
A Complete Fragment of Higher-Order Duration
µ-Calculus

Dimitar P. Guelev

International Institute for Software Technology
of the United Nations University

(UNU/IIST), Macau, P.O.Box 3058.
Institute of Mathematics and Informatics

Bulgarian Academy of Sciences Bl. 8, Akad G. Bonchev blvd., Sofia.
E-mail: gelevdp@bgnet.bg, dg@iist.unu.edu

Abstract. The paper presents an extension µHDC of Higher-order Du-
ration Calculus (HDC,[ZGZ99]) by a polyadic least fixed point (µ) oper-
ator and a class of non-logical symbols with a finite variability restriction
on their interpretations, which classifies these symbols as intermediate
between rigid symbols and flexible symbols as known in DC. The µ op-
erator and the new kind of symbols enable straightforward specification
of recursion and data manipulation by HDC. The paper contains a com-
pleteness theorem about an extension of the proof system for HDC by
axioms about µ and symbols of finite variability for a class of simple
µHDC formulas. The completeness theorem is proved by the method of
local elimination of the extending operator µ, which was earlier used for
a similar purpose in [Gue98].

Introduction

Duration calculus(DC, [ZHR91]) has been proved to be a suitable formal sys-
tem for the specification of the semantics of concurrent real-time programming
languages[SX98,ZH00]. The introduction of a least fixed point operator to DC
was motivated by the need to specify recursive programming constructs simply
and straightforwardly. Recursive control structures as available in procedural
programming languages are typically approximated through translation into it-
erative ones with explicit special storage (stacks). This blurs intuition and can
add a significant overhead to the complexity of deductive verification. It is also
an abandonment of the principle of abbreviating away routine elements of proof
in specialised notations. That is why it is worth having an immediate way not
only to specify but also to be able to reason about this style of recursion as it
appears in high level programming languages.

Recently, an extension of DC by quantifiers which bind state variables (boolean
valued functions of time) was introduced[ZGZ99]. Systematic studies regarding
the application of this sort of quantification in DC had gained speed earlier, cf.
[Pan95]; HDC allowed the integration of some advanced features of DC, such as
super-dense chop [ZH96,HX99], into a single general system, called Higher-order

Duration Calculus (HDC), and enabled the specification of the semantics of
temporal specification and programming languages such as Verilog and Timed
RAISE[ZH00,LH99] by DC. The kind of completeness of the proof system of
HDC addressed in [ZGZ99], which is ω-completeness, allowed to conclude the
study of the expressive power of some axioms about the state quantifier.

In this paper we present some axioms about the least fixed point operator in
HDC and show that adding them to a proof system for HDC yields a complete
proof system for a fragment of the extension of HDC with this operator, µHDC.

The axioms we study are obtained by paraphrasing of the inference rules
known about the propositional modal µ-calculus(cf. [Koz83,Wal93]), which were
first introduced to DC in [PR95]. The novelty in our approach is the way we use
the expressive power of the axioms about the µ-operator in our completeness
argument, because, unlike the propositional µ-calculus, µHDC is a first-order
logic with a binary modal operator.

Our method was first developed and applied in [Gue98] to so-called sim-
ple DC∗ formulas which were introduced in [DW94] as a DC counterpart of
a class of finite timed automata. That class was later significantly extended in
[DG99,Gue00]. In this paper we show the completeness of an extension of a proof
system for HDC for a corresponding class of simple µHDC formulas.

Our method of proof significantly relies on the exact form of the complete-
ness of the proof system for HDC, which underlies the extension in focus. The
completeness theorem about the original proof system for DC[HZ92] applies to
the derivability of individual formulas only, and we need to have equivalence
between the satisfiability of the infinite sets of instances of our new axioms and
the consistency of these sets together with some other formulas, i.e. we need an
ω-complete proof system for HDC. That is why we use a modification of the
system from [ZGZ99], which is ω-complete with respect to a semantics for HDC,
shaped after the abstract semantics of ITL, as presented in [Dut95]. Material to
suggest an ω-completeness proof for this modification can be found starting from
completion of Peano arithmetics by an ω-rule (cf. e.g. [Men64]) to [ZNJ99]. The
completeness result presumed in this paper applies to the class of abstract HDC
frames with their duration domains satisfying the principle of Archimedes. In-
formally, this principle states that there are no infinitely small positive durations
and it holds for the real-time based frame.

The purpose of the modification of HDC here is to make a form of finite
variability which is preserved under logical operations explicitly appear in this
system. The choice to work with Archimedean duration domains is just to pro-
vide the convenience to axiomatise this kind of finite variability (axiom HDC5
below).

The fragment of µHDC language that our completeness result applies to is
sufficient to provide convenience of the targetted kind for the design and use of
HDC semantics of practically significant timed languages which admit recursive
procedure invocations.

1 Preliminaries on HDC with abstract semantics

In this section we briefly introduce a version of HDC with abstract semantics[ZGZ99],
which closely follows the abstract semantics for ITL given in [Dut95]. It slightly
differs from the one presented in [ZGZ99]. Along with quantification over state,
we allow quantifiers to bind so-called temporal variables and temporal proposi-
tional letters with the finite variability property.

1.1 Languages

A language for HDC is built starting from some given sets of constant symbols
a, b, c, . . . , function symbols f , g, . . . , relation symbols R, S, . . . , individual
variables x, y, . . . and state variables P , Q, Function symbols and relation
symbols have arity to indicate the number of arguments they take in terms and
formulas. Relation symbols and function symbols of arity 0 are also called tem-
poral propositional letters and temporal variables respectively. Constant symbols,
function symbols and relation symbols can be either rigid or flexible. Flexible
symbols can be either symbols of finite variability (fv symbols) or not. Rigid
symbols, fv symbols and (general) flexible and symbols are subjected to different
restrictions on their interpretations. Every HDC language contains countable
sets of individual variables, fv temporal propositional letters and fv temporal
variables, the rigid constant symbol 0, the flexible constant symbol `, the rigid
binary function symbol + and the rigid binary relation symbol =. Given the sets
of symbols, state expressions S, terms t and formulas ϕ in a HDC language are
defined by the BNFs:

S ::= 0|P |S ⇒ S

t ::= c| ∫ S|f(t, . . . , t)|←−t |−→t
ϕ ::= ⊥|R(t, . . . , t)|ϕ ⇒ ϕ|(ϕ;ϕ)|∃xϕ|∃vϕ|∃Pϕ

In BNFs for formulas here and below v stands for a fv temporal variable or a fv
temporal propositional letter.

Terms and formulas which contain no flexible symbols are called rigid. Terms
and formulas which contain only fv flexible symbols, rigid symbols and subfor-
mulas of the kind

∫
S = ` are called fv terms and fv formulas respectively. Terms

of the kinds ←−t and −→t are well-formed only if t is a fv term. We call individual
variables, temporal variables, temporal propositional letters and state variables
just variables, in case the exact kind of the symbol is not significant.

1.2 Frames, models and satisfaction

Definition 1. A time domain is a linearly ordered set with no end points. Given
a time domain 〈T,≤〉, we denote the set {[τ1, τ2] : τ1, τ2 ∈ T, τ1 ≤ τ2} of intervals
in T by I(T). Given σ1, σ2 ∈ I(T), where 〈T,≤〉 is a time domain, we denote
σ1 ∪ σ2 by σ1; σ2, in case max σ1 = minσ2. A duration domain is a system of
the type 〈D, 0(0), +(2),≤(2)〉 which satisfies the following axioms

(D1) x + (y + z) = (x + y) + z
(D2) x + 0 = x
(D3) x + y = x + z ⇒ y = z
(D4) ∃z(x + z = y)
(D5) x + y = y + x

(D6) x ≤ x
(D7) x ≤ y ∧ y ≤ x ⇒ x = y
(D8) x ≤ y ∧ y ≤ z ⇒ x ≤ z
(D9) x ≤ y ⇔ ∃z(x + z = y ∧ 0 ≤ z)
(D10) x ≤ y ∨ y ≤ x

Given a time domain 〈T,≤〉, and a duration domain 〈D, 0, +,≤〉, m : I(T) → D
is a measure if

(M0) x ≥ 0 ⇔ ∃σ(m(σ) = x)
(M1) minσ = min σ′ ∧m(σ) = m(σ′) ⇒ max σ = max σ′

(M2) max σ = min σ′ ⇒ m(σ) + m(σ′) = m(σ ∪ σ′)
(M3) 0 ≤ x ∧ 0 ≤ y ∧m(σ) = x + y ⇒ ∃τ ∈ σ m([min σ, τ]) = x.

Definition 2. A HDC frame is a tuple of the kind 〈〈T,≤〉, 〈D, 0, +,≤〉,m〉,
where 〈T,≤〉 is a time domain, 〈D, 0,+,≤〉 is a duration domain, and m :
I(T) → D is a measure.

Definition 3. Given a HDC frame F = 〈〈T,≤〉, 〈D, 0,+,≤〉,m〉 and a HDC
language L, a function I which is defined on the set of the non-logical symbols
of L is called interpretation of L into F , if

◦ I(c), I(x) ∈ D for constant symbols c and individual variables x
◦ I(f) : Dn → D for rigid n-place function symbols f
◦ I(f) : I(T)×Dn → D for flexible n-place function symbols f
◦ I(R) : Dn → {0, 1} for rigid n-place relation symbols R
◦ I(R) : I(T)×Dn → {0, 1} for flexible n-place relation symbols R
◦ I(P) : T → {0, 1} for state variables P
◦ I(0) = 0, I(`) = m, I(+) = + and I(=) is =.

The following finite variability condition is imposed on interpretations of state
variables P :

Every σ ∈ I(T) can be represented in the form σ1; . . . ;σm so that I(P)
is constant on [min σi, max σi), i = 1, . . . ,m.

A similar condition is imposed on the interpretations of fv symbols s. Given a
frame F and an interpretation I as above, and σ ∈ I(T), a function (predicate)
A on I(T) × Dn is called fv in F, I with respect to σ1, . . . , σm ∈ I(T) iff σ =
σ1; . . . ; σm for some interval σ and for all d1, . . . , dn ∈ D, i, j ≤ m, i ≤ j,
σ′ ∈ I(T):
◦ if min σ′ ∈ (minσi, maxσi) and max σ′ ∈ (minσj ,max σj),

A(σ′, d1, . . . , dn) is determined by d1, . . . , dn i and j only;
◦ if min σ′ = min σi and maxσ′ ∈ (min σj , max σj), A(σ′, d1, . . . , dn) is

determined by d1, . . . , dn i and j only, possibly in a different way;
◦ if min σ′ ∈ (min σi, max σi) and max σ′ = min σj, A(σ′, d1, . . . , dn) is

determined by d1, . . . , dn i and j only, possibly in a different way;
◦ if min σ′ = min σi and max σ′ = min σj, A(σ′, d1, . . . , dn) is deter-

mined by d1, . . . , dn i and j only, possibly in a different way.
A symbol s is fv with respect to σ1, . . . , σm in some F, I as above, if I(s) has

the corresponding property. Given a fv symbol s, for every σ ∈ I(T) there should
be σ1, . . . , σm ∈ I(T) such that s is fv with respect to σ1, . . . , σm in F, I.

Given a language L, a pair 〈F, I〉 is a model for L if F is a frame and I is an
interpretation of L into F .

Interpretations I and J of language L into frame F are said to s-agree, if
they assign the same values to all non-logical symbols from L, but possibly s.

Given a frame F (model M) we denote its components by 〈TF ,≤F 〉,
〈DF , 0F ,+F ,≤F 〉 and mF (〈TM ,≤M 〉, 〈DM , 0M ,+M ,≤M 〉 and mM) respec-
tively. We denote the frame and the interpretation of a given model M by IM

and FM respectively.

Definition 4. Given a model M = 〈F, I〉 for the language L, τ ∈ TM and
σ ∈ I(TM) the values Iτ (S) and Iσ(t) of state expressions S and terms t and
the satisfaction of formulas ϕ are defined by induction on their construction as
follows:
Iτ (0) = 0
Iτ (P) = I(P)(τ)
Iτ (S1 ⇒ S2) = max{1− Iτ (S1), Iτ (S2)}.
Iσ(c) = I(c) for rigid c
Iσ(c) = I(c)(σ) for flexible c
Iσ(

∫
S) =

∫ max σ

min σ
Iτ (S)dτ

Iσ(f(t1, . . . , tn)) = I(f)(Iσ(t1), . . . , Iσ(tn)) for rigid f
Iσ(f(t1, . . . , tn)) = I(f)(σ, Iσ(t1), . . . , Iσ(tn)) for flexible f
Iσ(←−t) = d if Iσ′(t) = d for some τ < min σ and all σ′ ⊂ (τ, min σ)
Iσ(−→t) = d if Iσ′(t) = d for some τ > max σ and all σ′ ⊂ (max σ, τ)
M, σ 6|= ⊥
M, σ |= R(t1, . . . , tn) iff I(R)(Iσ(t1), . . . , Iσ(tn)) = 1 for rigid R
M, σ |= R(t1, . . . , tn) iff I(R)(σ, Iσ(t1), . . . , Iσ(tn)) = 1 for flexible R
M, σ |= ϕ ⇒ ψ iff either M, σ |= ψ or M, σ 6|= ϕ
M, σ |= (ϕ;ψ) iff there exist σ1, σ2 ∈ I(TF) such that σ = σ1; σ2,

M, σ1 |= ϕ and M, σ2 |= ψ
M, σ |= ∃xϕ iff 〈F, J〉, σ |= ϕ for some J which x-agrees with I

Note that discrete time domains, which make the above definitions of ←−t and −→t
incorrect, also render any ”corrected” definition for these operators grossly non-
introspective, and therefore these operators should be disregarded in the case
of discrete domains. In the clause about ∃x above x stands for variable of an
arbitrary kind, temporal variables and propositional temporal letters included.
The integral used to define values of terms of the kind

∫
S above is defined as

follows. Given σ and S, there exist σ1, . . . , σn ∈ I(TF) such that σ = σ1; . . . ; σn

and Iτ (S) is constant in [min σi;max σi), i = 1, . . . , n. Given such a partitition
σ1, . . . , σn of σ, we put:

max σ∫
min σ

Iτ (S)dτ =
∑

i=1,...,n, Imin σi
(S)=1

mF (σi)

Clearly, the value thus defined does not depend on the choice of σ1, . . . , σn.

1.3 Abbreviations

Infix notation and propositional constant >, connectives ¬, ∧, ∨ and ⇔ and
quantifier ∀ are introduced as abbreviations in the usual way. 1 stands for 0 ⇒ 0
in state expressions. The relation symbol ≤ is defined by the axiom x ≤ y ⇔
∃z(x+z = y). The related symbols ≥, < and > are introduced in the usual way.
We use the following DC-specific abbreviations:
dSe ⇀↽

∫
S = ` ∧ ` 6= 0, 3ϕ ⇀↽ ((>;ϕ);>), 2ϕ ⇀↽ ¬3¬ϕ, n.t ⇀↽ t + . . . + t︸ ︷︷ ︸

n times

.

3iϕ ⇀↽ ((` 6= 0; ϕ); ` 6= 0), 2iϕ ⇀↽ ¬3i¬ϕ ξt1,t2(ϕ) ⇀↽ ((` = t1;ϕ) ∧ ` = t2;>).

1.4 Proof system

Results in the rest of this paper hold for the class of DC models which satisfy
the principle of Archimedes. It states that given positive durations d1 and d2,
there exists a natural number n such that n.d1 ≥ d2.

Here follows a proof system for HDC which is ω-complete with respect to
the class of HDC models which satisfy the principle of Archimedes:
(A1l) (ϕ;ψ) ∧ ¬(χ; ψ) ⇒ (ϕ ∧ ¬χ;ψ)
(A1r) (ϕ;ψ) ∧ ¬(ϕ;χ) ⇒ (ϕ; ψ ∧ ¬χ)
(A2) ((ϕ; ψ); χ) ⇔ (ϕ; (ψ; χ))
(Rl) (ϕ;ψ) ⇒ ϕ if ϕ is rigid
(Rr) (ϕ;ψ) ⇒ ψ if ψ is rigid
(Bl) (∃xϕ; ψ) ⇒ ∃x(ϕ; ψ) if x 6∈ FV (ϕ)
(Br) (ϕ;∃xψ) ⇒ ∃x(ϕ; ψ) if x 6∈ FV (ψ)
(L1l) (` = x; ϕ) ⇒ ¬(` = x;¬ϕ)
(L1r) (ϕ; ` = x) ⇒ ¬(¬ϕ; ` = x)
(L2) ` = x + y ⇔ (` = x; ` = y)
(L3l) ϕ ⇒ (` = 0; ϕ)
(L3r) ϕ ⇒ (ϕ; ` = 0)

(MP)
ϕ ϕ ⇒ ψ

ψ (G)
ϕ

∀xϕ

(Nl)
ϕ

¬(¬ϕ;ψ) (Nr)
ϕ

¬(ψ;¬ϕ)

(Monol)
ϕ ⇒ ψ

(ϕ;χ) ⇒ (ψ; χ)

(Monor)
ϕ ⇒ ψ

(χ; ϕ) ⇒ (χ;ψ)

(ω)
∀k < ω [(` = 0 ∨ dSe ∨ d¬Se)k/R]ϕ

[>/R]ϕ

(Arch)
∀n < ω ϕ ⇒ n.x ≤ y

ϕ ⇒ x ≤ 0
(DC0) ` = 0 ⇒ ∫

S = 0
(DC1)

∫
0 = 0

(DC2) d1e ∨ ` = 0
(DC3) (

∫
S = x; dSe ∧ ` = y) ⇒ ∫

S = x + y

(DC4) (
∫

S = x; d¬Se) ⇒ ∫
S = x

(DC5) dS1e ∧ dS2e ⇔ dS1 ∧ S2e
(DC6) dS1e ⇔ dS2e, if `PC S1 ⇔ S2.
(DC7) dSe ⇒ 2(dSe ∨ ` = 0)

(PV 1) (` 6= 0;←−t = x ∧ ` = y) ⇔ (>; (2i(t = x) ∧ ` 6= 0; ` = y))
(PV 2) (−→t = x ∧ ` = y; ` 6= 0) ⇔ ((` = y; 2i(t = x) ∧ ` 6= 0);>)

(NL)
((` = a; ϕ); ` = b) ⇒ ((` = a; ψ); ` = b)

ϕ ⇒ ψ

(∃v) [t/v]ϕ ⇒ ∃vϕ for fv-terms t and temporal variables v;
(∃p) [ψ/p]ϕ ⇒ ∃pϕ for fv-formulas ψ and temporal propositional letters p;
(HDC1) ∃v(←−v = x)
(HDC2) ∃v(−→v = x)
(HDC3) (∃Sϕ; ∃Sψ) ⇔ ∃S(ϕ; ψ)

(HDC3v,l) x ≤ ` ⇒ ∃v∀y1∀y2(←−v = ←−
t1 ∧ −→v = −→

t2∧
∧(y1 ≤ x ∧ y2 ≤ x ∧ y1 ≤ y2 ⇒ ξy1,y2(v = t1))∧
∧(y1 > x ∧ y2 > x ∧ y1 ≤ y2 ∧ y2 ≤ ` ⇒ ξy1,y2(v = t2))∧
∧(y1 ≤ x ∧ y2 > x ∧ y2 ≤ ` ⇒ ξy1,y2(v = t3)))

(HDC3v,r) x ≤ ` ⇒ ∃v∀y1∀y2(←−v = ←−
t1 ∧ −→v = −→

t2∧
∧(y1 < x ∧ y2 < x ∧ y1 ≤ y2 ⇒ ξy1,y2(v = t1))∧
∧(y1 ≥ x ∧ y2 ≥ x ∧ y1 ≤ y2 ∧ y2 ≤ ` ⇒ ξy1,y2(v = t2))∧
∧(y1 < x ∧ y2 ≥ x ∧ y2 ≤ ` ⇒ ξy1,y2(v = t3)))

(HDC3p,l) x ≤ ` ⇒ ∃p∀y1∀y2(
(y1 ≤ x ∧ y2 ≤ x ∧ y1 ≤ y2 ⇒ ξy1,y2(p ⇔ ψ1)∧
∧(y1 > x ∧ y2 > x ∧ y1 ≤ y2 ∧ y2 ≤ ` ⇒ ξy1,y2(p ⇔ ψ2))∧
∧(y1 ≤ x ∧ y2 > x ∧ y2 ≤ ` ⇒ ξy1,y2(p ⇔ ψ3)))

(HDC3p,r) x ≤ ` ⇒ ∃p∀y1∀y2(
(y1 < x ∧ y2 < x ∧ y1 ≤ y2 ⇒ ξy1,y2(p ⇔ ψ1))∧
∧(y1 ≥ x ∧ y2 ≥ x ∧ y1 ≤ y2 ∧ y2 ≤ ` ⇒ ξy1,y2(p ⇔ ψ2))∧
∧(y1 < x ∧ y2 ≥ x ∧ y2 ≤ ` ⇒ ξy1,y2(p ⇔ ψ3)))

(HDC4) ∀x∀y((ϕ ∧ ` = x; ψ) ∧ ¬(ϕ ∧ ` = y;ψ) ⇒ x < y) ⇒
⇒ ∃x(∀y((ϕ ∧ ` = y;ψ) ⇔ y < x) ∨ ∃x(∀y((ϕ ∧ ` = y; ψ) ⇔ y ≤ x)

(HDC5) ` 6= 0 ⇒ ∃x(x 6= 0∧
∀y2(ϕ ∧3(¬ϕ ∧3(ϕ ∧3(¬ϕ ∧3(ϕ ∧ ` = y)))) ⇒ ` ≤ x + y))

The symbol x denotes a variable of an arbitrary kind in the rule G and the
axioms Bl and Br. Instances of HDC3∗, HDC4 and HDC5 are valid only
if v, p, x, y, y1, y2 6∈ FV (t1), FV (t2), FV (t3), FV (ψ1), FV (ψ2), FV (ψ3), FV (ϕ),
FV (ψ) and t1, t2, t3, ψ1, ψ2, ψ3, ϕ and ψ are fv terms and formulas respectively.

The proof system also includes the axioms D1-D10 for duration domains, first
order axioms and equality axioms. Substitution [t/x]ϕ of variable x by term t in
formula ϕ is allowed in proofs only if either t is rigid, or x is not in the scope of
a modal operator.

Note that this proof system is slightly different from the original HDC one,
as fv symbols are not considered in HDC as in [ZGZ99]. Nevertheless, its ω-
completeness can be shown in way that is similar to the one taken in [ZNJ99].

The meaning of the new axioms HDC1, HDC2 and HDC3∗ is to enable the
construction of fv functions and predicates on the set of intervals of the given
model (from simpler ones). Given that a language L has rigid constants to name
all the durations in a model M for it, as in the case of canonical models which
are used in the completeness argument for this system, the existence of every fv
function and predicate on I(TM) can be shown using these axioms. The axioms
HDC4 and HDC5 express the restrictions on the interpretations of fv formulas,
and hence - the fv symbols occurring in them. The following ω-completeness
theorem holds about this proof system:

Theorem 1. Let Γ be a consistent set of formulas from the language L of HDC.
Then there exists a model M for L and an interval σ ∈ I(TM) such that M,σ |= ϕ
for all ϕ ∈ Γ .

2 µHDC

In this section we briefly introduce the extension of HDC by a least fixed point
operator.

2.1 Languages of µHDC

A language of µHDC is built using the same sets of symbols as for HDC lan-
guages and a distinguished countable set of propositional variables X, Y ,
Terms are defined as in HDC. The BNF for formulas is extended to allow fixed
point operator formulas as follows:

ϕ ::= ⊥|X|R(t, . . . , t)|ϕ ⇒ ϕ|(ϕ;ϕ)|µiX . . .X.ϕ, . . . , ϕ|∃xϕ|∃vϕ|∃Pϕ
Formulas of the kind µiX1 . . . Xm.ϕ1, . . . , ϕn are well-formed only if m = n,

all the occurrences of the variables X1, . . . , Xn in ϕ1, . . . , ϕn are positive, i.e. each
of these occurrences is in the scope of an even number of negations, X1, . . . , Xn

are distinct variables and i ∈ {1, . . . , n}. Formulas which contain µ are not
regarded as fv. Note that we work with a vector form of the least fixed point
operator. This has some technical advantages, because it enables elimination of
nested occurrences of µ under some additional conditions.

2.2 Frames, models and satisfaction

Frames and models for µHDC languages are as for HDC languages. The only
relative novelty is the extension of the satisfaction relation |=, which captures
µ-formulas too.

Let M = 〈F, I〉 be a model for the (µHDC) language L. Let Ĩ(ϕ) denote
the set {σ ∈ I(TF) : M, σ |= ϕ} for an arbitrary formula ϕ from L. Let s be a
non-logical symbol in L and a be a constant, function or predicate of the type of
s. We denote the interpretation of L into F which s-agrees with I and assigns a
to s by Ia

s . Given a set A ⊆ I(TM), we define the function χA : I(TM) → {0, 1}
by putting χA(σ) = 1 iff σ ∈ A.

Now assume that the propositional variables X1, . . . , Xn occur in ϕ. We de-
fine the function fϕ :

(
2I(TF)

)n → 2I(TF) by the equality fϕ(A1, . . . , An) =
˜(IχA1 ,...,χAn

X1, ... ,Xn
)(ϕ). Assume that the variables X1, . . . , Xn have only positive oc-

currences in ϕ. Then fϕ is monotone on each of its arguments, i.e. Ai ⊆ A′i
implies fϕ(A1, . . . , Ai, . . . , An) ⊆ fϕ(A1, . . . , A

′
i, . . . , An).

Now consider a sequence of n formulas, ϕ1, . . . , ϕn, which have only positive
occurrences of the variables X1, . . . , Xn in them. Then the system of inclusions

fϕi(A1, . . . , An) ⊆ Ai, i = 1, . . . , n

has a least solution, which is also a least fixed point of the operator

λA1 . . . An.〈fϕ1(A1, . . . , An), . . . , fϕn(A1, . . . , An)〉.
Let this solution be 〈B1, . . . , Bn〉, Bi ⊆ I(TF). We define the satisfaction

relation for
µiX1 . . . Xn.ϕ1, . . . , ϕn by putting:

M,σ |= µiX1 . . . Xn.ϕ1, . . . , ϕn iff σ ∈ Bi.

3 Simple µHDC formulas

The class of formulas which we call simple in this paper is a straightforward
extension to the class of simple DC∗ formulas considered in [Gue98]. We extend
that class by allowing µ instead of iteration, positive formulas built up of fv
symbols and existential quantification over the variables which occur in these
formulas.

3.1 Super-dense chop

The super-dense chop operator (. ◦ .) was introduced in [ZH96] to enable the
expression of sequential computation steps which consume negligible time, yet
occur in some specified causal order, by DC. Given that v1, . . . , vn are all the
free temporal variables of formulas ϕ and ψ, (ϕ ◦ ψ) is equivalent to

∃v′1 . . . ∃v′n∃v′′1 . . . ∃v′′n∃x1 . . . ∃xn

[v′1/v1, . . . , v
′
n/vn]ϕ ∧

n∧
i=1

←−
v′i = ←−vi∧−→
v′i = xi∧
2v′i = vi

 ;

; ([v′′1/v1, . . . , v
′′
n/vn]ψ ∧

n∧
i=1

−→
v′′i = −→vi∧←−
v′′i = xi∧
2v′′i = vi

3.2 Simple formulas

Definition 1. Let L be a language for µHDC as above. We call µHDC for-
mulas γ which can be defined by the BNF

γ ::= ⊥|R(t, . . . , t)|X|(γ ∧ γ)|γ ∨ γ|¬γ|(γ; γ)|(γ ◦ γ)|µiX . . .X.γ, . . . , γ
where R and t stand for either rigid or fv relation symbols and terms respec-
tively, open fv formulas. We call an open fv formula strictly positive if it has
no occurrences of propositional variables in the scope of ¬. An open fv formula
is propositionally closed if it has no free occurrences of propositional variables.
Simple µHDC formulas are defined by the BNF

ϕ ::= ` = 0|X|dSe|dSe ∧ ` ≺ a|dSe ∧ ` Â a|dSe ∧ ` ≺ a ∧ ` Â b|
ϕ ∨ ϕ|(ϕ;ϕ)|(ϕ ◦ ϕ)|ϕ ∧ γ|µiX . . . X.ϕ, . . . , ϕ|∃xϕ|∃vϕ

where a and b denote rigid constants, γ denotes a a propositionally closed strictly
positive open fv formula, x denotes a variable of arbitrary kind, ≺∈ {≤, <} and
Â∈ {≥, >}. Additionally, a simple formula should not have subformulas of the
kind ∃xϕ where x has a free occurrence in the scope of a µ-operator in ϕ.

4 A complete proof system for the simple fragment of
µHDC

In this section we show the completeness of a proof system for the fragment
of µHDC where the application of µ is limited to simple formulas. We add the
following axioms and rule to the proof system for HDC with abstract semantics:

(µ1) 2(µiX1 . . . Xn.ϕ1, . . . , ϕn ⇔
[µ1X1 . . . Xnϕ1, . . . , ϕn/X1, . . . , µnX1 . . . Xnϕ1, . . . , ϕn/Xn]ϕi)

(µ2)
n∧

i=1

2([ψ1/X1, . . . ψn/Xn]ϕi ⇒ ψi) ⇒ 2(µiX1 . . . Xn.ϕ1, . . . , ϕn ⇒ ψi)

(µ3) µiX1 . . . Xm.ϕ1, . . . , [µZ1 . . . Zn.ψ1, . . . , ψn/Y]ϕk, . . . , ϕm ⇔
⇔ µiX1 . . . XnY Z1 . . . Znϕ1, . . . , ϕm, ψ1, . . . , ψn

The

variable Y should not have negative free occurrences in ϕk in the instances of
µ3.

4.1 The completeness theorem

Lemma 1. Let ϕ, α and β be HDC formulas and X be a propositional temporal
letter. Let Y not occur in ϕ in the scope of quantifiers which bind any of the
variables from FV (α)∪FV (β). Then `µHDC 2(α ⇔ β) ⇒ ([α/Y]ϕ ⇔ [β/Y]ϕ).

The following two propositions have a key role in our completeness argument.
Detailed proofs are given in [Gue00b].

Proposition 1. Let γ be a propositionally closed strictly positive open fv for-
mula. Let M be a model for the language L of γ and σ ∈ I(TM). Then there
exists a µ-free propositionally closed strictly positive open fv formula γ′ such that
M,σ |= 2(γ ⇔ γ′).

This proposition justifies regarding µ formulas with fv subformulas as fv
formulas.

Proposition 2 (local elimination of µ from simple formulas). Let ϕ be a
propositionally closed simple µHDC formula. Let M be a model for the language
of ϕ and σ ∈ I(TM). Then there exists a µ-free formula ψ such that M, σ |=
2(ϕ ⇔ ψ).

Theorem 1 (completeness). Let Γ be a set of formulas in a µHDC language
L. Let every µ-subformula of a formula ϕ ∈ Γ be simple, and moreover occur
in ϕ as a subformula of some propositionally closed µ-subformula of ϕ. Let Γ
be consistent with respect to `µHDC . Then there exists a model M for L and an
interval σ ∈ I(M) such that M, σ |= Γ .

Proof. Proposition 1 entails that every fv µ-subformula of a formula from Γ is
locally equivalent to a µ free fv formula. Hence occurrences of µ in fv subformulas
can be eliminated using Lemma 1 and we may assume that there are no such
subformulas. Since nested occurrences of µ in µ-subformulas from Γ can be
eliminated by appropriate use of µ3, we may assume that there are no such
occurrences.

Let S = {sµiX1...Xn.ϕ1,...,ϕn : 1 ≤ i ≤ n < ω, µiX1 . . . Xn.ϕ1, . . . , ϕn is a
formula from L} be a set of fresh 0-place flexible relation symbols. Let L(S) be
the HDC language built using the non-logical symbols of L and the symbols from
S. Every formula ϕ from L can be represented in the form [ψ1/X1, . . . , ψn/Xn]ψ
where ψ does not contain µ and contains X1, . . . , Xn, and ψi, i = 1, . . . , n are

distinct µ-formulas. This representation is unique. Given this representation of
ϕ, we denote the formula [sψ1/X1, . . . , sψn/Xn]ψ from L(S) by t(ϕ). Note that
the translation t is invertible and its converse of is defined on the whole L(S).

Let ∆ = {2(α) : α is an instance of µ1, µ2 in L}. Then the set Γ ′ = {t(ϕ) :
ϕ ∈ Γ ∪∆} is consistent with respect to `HDC . Assume the contrary. Then there
exists a proof of ⊥ with its premisses in Γ ′ in `HDC . Replacing each formula ψ
in this proof by t−1(ψ) gives a proof of ⊥ from Γ in `µHDC .

Hence there exists a model M for L(S) and an interval σ ∈ I(TM) such that
M,σ |= Γ ′.

Now let us prove that M,σ |= 2(ϕ ⇔ sϕ) for every closed simple formula
ϕ from L. Let ϕ be µiX1 . . . Xn.ψ1, . . . , ψn. Let ϕk ⇀↽ µkX1 . . . Xn.ψ1, . . . , ψn,
k = 1, . . . , n, for short. Then M satisfies the t-translations

2(sϕk
⇔ [sϕ1/X1, . . . , sϕn

/Xn]ψk)
n∧

j=1

2(t(θj) ⇔ [t(θ1)/X1, . . . t(θn)/Xn]ψj) ⇒ 2(sϕk
⇒ t(θk))

of the instances of µ1 and µ2 for all n-tuples of formulas θ1, . . . , θn from L. The
first of these instances implies that 〈sϕ1 , . . . , sϕn〉 evaluates to a fixed point of
the operator represented by 〈ψ1, . . . , ψn〉. Consider the instance of µ2. Let θk be
a µ-free formula from L such that M,σ |= 2(θk ⇔ ϕk) for k = 1, . . . , n. Such
formulas exist by Proposition 2. Then t(θk) is θk and the above instance of µ2

is actually
n∧

j=1

2(θj ⇔ [θ1/X1, . . . , θn/Xn]ψj) ⇒ 2(sϕk
⇒ θk)

Besides M, σ |= 2(θj ⇔ [θ1/X1, . . . , θn/Xn]ψj), j = 1, . . . , n, by the choice of
θk. Hence M,σ |= 2(sϕk

⇒ θk). This means that 〈sϕ1 , . . . , sϕn〉 evaluates to
the least fixed point of the operator represented by 〈ψ1, . . . , ψn〉. Hence M,σ |=
2(sϕ ⇔ ϕ) for every µ-formula ϕ with no nested occurrences of µ. This entails
that M,σ |= 2(ϕ ⇔ t(ϕ)) for every ϕ ∈ Γ . Hence, M, σ |= Γ .

Acknowledgements

Guidance towards the topic addressed here, and a sequel of invigorating and
pitfall marking discussions are thanks to He Jifeng. Some mistakes were detected
in an early version of the paper thanks to Dang Van Hung and indirectly by
Dimiter Skordev. Among other flaws, an undeliberate overclaim, which was also
inconsistent with the announced purpose of the article, was avoided due to the
efforts of anonymous referees.

References

[DG99] Dang Van Hung and D. P. Guelev. Completeness and Decidability of a
Fragment of Duration Calculus with Iteration. In: P.S. Thiagarajan and
R. Yap (eds), Advances in Computing Science, LNCS 1742, Springer-Verlag,
1999, pp. 139-150.

[DW94] Dang Van Hung and Wang Ji. On The Design of Hybrid Control Systems
Using Automata Models. In: Chandru, V. and V. Vinay (eds.) LCNS
1180, Foundations of Software Technology and Theoretical Computer Sci-
ence, 16th Conference, Hyderabad, India, December 1996, Springer, 1996.

[Dut95] Dutertre, B. On First Order Interval Temporal Logic. Report no. CSD-
TR-94-3 Department of Computer Science, Royal Holloway, University of
London, Egham, Surrey TW20 0EX, England, 1995.

[Gue98] Guelev, D. P. Iteration of Simple Formulas in Duration Calculus. Tech.
report 141, UNU/IIST, June 1998.

[Gue00] Guelev, D. P. Probabilistic and Temporal Modal Logics, Ph.D. thesis, sub-
mitted, January 2000.

[Gue00b] Guelev, D. P. A Complete Fragment of Higher-Order Duration µ-Calculus.
Tech. Report 195, UNU/IIST, April 2000.

[HX99] He Jifeng and Xu Qiwen. Advanced Features of DC and Their Applica-
tions. Proceedings of the Symposium in Celebration of the Work of C.A.R.
Hoare, Oxford, 13-15 September, 1999.

[HZ92] M. R. Hansen and Zhou Chaochen. Semantics and Completeness of
Duration Calculus. Real-Time: Theory and Practice, LNCS 600, Springer-
Verlag, 1992, pp. 209-225.

[Koz83] Kozen, D. Results on the propositional µ-calculus. TCS 27:333-354, 1983.
[LH99] Li Li and He Jifeng. A Denotational Semantics of Timed RSL using Du-

ration Calculus. Proceedings of RTCSA’99, pp. 492-503, IEEE Computer
Society Press, 1999.

[Men64] Mendelson, E. Introduction to Mathematical Logic. Van Nostrand, Prince-
ton, 1964.

[Pan95] Pandya, P. K. Some Extensions to Propositional Mean-Value Calculus. Ex-
pressiveness and Decidability. Proceedings of CSL’95, Springer-Verlag, 1995.

[PR95] Pandya, P. K. and Y Ramakrishna. A Recursive Duration Calculus.
Technical Report TCS-95/3, TIFR, Bombay, 1995.

[PWX98] Pandya, P. K, Wang Hanping and Xu Qiwen. Towards a Theory of Se-
quential Hybrid Programs. Proc. IFIP Working Conference PROCOMET’98
D. Gries and W.-P. de Roever (eds.), Chapman & Hall, 1998.

[SX98] Schneider, G. and Xu Qiwen. Towards a Formal Semantics of Verilog
Using Duration Calculus. Proceedings of FTRTFT’98, Anders P. Ravn
and Hans Rischel (eds.), LNCS 1486, pp. 282-293, Springer-Verlag, 1998.

[Wal93] Walurkiewicz, I. A Complete Deductive System for the µ-Calculus., Ph.D.
Thesis, Warsaw University, 1993.

[ZGZ99] Zhou Chaochen, D. P. Guelev and Zhan Naijun. A Higher-Order Du-
ration Calculus. Proceedings of the Symposium in Celebration of the Work
of C.A.R. Hoare, Oxford, 1999.

[ZH96] Zhou Chaochen and M. Hansen Chopping a Point. Proceedings of BCS
FACS 7th Refinement Workshop, Electronic Workshop in Computer Sci-
ences, Springer-Verlag, 1996.

[ZH00] Zhu Huibiao and He Jifeng. A DC-based Semantics for Verilog Tech.
Report 183, UNU/IIST, January 2000.

[ZHR91] Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A Calculus of Dura-
tions. Information Processing Letters, 40(5), pp. 269-276, 1991.

[ZNJ99] Zhan Naijun. Completeness of Higher-Order Duration Calculus. Research
Report 175, UNU/IIST, August 1999.

Cited UNU/IIST reports can be found at http://www.iist.unu.edu .

