v, [min σ,∞] |= ψ should
be evaluated with Iw(x1), . . . , Iw(xn) as the values of x1, . . . , xn, in order to preserve the intended meaning:

[[ψ]]M,w,σ = {v ∈ [w]≡max σ : (∀v′ ∈ W)(P v′ = P v ∧ Iv′ = (Iv)Iw(x1),...,I
w(xn)

x1 , ... , xn
⇒ M, v′, [min σ,∞] |= ψ)}.

Using this notation, term values wσ(t) of probability terms t can be defined by putting

wσ(p(ψ)) = Pw(max σ, [[ψ]]M,w,σ).

Values of terms of other forms are defined as in (non-probabilistic) ITL.
The probability functions λX.Pw(τ, X) for w ∈ W and τ ∈ T in general PITL models M = 〈W, I, P 〉

are needed just as much as they provide values for probability terms. That is why we accept structures of
the form 〈W, P, I〉 with their probability functions λX.Pw(τ,X) be defined just on the (generally smaller)
algebras 〈{[[ψ]]M,w,σ : ψ ∈ L, σ ∈ Ĩ,max σ = τ},∩,∪, ∅, [w]≡τ 〉 as general PITL models too.

PITL is a conservative extension of ITL. Axioms and a proof rule which extend the proof system for
ITL with infinite intervals to a system for PITL were shown in [Gue07] to be complete with respect to a
generalisation of the R-based semantics, where R is replaced by an abstract domain and the probability
measures are required to be only finitely aditive.

3

The probability functions λX.Pw(τ, X) need not be related to each other in general models for PITL,
whereas applications typically lead to models with an origin of time τ0 = min T and a distinguished w0 ∈ W
such that [w0]≡τ0

= W and λX.Pw0(τ0, X) can be regarded as the global probability function. Then,
given an arbitrary w ∈ W and τ ∈ R, the probability function λX.Pw(τ,X) should represent conditional
probability, the condition being τ -equivalence with w. Hence we should have

Pw0(τ, A) =
∫

w∈[w0]≡τ

Pw(τ ′, A)d(λX.Pw0(τ, X)). (1)

The following rules enable approximating (1) with arbitrary precision in PITL proofs:

(P)
ϕ ⇒ ¬(ϕ; ` 6= 0)

` = 0 ∧ p(ϕ ∧ p(ψ) < x;>) = 0 ⇒ p((ϕ;>) ∧ ψ) ≥ x.p(ϕ;>)

(P)
ϕ ⇒ ¬(ϕ; ` 6= 0)

` = 0 ∧ p(ϕ ∧ p(ψ) > x;>) = 0 ⇒ p((ϕ;>) ∧ ψ) ≤ x.p(ϕ;>)

The proof system for PITL from [Gue07] is minimal. Using the abbreviations

ϕh
l

⇀↽ ϕ ∧ ` ≥ l ∧ ` ≤ h and [ETϕ ∈ [l, h]]x ⇀↽ ` = 0 ∧ p(ϕ;>) = 1 ⇒ p(ϕh
l ;>) = x,

we can write the derived rule

(Seq)
α ⇒ ¬(α; ` 6= 0), β ⇒ ¬(β; ` 6= 0), [ETα ∈ [l1, h1]]x1 , [ETβ ∈ [l2, h2]]x2

` = 0 ∧ p(α;β;>) = 1 ⇒ p(αh1
l1

; βh2
l2

;>) = x1x2

,

which is particularly important to our examples.
The system of probabilistic DC (PDC) with infinite intervals which we use in this paper is obtained by

adding state variables and duration terms to PITL in the way used to obtain (non-probabilistic) DC from
ITL. The axioms and rules for DC with infinite intervals are complete for PDC relative to validity in PITL
models based on R.

2 A toy concurrent programming language and its semantics in
DC with infinite intervals

We propose a toy language to illustrate our approach. It is shaped after that from [GD02] and has restricted
form of method call, in order to set the stage for the use of components and contracts.

Programs consist of components, which import and/or export methods. Their syntax is:

component ::= component name
{import method}∗
{export method}∗

end name

method ::= name(parameter list)[code];

The part code is required only for exported methods. It has the syntax

code ::= stop | (thread) termination statement
return[e] | return control and possibly a value
X continuation
(x := e; code) | assignment
(delay r; code) | delay by the specified amount of time
(call [x :=]name(parameter list); code) | call method and possibly obtain a value
if b then code else code | conditional statement
letrec code where X : code; . . . ;X : code | mutual recursion statement
var x; code local variable declaration
code‖code parallel composition

4

We do not allow var to occur in the scope of other control statements. Assignments are atomic. Parameters
are passed by value. A mutual recursion statement can trigger an infinite computation. Components are
passive. The active part of a program is just a piece of code, typically a collection of concurrently running
interleaved threads. The syntax of control statements deliberately makes tail-recursion the only expressible
form of repetitive behaviour. We give no details on the type system and tacitly assume an appropriately
many-sorted system of DC .

The execution of code can be described in terms of the values of its signals, variables and parameters as
functions of time. The semantic function [[.]] defined below maps every piece of code to a DC formula which
defines the set of its observable behaviours. We model each program variable v by a corresponding pair of
flexible constants v and v′, which denote the value of v at the beginning and at the end of the reference
interval and therefore satisfy the axiom ∀x¬(v′ = x; v 6= x) where x is a rigid individual variable. We
model methods m which return a value by a corresponding flexible function symbol. A formula of the form
v′ = m(e1, . . . , en) means that the reference interval describes a complete invocation of m with e1, . . . , en

as the input parameters and v′ as the value. We use a flexible predicate symbol for methods which return
no value. We use dedicated state variables R and W to indicate that the thread is currently running, or
has terminated, respectively. Building on the work from [PD98, GD02], we use a state variable N to mark
computation time, which, unlike the time consumed by the execution of delay statements, waiting for the
reaction of the environment, etc., is regarded as Negligible, in order to simplify calculations. R, W and N
satisfy the axioms

T(R, W) ⇀↽ dR ⇒ Ne ∧ dR ⇒ ¬W e ∧2¬(dW e; d¬W e),
which express that computation time is negligible, a process can never be both running and terminated, and,
once terminated, is never re-activated. A dedicated pair of state variables R and W describes the status of
each thread. N marks negligible time for all threads. The formulas

K(V) ⇀↽
∧

x∈V

x′ = x and KR(V) ⇀↽ K(V) ∧ dRe.

mean that the variables from V preserve their values. KR(V) additionally means that the thread is active
throughout the reference interval. The clauses below define [[.]]V , where V is the set of program variables
which are in the scope in the given code.

[[stop]]V ⇀↽ dW e
[[return e]]V ⇀↽ (d¬Re; KR(V) ∧ r′ = e)
[[return]]V ⇀↽ d¬Re
[[X]]V ⇀↽ X
[[(C1; C2)]]V ⇀↽ ([[C1]]V ; [[C2]]V)
[[x := e]]V ⇀↽ (d¬Re; KR(V \ {x}) ∧ x′ = e)
[[delay r]]V ⇀↽ d¬Re ∧ r =

∫ ¬N
[[if b then C1 else C2]]V ⇀↽ (d¬Re; (b ∧ KR(V); [[C1]]V) ∨ (¬b ∧ KR(V); [[C2]]V))
[[call v := m(e1, . . . , en)]]V ⇀↽ (d¬Re; K(V \ {v}) ∧ v′ = m(e1, . . . , en))
[[call m(e1, . . . , en)]]V ⇀↽ (d¬Re; K(V) ∧m(e1, . . . , en))

[[letrec C where X1 : C1; . . . Xn : Cn]]V ⇀↽ µn+1X1 . . . XnY.[[C1]]V , . . . , [[Cn]]V , [[C]]V

[[var v; C]]V ⇀↽ ∃v∃v′(2((d¬Re ⇒ v′ = v) ∧ ∀x¬(v′ = x; v 6= x)) ∧ ∧[[C]]V ∪{v}

[[(C1‖C2)V]] ⇀↽ ∃R1∃R2∃W1∃W2

dW ⇔ W1 ∧W2e ∧ dR ⇔ R1 ∨R2e ∧ d¬R1 ∧R2e∧
T(R1,W1) ∧ [R1/R, W1/W][[C1]]V ∧
T(R2,W2) ∧ [R2/R, W2/W][[C2]]V

[[export m(p1, . . . , pn) code]] ⇀↽ 2∀p1 . . . ∀pn∀r′(r′ = m(p1, . . . , pn) ⇔ [[code]]∅), if m returns a value
[[export m(p1, . . . , pn) code]] ⇀↽ 2∀p1 . . . ∀pn(m(p1, . . . , pn) ⇔ [[code]]∅), if m returns no value

The semantics of a component is the conjunction of the formulas [[export m(p1, . . . , pn) code]] for its exported
methods. Declarations of imported methods carry only typing information.

5

3 Reasoning about timed programs in PDC : pattern and examples

Let C be a piece of code. Then the formula [[C]]V contains the flexible function and relation symbols for the
methods with calls in C. Let m be such a method; let m return no value for the sake of simplicity. Let B
be the body of m. By replacement of equivalents we can derive

[[export m(p1, . . . , pn) B]] ∧ [[C]]V ⇒ [[[B]]∅/m][[C]]V ,

where the substitution [[[B]]∅/m] distributes over the boolean connectives, chop and quantifiers and
[[B]]∅/m]m(e1, . . . , en) is defined as [e1/p1, . . . , en/pn][[B]]∅. Assume that the satisfaction of a requirement
ReqC written in DC by C is expressed as the equivalence

[[C]]V ⇒ ReqC

and, according to a contract, m is supposed to satisfy a requirement Reqm, that is,

[[B]]∅ ⇒ Reqm

is valid for every acceptable B. Then the formula

[Reqm/m][[C]]V ⇒ ReqC

states that C would satisfy ReqC , provided that the imported implementation of m satisfies ReqM .
This setting enables reasoning about the probability distribution of the execution time of code that calls

imported methods too. Let C and m be as above. Then the probability for C to terminate within d time
units can be expressed as the PDC term

p([[C]]V ∧
∫ ¬N ≤ d;>),

where we use
∫ ¬N to measure only non-negligible execution time spent on the execution of delay or by

other processes. Now let Fm be a rigid function symbol such that Fm(x) denotes a lower bound for the
probability for m to terminate within time x. Let Pm be the precondition for the successful execution of m.
Let p abbreviate p1, . . . , pn. Then

∀x(` = 0 ⇒ p(Pm(p) ∧m(p) ∧ ∫ ¬N > x;>) < 1− Fm(x)) `PITL p([[C]]V ∧
∫ ¬N ≤ d;>) ≥ c

means that the probability for C to terminate within d time units is at least c. The correspondence between
the assumption on the execution time of m and the derived estimate of the execution time of C can be
expressed even more accurately, if we make d and Fm parameters in an appropriate expression FC in place
of c:

∀x(` = 0 ⇒ p(Pm(p) ∧m(p) ∧ ∫ ¬N > x;>) < 1− Fm(x)) `PITL p([[C]]V ∧
∫ ¬N > d;>) < 1− FC(d, Fm).

In general FC represents a mapping from distributions to distributions, but if the form of Fm is known up to
numerical parameters such as mean and variance, then FC can be defined as a mapping from their numerical
domains instead of the space of distributions.

Example 1 Consider downloading e-mail, which consists of establishing a connection with a server, followed
by the actual download. Let the code C for this call two imported methods, connect() and getMail():

var ok; call ok := connect(); if ok then (call getMail(); stop) else stop

Let Fconnect(t) be the probability for connecting within time t. Let the amount of the e-mail be probabilis-
tically distributed too and the probability for downloading it in time t be FgetMail(t). Then lower bounds
FC for the distribution of the execution time of C satisfy the formula:
` = 0 ⇒ p([[call ok := connect()]] ∧ ∫ ¬N > t;>) < 1− Fconnect(t),
` = 0 ⇒ p(ok ∧ [[call getMail()]] ∧ ∫ ¬N > t;>) < 1− FgetMail(t) `PITL p([[C]] ∧ ∫ ¬N > t;>) < 1− FC(t)

Since the time for connecting and the quantity of e-mail to download can be assumed independent,

FC(t) =
y∫
0

Fconnect(y − t)dFgetMail(t). (2)

6

FC can be derived in PITL only approximately, because PITL does not capture taking the limits involved in
the definition of the integral in (2). This corresponds to the established use of numerical approximations for
distributions. Except for some thoroughly studied distributions, cummulative probability functions seldom
have a closed form. Using contracts makes it natural to work with lower bounds and not exact probabilities.
The latter may as well not exist. This makes approximations satisfactory. To derive such approximations
for (2) in PITL, we find a sequence Ak, k = 0, 1, . . ., of terms involving Fconnect , FgetMail and t such that

p([[C]] ∧ ∫ ¬N > t;>) < 1−Ak

for all k can be derived in PITL and, by the definition of
∫

, limk Ak = FC(t). Taking this limit briefly takes
us outside PITL. The part of the derivation within PITL is a formalisation of a standard calculation. Let

ϕt2
t1

⇀↽ ϕ ∧ ∫ ¬N > t1 ∧
∫ ¬N ≤ t2 (3)

Every method call can terminate at most once. This implies the validity of the formulas connect ⇒ ¬(connect ; ` 6= 0)
and getMail ⇒ ¬(getMail ; ` 6= 0) and enables an application of Seq to derive
` = 0 ∧ p(connect; getMail;>) = 1 ⇒
p(connect

(l+1)t
k

lt
k

; getMail
(m+1)t

k
mt
k

;>) = (Fconnect(
(l+1)t

k)− Fconnect(lt
k))(FgetMail(

(m+1)t
k)− FgetMail(mt

k))
for all l,m ∈ {0, . . . , k − 1}. Now by a repeated application of the PITL axiom P+, and using that
Fconnect(0) = 0, we obtain

p((connect; getMail) ∧ ∫ ¬N ≤ t;>) ≤ ∑
l+m≤k−1

p(connect
(l+1)t

k
lt
k

; getMail
(m+1)t

k
mt
k

;>)+

∑
l+m=k

p(connect
(l+1)t

k
lt
k

; getMail
(m+1)t

k
mt
k

;>)

=
∑

m≤k−1

Fconnect(
(k−m+1)t

k)(FgetMail(
(m+1)t

k)− FgetMail(mt
k))

︸ ︷︷ ︸
Sk

+Bk

where Bk ≤ maxl≤k−1 Fconnect(
(l+1)t

k)−Fconnect(lt
k), and therefore limk Bk = 0. By the definition of Stieltjes

integral, we have limk Sk = FC(t). Hence we can take Ak to be the expression on the right of ≤ above.
Note that Seq was formulated with ϕt2

t1 standing for ϕ ∧ l ≥ t1 ∧ ` ≤ t2, but it applies to (3) as well.

Example 2 Consider attempting to download 5 files in quick succession. With a server which allows at
most 4 files to be downloading simultaneously, the 5th request can be cancelled by the browser due to a
timeout. We are interested in the probability of cancellation. Here follows an extremely simplified variant
of the relevant browser code:

letrec X where 1
X : if userRequest then 2

(userRequest := false; 3

X‖

call handle := requestDownload(url , timeout);
if handle! = null

then (call download(handle); stop)
else (call signalTimeout(url); stop)

4
5
6
7

) 8
else X 9

(4)

A separate process is assumed to indicate the arrival of a new download request by setting the shared variable
userRequest and placing the URL in the shared variable url . Let

α(R, T) ⇀↽

(
(d¬Re; KR(V) ∧ ¬userRequest)∗; d¬Re; KR(V) ∧ userRequest ;
d¬Re; KR(V \ {userRequest}) ∧ userRequest ′ = false

)
∧ ∫ ¬N = T

and

β(R, W, T) ⇀↽

(d¬Re; KR(V \ {handle}) ∧ handle ′ = requestDownload(url , timeout);
d¬Re; KR(V) ∧ handle! = null; d¬Re; KR(V) ∧ download(handle) ∧ ∫ ¬N = T ; dW e

)

7

According to the semantics of (4), α(R, T) describes the repeated execution of lines 2-3 and 9 until userRequest
becomes true with T denoting the overall execution time, and β(R,W, T) corresponds to the execution of
lines 4-6, with R and W describing the status of the thread created in order to complete the requested down-
load, and T denoting the download time. The scenario of launching the five downloads involves six threads:
one for each download and one to keep the system ready for further requests. Let R1, . . . , R6,W1, . . . , W6

describe the status of the six threads. Then the scenario can be described by the formula

∃R1 . . . ∃R6∃W1 . . . ∃W6

dW ⇔

6∧

i=1

Wie ∧ dR ⇔
6∨

i=1

Rie ∧ d
∧

1≤i<j≤6

¬(Ri ∧Rj)e ∧
6∧

i=1

T(Ri,Wi) ∧ γ

(5)

where γ describes the concurrent execution of the six threads and is written using the additional abbrevia-
tions:

αi(T) ⇀↽ α(Ri+1 ∨ . . . ∨R6,Wi+1 ∧ . . . ∧W6, T) and βi(T) ⇀↽ β(Ri,Wi, T).

With these abbreviations γ can be written as

α(R, W, T0);

β1(D1)∧
α1(T1);

β2(D2)∧
α2(T2);

β3(D3)∧(
α3(T3);

(
β4(D4)∧
(α4(T4); ξ ∧ η)

))

Here Ti denotes the time between launching the ith and the i + 1st download and Di denotes the duration
of the ith download, i = 1, . . . , 5. The formulas ξ and η denote

(d¬R5e;KR5(V \ {handle}) ∧ handle ′ = requestDownload(url , timeout) ∧ ∫ ¬N = x;>))

and

((d¬R6e; KR6(V) ∧ ¬userRequest)∗;>),

and correspond to the thread for the 5th download and the thread for subsequent user requests after the 5th
download request. The occurrences of > in them mark future behaviour which is not specified in our scenario.
The semantics of letrec implies (5); this can be established using the validity of µX.ϕ ⇔ [µX.ϕ/X]ϕ.
Assuming that the rate of downloading is the limiting factor for the working of the entire system, which
allows us to ignore time taken for dialog, computation and by requestDownload for the first four downloads,
the 5th download becomes cancelled in case x exceeds timeout , which is equivalent to

timeout +
4∑

j=1

Ti <
4

min
i=1

Di +

i−1∑

j=1

Tj

 .

Let F (l, t) be a lower bound for the probability for download do complete a download of length l within time
t. It can be assumed that F (al, at) = F (l, t) for all a > 0 and that F (l, t) = 0 in case l

t exceeds the top
transmission rate v. Let li be the length of the ith download, i = 1, . . . , 5. Let li > v(T1 + T2 + T3 + T4)
for i = 1, . . . , 4, that is, none of the downloads can be over before all of them have been launched, for the
sake of simplicity. Then the probability Pi for i ∈ {1, . . . , 4} to be the first download to complete, and to
complete before the timeout for the pending 5th download is at least

∫
{〈q1,...,q4〉:li−qi≤lj−qj ,j=1,...,4}

∂
∂q F (q, t)(li − qi, timeout).

4∏
k=1

F ′(qk,
4∑

s=k

Ts)dq1 . . . dq4,

The probability for the 5th download not to be cancelled is P1 + . . . + P4. Approximations of the above
integral can be derived in PITL using Seq much like in Example 1.

Using a contract in which the execution time of download is approximated by a distribution depending
just the amount of data to transmit is too crude. A more accurate calculation is possible by taking the
amount of competing traffic in account, but the form of contract that we propose does not enable it.

8

4 Probabilistic timed designs

A design 〈P, R〉, usually written as P ` R, describes a computation by a precondition P , an input-output
relation R. P constrains the initial values v of the variables, and R is a relation between v and the final values
v′ of the variables, which holds if v initially satisfy P . A probabilistic timed design 〈P,R, F 〉 additionally
includes an execution time distribution F . F (v, t) is a lower bound for the probability for the computation
to terminate within time t, provided that P (v) holds. A hard bound d on execution time can be expressed
by a F satisfying F (d′) = 1 for all d′ ≥ d.

4.1 Describing designs in PDC

The property of method m encoded by 〈P, R, F 〉 can be written as the PITL formulas

m ⇒ (P (v) ⇒ R(v, v′)) and ` = 0 ⇒ p(P (v) ∧m ∧ ` > t;>) < 1− F (v, t).

The first one is for the functional behaviour of m. The second one states that if P (v) holds, then m to takes
more than t time units with probability less than 1 − F (v, t). F is just a lower bound, because an exact
probability need not exist.

4.2 Refinement of probabilistic timed designs

Design D1 = 〈P1, R1, F1〉 refines design D2 = 〈P2, R2, F2〉, written D1 v D2, if

∀x(P2(x) ⇒ P1(x)), ∀x∀x′(R1(x, x′) ⇒ R2(x, x′)), and ∀x∀t(F2(x, t) ≤ F1(x, t)).

This means that D1 has a weaker or equivalent precondition and a stronger or equivalent input-output
relation, and on average terminates at least as fast as D2. Obviously if D1 v D2, then

P1(v) ∧m ⇒ R1(v, v′) and ∀x(` = 0 ⇒ p(P1(v) ∧m ∧ ` > x;>) < 1− F1(v, x))

entail

P2(v) ∧m ⇒ R2(v, v′) and ∀x(` = 0 ⇒ p(P2(v) ∧m ∧ ` > x;>) < 1− F2(v, x)).

5 Probabilistic timed contracts

The execution time of a method depends on the execution times of the methods which have calls in its body.

Definition 3 (component declaration) A component declaration is a pair 〈Mi,Me〉 where Mi and Me

are disjoint sets of declarations for imported and exported methods, respectively.

Definition 4 (probabilistic timed contract) Let 〈Mi, Me〉 be a component declaration and Vm be the
set of the valuations for the variables of declaration m, m ∈ Mi ∪Me. The tuple C = 〈Dm : m ∈ Mi ∪Me〉
is a contract for 〈Mi, Me〉, if Dm are of the form 〈Pm, Rm, Fm〉 where

(i) 〈Pm, Rm〉 is a (non-probabilistic) design for m, m ∈ Mi ∪Me.
(ii) Fm is a variable of type Vm ×R+ → [0, 1] for method declarations m ∈ Mi and is meant to denote a

distribution of the execution time of implementations of m.
(iii) For declarations m ∈ Me, Fm an expression for the distibution of the execution time of an imple-

mentation of declaration m as in probabilistic designs in terms of Fn, n ∈ Mi.

We denote {n ∈ Mi : Fn occurs in Fm} by Ci,m. Semantically, if m ∈ Me, then the type of Fm is

 ∏

n∈Ci,m

Vn ×R+ → [0, 1]

 → (Vm ×R+ → [0, 1]).

Syntactically we assume that Fm is an expression such as, e.g., (2). A contract C is meant to express
that if the methods m ∈ Mi satisfy their corresponding designs Dm and the distribution variables Fm are

9

assigned lower bounds for the distributions of their execution times, then the methods from Me satisfy
their corresponding designs and the expressions Fm evaluate to lower bounds for the distributions of their
execution times too. If Ci,m = 0 then 〈Pm, Rm, Fm〉 is essentially a probabilistic timed design.

Definition 5 (refinement of probabilistic timed contracts) Let C and C ′ be probabilistic timed con-
tracts for 〈Mi,Me〉 and 〈M ′

i ,M
′
e〉, respectively. Let C = 〈〈Pm, Rm, Fm〉 : m ∈ Mi ∪ Me〉 and C ′ =

〈〈P ′m, R′m, F ′m〉 : m ∈ M ′
i ∪M ′

e〉. Then, C ′ refines C, written C ′ v C, if
(i) M ′

i ⊆ Mi, M ′
e ⊇ Me;

(ii) 〈Pm, Rm〉 v 〈P ′m, R′m〉 for m ∈ M ′
i , 〈P ′m, R′m〉 v 〈Pm, Rm〉 for m ∈ Me;

(iii) Fm(v, t) ≤ F ′m(v, t) for m ∈ Me, v ∈ Vm, t ∈ R+ regardless of the values of Fn, n ∈ Mi.

5.1 Composing probabilistic timed contracts

Let Ak = 〈Mk
i ,Mk

e 〉 and Ck = 〈〈P k
m, Rk

m, F k
m〉 : m ∈ Mk

i ∪Mk
e 〉, k = 1, 2, be two component declarations

and probabilistic timed contracts for them, respectively. A1 and A2 are composable, if M1
e ∩M2

e = ∅. C1

and C2 are composable, if A1 and A2 are composable, and Dk
m v D2−k

m for m ∈ Mk
e ∩M2−k

i , k = 1, 2. The
composition of C1 and C2, written C1 ∪ C2, is 〈〈Pm, Rm, Fm〉 : m ∈ M1

i ∪M1
e ∪M2

i ∪M2
e 〉 where:

(i) Pm(v) ⇀↽ P 1
m(v) ∧ P 2

m(v), Rm(v, v′) ⇀↽ R1
m(v, v′) ∧R2

m(v, v′) and Fm = F 1
m = F 2

m for m ∈ M1
i ∩M2

i ;
(ii) Pm = P k

m and Rm = Rk
m for m ∈ Mk

e ∪ (Mk
i \M2−k

i), k = 1, 2;
(iii) Fm = F k

m for m ∈ Mk
i \M2−k

i , k = 1, 2.
To facilitate the understanding, we first define Fm, m ∈ M1

e ∪M2
e , in case C1 and C2 allow no circular

dependency between the methods, that is, if there is no sequence m0, . . . , m2s−1 such that mr ∈ M1
e ∩M2

i

for r = 1, 3, . . . , 2s − 1, Mr ∈ M2
e ∩M1

i for r = 0, 2, . . . , 2s − 2 and mr ∈ C2−r mod 2
i,mr+1 mod 2s

, r = 0, . . . , 2s − 1.
Given that there is no circular dependency, we can define dependency depth of m from C1 ∪C2 as the length
s of the longest sequence of the form m1, . . . , ms such that m1 ∈ Ci,m and mr+1 ∈ Ck

i,mr
, where k is such

that mr ∈ Mk
e , for r = 1, . . . , s − 1, and we can define Fm by induction on the dependency depth of m by

the clauses:
Fm = F k

m for m ∈ Mk
e of dependency depth 0;

Fm = [Fn/F k
n : n ∈ Ck

i,m]F k
m for m ∈ Mk

e of nonzero dependency depth.
Note that the substitution replaces F k

n with the expression for it from C2−k, in case n ∈ M2−k
e . Otherwise

F k
n is not affected by this substitution.

If thereare circular dependencies between C1 and C2, then the Fms for the exported methods in C1 ∪C2

should be a solution of the system of equations

Xm = [Xn/F k
n : n ∈ Ci,m]F k

m.

Solving it without restrictions on F k
m can be hard2, but if F k

m and monotonic, then Xm can be obtained as
the limits of the sequences Xj

m, j < ω, where X0
m ≡ 0 and

Xj+1
m = [Xj

n/F k
n : n ∈ Ck

i,m]F k
m for m ∈ Mk

e .

Observe that X0
m ≡ 0 implies that X1

m would give non-zero termination probability only to runs of m with
no calls to other imported methods; X2

m would give non-zero probability for runs with calls to imported
methods which themselves lead to no further calls, etc. Since F k

m are meant to be under-approximations,
and the monotonicity of F k

m entails Xs
m ≤ Xs+1

m ≤ limj Xj
m for all s < ω, Xs

m can be used as Fm instead of
limj Xj

m for sufficiently large s, to achieve a crude, but less expensive approximation.

Concluding remarks

Here we focused just on soft requirements on execution time, but we believe that the approach can be used
to capture other QoS requirements involving probability as well. The notion of QoS originated from telecom-
munications. Our examples come from everyday use of the Internet and need no expertise to understand.
However, we believe that our technique would work just as well in other areas such as embedded systems.

2In practice F k
m can be non-monotonic: increasing the execution time of an imported method may indeed shorten the

execution time of code which would abort if an imported method misses a deadline.

10

References

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making Components
Contract Aware. Computer, 32(7):38–45, 1999.

[Dan98] Dang Van Hung. Modelling and Verification of Biphase Mark Protocols in Duration Calculus Using
PVS/DC−. In Proceedings of the 1998 International Conference on Application of Concurrency to System
Design (CSD’98), pages 88–98. IEEE Computer Society Press, March 1998.

[Dan05] Dang Van Hung. Toward a formal model for component interfaces for real-time systems. In Tiziana
Margaria and Mieke Massink, editors, Proceedings of the 10th international workshop on Formal methods
for industrial critical systems, pages 106 – 114. ACM Press, 2005.

[DW96] Dang Van Hung and Wang Ji. On The Design of Hybrid Control Systems Using Automata Models. In
Proceedings of FST TCS 1996, volume 1180 of LNCS, pages 156–167. Springer, 1996.

[DZ99] Dang Van Hung and Zhou Chaochen. Probabilistic Duration Calculus for Continuous Time. Formal
Aspects of Computing, 11(1):21–44, 1999.

[GD02] Dimitar P. Guelev and Dang Van Hung. Prefix and Projection onto State in Duration Calculus. In
Proceedings of TPTS’02, volume 65(6) of ENTCS. Elsevier Science, 2002.

[GD05] Dimitar P. Guelev and Dang Van Hung. On the Completeness and Decidability of Duration Calculus
with Iteration. Theoretical Computer Science, 337:278–304, 2005.

[Gue00a] Dimitar P. Guelev. A Complete Fragment of Higher-order Duration µ-calculus. In Proceedings of FST
TCS 2000, volume 1974 of LNCS, pages 264–276. Springer, 2000.

[Gue00b] Dimitar P. Guelev. Probabilistic Neighbourhood Logic. In Mathai Joseph, editor, Proceedings of FTRTFT
2000, volume 1926 of LNCS, pages 264–275. Springer, 2000. A proof-complete version is available as
UNU/IIST Technical Report 196 from http://www.iist.unu.edu.

[Gue07] Dimitar P. Guelev. Probabilistic Interval Temporal Logic and Duration Calculus with Infinite
Intervals: Complete Proof Systems. Logical Methods in Computer Science, 3(3), 2007. URL:
http://www.lmcs-online.org/.

[HD07] Hung Ledang and Dang Van Hung. Concurrency and Schedulability Analysis in Component-based Real-
Time System Development. In Proceedings of the 1st IEEE & IFIP International Symposium on Theo-
retical Aspects of Software Engineering. IEEE Computer Society Press, 2007.

[HH98] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.

[HLL06] He Jifeng, Li Xiaoshan, and Liu Zhiming. A Theory of Reactive Components. In Liu Zhiming and Luis
Barbosa, editors, Proceedings of the International Workshop on Formal Aspects of Component Software
(FACS 2005), volume 160 of ENTCS, pages 173–195. Elsevier, 2006.

[HXZ06] He Jifeng, Xiaoshan Li, and Zhiming Liu. A refinement calculus of object systems. Theoretical Computer
Science, 365(1-2):109–142, 2006.

[HZ92] Michael R. Hansen and Zhou Chaochen. Semantics and Completeness of Duration Calculus. In Real-Time:
Theory and Practice, volume 600 of LNCS, pages 209–225. Springer, 1992.

[LH99] Li Li and He Jifeng. A Denotational Semantics of Timed RSL using Duration Calculus. In Proceedings
of RTCSA’99, pages 492–503. IEEE Computer Society Press, 1999.

[LRSZ93] Liu Zhiming, A. P. Ravn, E. V. Sørensen, and Zhou Chaochen. A Probabilistic Duration Calculus. In
H. Kopetz and Y. Kakuda, editors, Dependable Computing and Fault-tolerant Systems Vol. 7: Responsive
Computer Systems, pages 30–52. Springer, 1993.

[Pan95] Paritosh K. Pandya. Some extensions to Mean-Value Calculus: Expressiveness and Decidability. In
Proceedings of CSL’95, volume 1092 of LNCS, pages 434–451. Springer, 1995.

[PD98] Paritosh K. Pandya and Dang Van Hung. Duration Calculus of Weakly Monotonic Time. In Proceedings
of FTRTFT’98, volume 1486 of LNCS, pages 55–64. Springer, 1998.

[PWX98] Paritosh K. Pandya, Wang Hanping, and Xu Qiwen. Towards a Theory of Sequential Hybrid Programs.
In D. Gries and W.-P. de Roever, editors, Proceedings of IFIP Working Conference PROCOMET’98,
pages 336–384. Chapman & Hall, 1998.

[SX98] Gerardo Schneider and Xu Qiwen. Towards a Formal Semantics of Verilog Using Duration Calculus. In
Anders P. Ravn and Hans Rischel, editors, Proceedings of FTRTFT’98, volume 1486 of LNCS, pages
282–293. Springer, 1998.

11

[WX04] Wang Hanpin and Xu Qiwen. Completeness of Temporal Logics over Infinite Intervals. Discrete Applied
Mathematics, 136(1):87–103, 2004.

[ZDL95] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A Duration Calculus with Infinite Intervals. In Horst
Reichel, editor, Fundamentals of Computation Theory, volume 965 of LNCS, pages 16–41. Springer, 1995.

[ZGZ00] Zhou Chaochen, Dimitar P. Guelev, and Zhan Naijun. A Higher-order Duration Calculus. In Millennial
Perspectives in Computer Science, pages 407–416. Palgrave, 2000.

[ZZ94] Zheng Yuhua and Zhou Chaochen. A Formal Proof of a Deadline Driven Scheduler. In Proceedings of
FTRTFT’94, volume 863 of LNCS, pages 756–775. Springer, 1994.

A Proof systems

A.1 Proof system for ITL with infinite intervals

The following axioms and rules have been shown to form a complete proof system for ITL with infinite
intervals when added to a Hilbert-style proof system for classical first-order predicate logic and appropriate
axioms about an abstract domain of durations in [WX04]:

(A1) (ϕ; ψ) ∧ ¬(χ; ψ) ⇒ (ϕ ∧ ¬χ; ψ), (ϕ; ψ) ∧ ¬(ϕ; χ) ⇒ (ϕ; ψ ∧ ¬χ)
(A2) ((ϕ;ψ); χ) ⇔ (ϕ; (ψ; χ))
(R) (ϕ; ψ) ⇒ ϕ, (ψ; ϕ) ⇒ ϕ if ϕ is rigid
(B) (∃xϕ; ψ) ⇒ ∃x(ϕ; ψ), (ψ; ∃xϕ) ⇒ ∃x(ψ; ϕ) if x has no free occurrences in ψ
(L1) (` = x; ϕ) ⇒ ¬(` = x;¬ϕ), (ϕ; ` = x ∧ x 6= ∞) ⇒ ¬(¬ϕ; ` = x)
(L2) ` = x + y ∧ x 6= ∞⇔ (` = x; ` = y)
(L3) ϕ ⇒ (` = 0;ϕ), ϕ ∧ ` 6= ∞⇒ (ϕ; ` = 0)
(S1) (` = x ∧ ϕ; ψ) ⇒ ¬(` = x ∧ ¬ϕ;χ)
(P1) ¬(` = ∞;ϕ)
(P2) (ϕ; ` = ∞) ⇒ ` = ∞
(P3) (ϕ; ` 6= ∞) ⇒ ` 6= ∞

(N) ϕ

¬(¬ϕ;ψ)
,

ϕ

¬(ψ;¬ϕ)

(Mono) ϕ ⇒ ψ

(ϕ;χ) ⇒ (ψ; χ)
,

ϕ ⇒ ψ

(χ;ϕ) ⇒ (χ; ψ)

Using the first order logic axiom

(∃r) [t/x]ϕ ⇒ ∃xϕ.

is correct only if no variable in t becomes bound due to the substitution, and either t is rigid or (.; .) does
not occur in ϕ.

A.2 Axioms and rules for DC with infinite intervals

The axioms and rules below were proposed for DC with finite intervals and have been shown to be complete
relative to validity in real-time ITL in [HZ92].

(DC1)
∫

0 = 0
(DC2)

∫
1 = `

(DC3)
∫

S ≥ 0
(DC4)

∫
S1 +

∫
S2 =

∫
(S1 ∨ S2) +

∫
(S1 ∧ S2)

(DC5) (
∫

S = x;
∫

S = y) ⇒ ∫
S = x + y

(DC6)
∫

S1 =
∫

S2 if S1 and S2 are propositionally equivalent
(IR1) [` = 0/A]ϕ ϕ ⇒ [A ∨ (A; ddSee ∨ dd¬See)/A]ϕ

[>/A]ϕ
(IR2) [` = 0/A]ϕ ϕ ⇒ [A ∨ (ddSee ∨ dd¬See;A)/A]ϕ

[>/A]ϕ

12

The completeness proof from [HZ92] involves two theorems which can be derived using the rules IR1 and
IR2, instead of the rules themselves. The second of these theorems does not hold for infinite intervals and
therefore we modify it appropriately:

(T1) ` = 0 ∨ (ddSee;>) ∨ (dd¬See;>)
(T2) ` = 0 ∨ ` = ∞∨ (>; ddSee) ∨ (>; dd¬See)

DC1-DC6, T1 and the infinite-interval variant of T2 form a relatively complete proof system for DC with
infinite intervals.

A.3 Proof system for PITL

PITL is a conservative extension of ITL. Adding the axioms and a proof rule below to the proof system for
ITL leads to a system which is complete for PITL with respect to a generalisation of the R-based semantics,
where R is replaced by an abstract domain and the probability measures are required to be only finitely
aditive.
Extensionality

(P;) (` = x; p(ψ) = y) ⇒ p((` = x;ψ)) = y
(P∞) ` = ∞⇒ (ϕ ⇔ p(ϕ) = 1)

(P≤)
` (ϕ; ` = ∞) ⇒ (ψ ⇒ χ)

` ϕ ∧ ` < ∞⇒ p(ψ) ≤ p(χ)
Arithmetics of probabilities

(P⊥) p(⊥) = 0
(P>) p(>) = 1
(P+) p(ϕ) + p(ψ) = p(ϕ ∨ ψ) + p(ϕ ∧ ψ)

A.4 Useful theorems and derived rules for PITL

All the theorems and rules below except P ′; are valid in general PITL models. P ′; is valid in PITL models
with global probability.

(P∞≤)
(ϕ; ` = ∞) ∨ (ϕ ∧ ` = ∞) ⇒ (ψ ⇒ χ)

ϕ ⇒ p(ψ) ≤ p(χ)

(PITL1)
ϕ ⇒ ψ

p(ϕ) ≤ p(ψ)
,

ϕ ⇔ ψ

p(ϕ) = p(ψ)
(PITL2) p(ϕ) + p(¬ϕ) = 1
(PITL3) p(ϕ) < p(ψ) ⇒ p(ψ ∧ ¬ϕ) 6= 0
(PITL4) p(ϕ) = p(ϕ ∧ ` = ∞)
(PITL5) p(ϕ) ≤ 1
(PITL6)

ϕ

p(ϕ) = 1
,

¬ϕ

p(ϕ) = 0
(PITL7) (ϕ;>) ⇒ p(ϕ;>) = 1
(PITL8) p(ϕ) = 1 ∧ p(ψ) = x ⇒ p(ϕ ∧ ψ) = x
(PITL9) p(ϕ ⇒ ψ) = 1 ⇒ (p(ϕ) = 1 ⇒ p(ψ) = 1)

p(ϕ ⇒ ψ) = 1 ⇒ (p(ψ) = 0 ⇒ p(ϕ) = 0)
(PITL10) p(ϕ) + p(ψ) > 1 ⇒ p(ϕ ∧ ψ) > 0

(P ′;)
ϕ ⇒ ¬(ϕ; ` 6= 0)

(ϕ; p(ψ) = x) ⇒ p(ϕ;ψ) = x
Here follow the proofs of the above PITL theorems and derived rules. The purely ITL parts are skipped and
marked “ITL” for the sake of brevity.

13

P∞≤ :

1 (ϕ; ` = ∞) ⇒ (ψ ⇒ χ) assumption, ITL
2 ϕ ∧ ` < ∞⇒ p(ψ) ≤ p(χ) 1, P≤
3 ` = ∞∧ ϕ ⇒ (p(ψ) = 0 ∧ p(χ) = 0) assumption, P∞,PITL2

∨(p(ψ) = 0 ∧ p(χ) = 1)
∨(p(ψ) = 1 ∧ p(χ) = 1)

4 ϕ ∧ ` = ∞⇒ p(ψ) ≤ p(χ) 3, ITL
5 ` < ∞∨ ` = ∞ ITL
6 ϕ ⇒ p(ψ) ≤ p(χ) 2, 4, 5

PITL1:

1 ϕ ⇒ ψ assumption
2 (>; ` = ∞) ∨ (> ∧ ` = ∞) ⇒ (ϕ ⇒ ψ) 1, ITL
3 p(ϕ) ≤ p(ψ) 2, P∞≤

The second rule PITL1 is proved by two applications the first.
PITL2:

1 ϕ ∧ ¬ϕ ⇔ ⊥ ITL
2 p(ϕ ∧ ¬ϕ) = p(⊥) 1,PITL1
3 p(ϕ ∧ ¬ϕ) = 0 2, P⊥
4 ϕ ∨ ¬ϕ ⇔ > ITL
5 p(ϕ ∨ ¬ϕ) = p(>) 4,PITL1
6 p(ϕ ∧ ¬ϕ) = 1 5, P>
7 p(ϕ) + p(¬ϕ) = p(ϕ ∧ ¬ϕ) + p(ϕ ∧ ¬ϕ) P+

8 p(ϕ) + p(¬ϕ) = 1 2, 6, 7, ITL

PITL3:

1 p(ψ) ≤ p(ϕ ∨ ψ) P∞≤
2 p(ϕ) + p(ψ ∧ ¬ϕ) = p(ϕ ∧ ψ ∧ ¬ϕ) + p(ϕ ∨ ψ ∧ ¬ϕ) P+

3 p(ϕ) + p(ψ ∧ ¬ϕ) = p(ϕ ∨ ψ) 2,PITL1, P⊥
4 p(ϕ) < p(ψ) ⇒ p(ϕ) < p(ϕ ∨ ψ) 1
5 p(ϕ) < p(ψ) ⇒ p(ψ ∧ ¬ϕ) 6= 0 3, 4

PITL4 is obtained by applying P∞≤ to the ITL theorems

(>; ` = ∞) ∨ (> ∧ ` = ∞) ⇒ (ϕ ⇒ ϕ ∧ ` = ∞) and (>; ` = ∞) ∨ (> ∧ ` = ∞) ⇒ (` = ∞∧ ϕ ⇒ ϕ).

PITL5:

1 ϕ ⇒ > ITL
2 p(ϕ) ≤ p(>) 1,PITL1
3 p(ϕ) ≤ 1 2, P>

PITL6:

1 > ⇒ ϕ assumption
2 p(>) ≤ p(ϕ) 1,PITL1
3 1 ≤ p(ϕ) 2, P>
4 p(ϕ) ≤ 1 PITL5
5 p(ϕ) = 1 3, 4

1 ¬ϕ assumption
2 p(¬ϕ) = 1 1,PITL6
3 p(ϕ) = 0 PITL2

14

PITL7:

1 (ϕ;>; ` = ∞) ∨ ((ϕ;>) ∧ ` = ∞) ⇒ (> ⇒ (ϕ;>)) ITL
2 (ϕ;>) ⇒ p(ϕ;>) = 1 P∞≤

PITL8:

1 p(ϕ) = 1 ∧ p(ψ) = x ⇒ p(ϕ ∧ ψ) + p(ϕ ∨ ψ) = 1 + x P+

2 ϕ ⇒ (ϕ ∨ ψ) ITL
3 p(ϕ) ≤ p(ϕ ∨ ψ) 2,PITL1
4 p(ϕ) = 1 ⇒ p(ϕ ∨ ψ) = 1 3,PITL5
5 p(ϕ) = 1 ∧ p(ψ) = x ⇒ p(ϕ ∧ ψ) = x 1, 4

PITL9:

1 p(ϕ ⇒ ψ) = 1 ∧ p(ϕ) = 1 ⇒ p((ϕ ⇒ ψ) ∧ ψ) = 1 PITL8
2 (ϕ ⇒ ψ) ∧ ψ ⇒ ψ
3 p((ϕ ⇒ ψ) ∧ ψ) ≤ p(ψ) 2,PITL1
4 p(ψ) ≤ 1 PITL5
5 p(ϕ ⇒ ψ) = 1 ⇒ (p(ϕ) = 1 ⇒ p(ψ) = 1) 1− 4

1 p((ϕ ⇒ ψ) ⇒ (¬ψ ⇒ ¬ϕ)) = 1 PITL6
2 p(ϕ ⇒ ψ) = 1 ⇒ p(¬ψ ⇒ ¬ϕ) = 1 1,PITL9
3 p(¬ψ ⇒ ¬ϕ) = 1 ⇒ (p(¬ψ) = 1 ⇒ p(¬ϕ) = 1) PITL9
4 p(¬ψ ⇒ ¬ϕ) = 1 ⇒ (p(¬ψ) = 0 ⇒ p(¬ϕ) = 0) 3,PITL2
5 p(ϕ ⇒ ψ) = 1 ⇒ (p(¬ψ) = 0 ⇒ p(¬ϕ) = 0) 2, 4

PITL10:

1 p(ϕ) + p(ψ) > 1 ⇒ p(ϕ ∧ ψ) + p(ϕ ∨ ψ) > 1 P+

2 p(ϕ ∨ ψ) ≤ 1 PITL5
3 p(ϕ) + p(ψ) > 1 ⇒ p(ϕ ∧ ψ) > 0 1, 2

P ′; :

1 (ϕ; p(ψ) = x) ⇒ ∃t((ϕ ∧ ` = t;>) ∧ (` = t; p(ψ) = x)) ITL
2 (ϕ ∧ ` = t;>) ⇒ p(ϕ ∧ ` = t;>) = 1 PITL7
3 (` = t; p(ψ) = x) ⇒ p(` = t;ψ) = x P;

4 p(ϕ ∧ ` = t;>) = 1 ∧ p(` = t;ψ) = x ⇒ p(ϕ ∧ ` = t;ψ) = x PITL8,PITL1, ITL
5 (ϕ ∧ ` = t; ψ) ⇒ (ϕ;ψ) ITL
6 p(ϕ ∧ ` = t; ψ) = x ⇒ p(ϕ; ψ) ≥ x 5,PITL1
7 ∃t((ϕ ∧ ` = t;>) ∧ (` = t; p(ψ) = x)) ⇒ ∃t(p(ϕ; ψ) ≥ x) 2− 6, ITL
8 ∃t(p(ϕ; ψ) ≥ x) ⇔ p(ϕ;ψ) ≥ x ITL
9 (ϕ; p(ψ) = x) ⇒ p(ϕ;ψ) ≥ x 1, 7, 8

10 (ϕ; p(ψ) = x) ⇔ (ϕ; p(¬ψ) = 1− x) PITL2, ITL
11 (ϕ; p(¬ψ) = 1− x) ⇒ p(ϕ;¬ψ) ≥ 1− x like 1− 9, but with ¬ψ as ψ
12 (p(ϕ; ψ) > x ∧ p(ϕ;¬ψ) ≥ 1− x) ∨ (p(ϕ; ψ) ≥ x ∧ p(ϕ;¬ψ) > 1− x)

⇒ p((ϕ; ψ) ∧ (ϕ;¬ψ)) > 0 PITL10
13 (ϕ;ψ) ∧ (ϕ;¬ψ) ∧ ¬(ϕ ∧ (ϕ; ` 6= 0);>) ⇒ ⊥ ITL
14 p((ϕ; ψ) ∧ (ϕ;¬ψ) ∧ ¬(ϕ ∧ (ϕ; ` 6= 0);>)) = 0 13,PITL6
15 p(¬(ϕ ∧ (ϕ; ` 6= 0);>)) = 1 assumption,PITL6
16 p((ϕ; ψ) ∧ (ϕ;¬ψ)) = 0 14, 15,PITL8
17 p(ϕ;¬ψ) ≥ 1− x ∧ p(ϕ;ψ) ≥ x ⇒ p(ϕ;ψ) ≤ x ∧ p(ϕ;¬ψ) ≤ 1− x 12, 16, ITL
18 (ϕ; p(ψ) = x) ⇒ p(ϕ;ψ) = x 9, 11, 17, ITL

15

A.5 The rule Seq

In the proof of the admissibility of Seq below ϕ ∧ ` ≥ l ∧ ` ≤ h is abbreviated by ϕh
l .

1 (` = 0 ∧ p(α; β;>) = 1;>) ⇒ p(p(α; β;>) = 1 ∧ ` = 0;>) = 1 PITL7
2 (α; p(β;>) = x ∧ ` = 0) ⇒ p(α;β;>) = x P ′; , assumptions
3 ∃x((α;>) ⇒ (α; p(β;>) = x ∧ ` = 0;>)) ITL
4 p(α; β;>) = 1 ⇒

∃x((α;>) ⇒ p(α; β;>) = x ∧ (α; p(β;>) = x ∧ ` = 0;>) ∧ p(α; β;>) = 1) 2, 3, ITL
5 p(α; β;>) = 1 ⇒ ∃x((α;>) ⇒ (α; p(β;>) = 1 ∧ ` = 0;>)) 4, ITL
6 p(α; β;>) = 1 ∧ (α;>) ⇒ (α; p(β;>) = 1 ∧ ` = 0;>) 5, ITL
7 p(p(α;β;>) = 1 ∧ (α;>) ⇒ (α; p(β;>) = 1 ∧ ` = 0;>)) = 1 6,PITL6
8 p(p(α;β;>) = 1;>) = 1 ∧ p(α;>) = 1 ⇒ p(α; p(β;>) = 1 ∧ ` = 0;>) = 1 7,PITL9
9 ` = 0 ∧ p(α; β;>) = 1 ∧ p(α;>) = 1 ⇒ p(α; p(β;>) = 1 ∧ ` = 0;>) = 1 1, 8

10 p(α; β;>) = 1 ⇒ p(α;>) = 1 PITL9
11 ` = 0 ∧ p(α; β;>) = 1 ⇒ p(α; p(β;>) = 1 ∧ ` = 0;>) = 1 9, 10
12 p(α; p(β;>) = 1 ∧ ` = 0;>) = 1 ∧ p(α; p(β;>) 6= 1 ∧ ` = 0;>) = x ⇒

p((α; p(β;>) = 1 ∧ ` = 0;>) ∧ (α; p(β;>) 6= 1 ∧ ` = 0;>)) = x PITL8
13 p((α; p(β;>) = 1 ∧ ` = 0;>) ∧ (α; p(β;>) 6= 1 ∧ ` = 0;>)) = 0 PITL6
14 p(α; p(β;>) = 1 ∧ ` = 0;>) = 1 ⇒ p(α; p(β;>) 6= 1 ∧ ` = 0;>) = 0 12, 13
15 ` = 0 ∧ p(α; β;>) = 1 ⇒ p(α; p(β;>) 6= 1 ∧ ` = 0;>) = 0 11, 14
16 ` = 0 ⇒ (p(βh2

l2
;>) 6= x2 ⇒ p(β;>) 6= 1) [ETβ ∈ [l2, h2]]x2

17 αh1
l1
⇒ α ITL

18 (αh1
l1

; p(βh2
l2

;>) 6= x2 ∧ ` = 0;>) ⇒ (α; p(β;>) 6= 1 ∧ ` = 0;>) 16, 17, ITL
19 ` = 0 ∧ p(α; β;>) = 1 ⇒ p(αh1

l1
; p(βh2

l2
;>) 6= x2 ∧ ` = 0;>) = 0 15, 18,PITL6,PITL9

20 ¬(α ∧ (α; ` 6= 0);>) ⇒
((αh1

l1
; p(βh2

l2
;>) 6= x2 ∧ ` = 0;>) ⇔ (αh1

l1
;>) ∧ (α; p(βh2

l2
;>) 6= x2 ∧ ` = 0;>)) ITL

21 p(¬(α ∧ (α; ` 6= 0);>)) = 1 assumption,PITL6
22 p(αh1

l1
; p(βh2

l2
;>) 6= x2 ∧ ` = 0;>) = 0 ⇔

p((αh1
l1

;>) ∧ (α; p(βh2
l2

;>) 6= x2 ∧ ` = 0;>)) = 0 20, 21,PITL9
23 α ∧ p(α;βh2

l2
;>) 6= x2 ⇒ ¬(α; p(βh2

l2
;>) = x2 ∧ ` = 0) P ′;

24 ¬(α; p(βh2
l2

;>) = x2) ∧ α ⇒ (α; p(βh2
l2

;>) 6= x2 ∧ ` = 0) ITL
25 α ∧ p(α;βh2

l2
;>) 6= x2 ⇒ (α; p(βh2

l2
;>) 6= x2 ∧ ` = 0) 23, 24

26 p((αh1
l1

;>) ∧ (α; p(βh2
l2

;>) 6= x2 ∧ ` = 0;>)) = 0 ⇒
p((αh1

l1
;>) ∧ (α ∧ p(α;βh2

l2
;>) 6= x2;>)) = 0 25,PITL9,PITL6

27 ¬(α ∧ (α; ` 6= 0);>) ⇒
((αh1

l1
;>) ∧ (α ∧ p(α;βh2

l2
;>) 6= x2;>) ⇔ (αh1

l1
∧ p(α; βh2

l2
;>) 6= x2;>)) ITL

28 p((αh1
l1

;>) ∧ (α ∧ p(α;βh2
l2

;>) 6= x2;>)) = 0 ⇔ p(αh1
l1
∧ p(α; βh2

l2
;>) 6= x2;>) = 0 21, 27,PITL9

29 ` = 0 ∧ p(α; β;>) = 1 ⇒ p(αh1
l1
∧ p(α; βh2

l2
;>) 6= x2;>) = 0 19, 22, 26, 28

30 ` = 0 ∧ p(αh1
l1
∧ p(α;βh2

l2
;>) 6= x2;>) = 0 ⇒

p((αh1
l1

;>) ∧ (α;βh2
l2

;>)) = x2.p(αh1
l1

;>) P , P , assumptions
31 ¬(α ∧ (α; ` 6= 0);>) ⇒ ((αh1

l1
;>) ∧ (α;βh2

l2
;>) ⇔ (αh1

l1
; βh2

l2
;>)) ITL

32 (αh1
l1

;>) ∧ (α; βh2
l2

;>) ⇔ (αh1
l1

;βh2
l2

;>) assumption, 31
33 p((αh1

l1
;>) ∧ (α;βh2

l2
;>)) = p(αh1

l1
; βh2

l2
;>) 32,PITL1

34 ` = 0 ∧ p(α;>) = 1 ⇒ p(αh1
l1

;>) = x1 [ETα ∈ [l1, h1]]x1

35 ` = 0 ∧ p(α; β;>) = 1 ⇒ p(αh1
l1

; βh2
l2

;>) = x2.x1 10, 29, 30, 33, 34

16

