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Abstract

We examine model checking of finite control π-calculus processes against specifications in epistemic
predicate CTL∗. In contrast to branching time settings such as CTL or the modal µ-calculus, the
general problem, even for LTL, is undecidable, essentially because a process can use the environment
as unbounded storage. To circumvent this problem attention is restricted to closed processes for
which internal communication along a given set of known channels is observable. This allows to
model processes operating in a suitably memory-bounded environment. We propose an epistemic
predicate full CTL∗ with perfect recall which is interpreted on the computation trees defined by
such finite control π-calculus processes. We demonstrate the decidability of model-checking by a
reduction to the decidability of validity in quantified full propositional CTL∗.
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Introduction

The π-calculus [MPW92,SW01] has attracted a lot of interest as a computa-
tional model for distributed systems. Along with most other process algebras
the calculus is Turing-complete in general. Therefore most interesting decision
problems about the π-calculus are undecidable. Algorithmic support mainly
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applies to its finite-control subset, where the use of parallel composition is
syntactically restricted.

Epistemic extensions of temporal logic have proved highly valuable to
express properties of agents’ evolving knowledge in distributed systems
[FHMV95]. The π-calculus extends the established computational models
of epistemic TLs by the possibility to dynamically create new communication
channels. It is of interest to examine how this feature can be accomodated
within the epistemic logic framework.

In this paper we introduce a system of predicate epistemic CTL∗ on the
computation trees of finite control π-calculus processes. Our epistemic opera-
tor conforms with the established view that a fact is known if it is true about
all the computations which the knower finds identical to the actual one. Epis-
temic TLs refer to agent identity and ”knowers”. The π-calculus does not have
these notions, but epistemic modalities can be interpreted on π-processes in
other ways. Cohen and Dam [CD07] interpret the epistemic modality in terms
of static equivalence [AF01], but their work addresses only static knowledge.
Chadha et al [CDK09] suggest a single knower epistemic TL for π-processes
based on a form of trace equivalence. However, it is unclear how this extends
to multiple agents, and why 2 and � are the only temporal operators con-
sidered. In the experiment reported here we take a different approach: We
identify knowers with their observational power, which is determined by a set
of initially ”known”, or tapped, channels. This set grows by adding the chan-
nel names which become communicated along the channels already tapped.
We write Kx1,...,xnϕ for a knower who initially taps x1, . . . , xn knows that ϕ.

Directly extending the known decidability results for the pure branching
time case [Dam96] to just linear time temporal logic LTL, let alone an epis-
temic extension of CTL∗ is, however, not possible. Even with the restriction to
finite control, exchange with an external environment renders model-checking
of LTL properties unsolvable, because of the possibility to restrict the envi-
ronment to behave as storage for a given Turing machine’s tape, and to state
that the machine never terminates. A proof is sketched at the end of the
paper. The undecidability carries over to (epistemic extensions of) CTL∗. To
side-step this complication, we constrain the environment by shifting atten-
tion to closed systems, and assume instead that knowers observe only internal
communication along the set of tapped names, communication along which is
observable. The upshot is that processes can be predicated only when placed
in a fixed finite closing environment.

We prove the decidability of model-checking for our system. We encode the
execution tree of the given π-process as a finite Kripke frame and reduce the
model-checking of any given predicate epistemic CTL∗ formula ϕ on this tree
to the satisfiability of a translation of ϕ into quantified propositional CTL∗

(QCTL∗) on trees, which is known to be decidable from [Fre01,Fre06].

2



Guelev and Dam

1 Background on π-Calculus

Finite control π-terms syntax can be given by the BNF

P ::= 0 | α.P | (νy)P | P + P | if x = y then P else P | p(y, . . . , y)

Q ::= 0 | P | Q|Q | (νx)Q

Here P,Q are process terms that use (channel) names x, y for communication.
A communication action α is either the input of a name y along a channel
named x, written as x(y), or the output of y along x, written xy, or the
neutral, unobservable action τ . Names can be locally scoped by the operator
(νy) which prevents communication along y (but allows y to be passed as
a parameter, resulting in so-called scope extrusion of y, as detailed below).
Other operators are action prefixing, choice (+), conditionals, and parallel
composition. A process is a term of the form Q together with a finite set of
definitions of the form p(x1, . . . , xn) = P , for the recursive invocations in Q
and in the definitions’ own righthand sides. Below we elide the distinction
between single process terms P and parallel compositions Q, and use P to
range over both. The set of all names in a π-term P is denoted by n(P ). The
sets of free and bound names are written fn(P ) and bn(P ), respectively, the
binders being (νx) and the input prefix x(y), which binds x, resp. y. Binders
induce a relation of structural congruence ≡ on terms, including α-conversion,
briefly detailed below.

We consider only executions

P 0 τ−→C1 P 1 τ−→C2 · · · τ−→Ck P k τ−→Ck+1 · · · (1)

which consist entirely of silent steps, in order to prevent environment interac-
tions, as explained in the introduction. Transitions are annotated by the sets
Ck of internal communication acts which are possibly observed by knowers.
Each P k has the form

(νx1) . . . (νxm)P (2)

where P has no occurrences of ν. This form can be achieved using structural
congruence. Annotations Ck consist of communication acts written in the
form c(x). Annotated transitions are derived by the following axioms and
rules, a variant of the so-called early semantics of the π-calculus, cf. [Par01]:

τ.P
τ−→∅ P x(y).P

x(z)−→∅ [z/y]P xy.P
xy−→∅ P

P
α−→C P ′ y 6∈ n(α) y 6∈ n(C)

(νy)P
α−→C (νy)P ′

P
α−→C P ′ y ∈ n(C)

(νy)P
α−→C P ′

P
α−→C P ′

P +Q
α−→C P ′
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P1
α−→C P ′

1

if x = x then P1 else P2
α−→C P ′

1

P2
α−→C P ′

2 x 6= y

if x = y then P1 else P2
α−→C P ′

2

Q1
α−→C Q′

1 bn(α) ∩ fn(Q1) = ∅
Q1|Q2

α−→C Q′
1|Q2

Q1
xy−→∅ Q

′
1 Q2

x(y)−→∅ Q
′
2

Q1|Q2
τ−→{x(y)} Q

′
1|Q′

2

(Congruence)
P

α−→C Q P ≡ P ′ Q ≡ Q′

P ′ α−→C Q′

Symmetric rules for + and parallel composition | are derivable using structural
congruence. Annotations can be either ∅, or singletons. Together with the
identities A|(νx)B ≡ (νx)(A|B), x 6∈ fv(A), and p(x1, . . . , xn) ≡ P , given
p(x1, . . . , xn) = P , the congruence rule allows to avoid the use of bound output
action x(y), and a dedicated rule about recursive invocations. It is possible to
show that P

τ−→{x(y)} Q according to the above semantics iff P
τ−→ (νx)(νy)Q

according to the early semantics of [Par01], where one or both of (νx) or (νy)
may be absent.

2 Epistemic Predicate Full CTL∗ on Finite Control π-
Processes

Using α-conversion it is easy to write executions such as (1) in such a manner
that names are never reused in the following sense.

Definition 2.1 The extent (lifetime) of name x in an execution E written as

in (1) is the set LE(x)
def
={k < ω : x ∈ n(P k) ∪ n(Ck)}. E is standard if, for

every x, LE(x) is either ∅, or a finite or infinite interval.

A model for EPCTL∗ is the Kripke frame T (P 0) whose paths correspond to
the standard executions starting from some given π-term P 0. Fix a countably
infinite set D including all names in T (P 0).

Definition 2.2 T (P 0) = 〈W,R〉 where W consists of all the pairs of the form
〈P,C〉 where P is a process term of the form (2) that occurs in some execution
starting from P 0, and C ∈ {∅}∪{c(c′) : c, c′ ∈ D}. 〈P ′, C ′〉R〈P ′′, C ′′〉 iff either
P ′ τ−→C′′ P ′′, or P ′ = P ′′, C ′′ = ∅ and P ′ is either deadlocked or terminated.

The condition 〈P,C〉R〈P, ∅〉 for terminated and deadlocked P rules out
finite maximal paths in T .

Given P 0, there exists a finite set P of ν-free process terms such that
the following condition holds: Let {y1, . . . , yN} =

⋃
P∈P

n(P ) and let A be the

set {∅} ∪ {{yi(yj)} : i, j = 1, . . . , N} of annotations written using y1, . . . , yN .

Then all the annotated silent transitions P k τ−→Ck+1 P k+1 in executions (1)
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starting with P 0 can be written in the form

σ(νu1) . . . (νur)Q
′ τ−→σB σ(νv1) . . . (νvs)Q

′′ (3)

where Q′, Q′′ ∈ P, u1, . . . , ur, v1, . . . , vs ∈ {y1, . . . , yN}, B ∈ A,

σ
def
=[[n1/y1, . . . , nN/yN ]] is the substitution of y1, . . . , yN , by the pairwise dis-

tinct names n1, . . . , nN , and σB
def
={nj1(nj2) : yj1(yj2) ∈ B, j1, j2 = 1, . . . , N}.

We write σ using [[.]] and not [.] to indicate that it affects the bound occur-
rences of y1, . . . , yN too. Since n1, . . . , nN are required to be distinct, our use
of [[.]] is semantically correct. In particular, (3) is a derivable transition iff
(νu1) . . . (νur)Q

′ τ−→B (νv1) . . . (νvs)Q
′′ is.

We use P as a vocabulary of predicate symbols for T = T (P 0). Each
P ∈ P is used as a |fn(P )|-ary predicate symbol. (Note that here P ranges over
the ν-free parts of terms in the form (2). The only bound names of P can be

the ys in the scope of an x(y).) Given {z1, . . . , z|fn(P )|}
def
= fn(P ) ⊆ {y1, . . . , yN},

we fix the ordering z1, . . . , z|fn(P )|, and, for any n1, . . . , n|fn(P )| ∈ D, we define
P T (n1, . . . , n|fn(P )|) to hold 〈Q,A〉 ∈ W iff Q = [n1/z1, . . . , n|fn(P )|/z|fn(P )|]P .
Similarly, we introduce a binary predicate symbol C for latest communication
act, and a temporal proposition T for silent transitions.

This vocabulary may be inconvenient for immediate use, but with existen-
tial quantification and disjunction one can easily define predicates like, e.g.,
Z(n1, n2) for there exist a name y such that the current process term is of the
form . . . | n1(x).p(n2, x, y) | . . ..

For an annotated execution E written as (1), the set CE(a, k) of the chan-
nels that are tapped by knower a at step k is defined as follows. CE(a, 0) is
presumed to be predefined and the same for all E. Given CE(a, k), we put

CE(a, k + 1)
def
=CE(a, k) ∪ {c′ : c(c′) ∈ Ck+1, c ∈ CE(a, k)}. (4)

In words, once a observes the communication of channel name c′, communi-
cation over c′ becomes observable to a too. Given CE(a, k), k < ω, and two
more executions Fi = Q0

i
τ−→A1

i
· · · τ−→Ak

i
Qk

i
τ−→Ak+1

i
· · · , i = 1, 2, we define

F1 ∼a,k,E F2 as the equivalence relation

(∀j ≤ k)(∀c ∈ CE(a, j))(∀c′ ∈ D)(c(c′) ∈ Aj
1 ↔ c(c′) ∈ Aj

2).

In words, F1 ∼a,k,E F2 iff F1 and F2 have the same communication over chan-
nels that are observed by a in E at all steps j ≤ k. Since F1 ∼a,k,F1 F2 entails
CF2(a, j) = CF1(a, j) for j ≤ k, and therefore F1 ∼a,k,F1 F2 and F1 ∼a,k,F2 F2

are equivalent, and ∼a,k
def
=λF1F2.F1 ∼a,k,F1 F2 is an equivalence relation.

F1 and F2 are indiscernible to a until step k iff F1 ∼a,k F2. We define our
epistemic modality by means of ∼a,k.
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The syntax of EPCTL∗ is

ϕ ::= ⊥ | P (x, . . . , x) | ϕ⇒ ϕ | ∃xϕ | 	ϕ | ©ϕ | (ϕSϕ) | (ϕUϕ) | ∃ϕ | Kx,...,xϕ

where the occurrences of x represent individual variables. The counterparts
of standard executions in T are standard R-paths.

Definition 2.3 An infinite sequence

ρ = 〈P 0, C0〉, . . . , 〈P k, Ck〉, . . . ∈ W ω (5)

is a standard R-path if P 0 is the process term used to define T = T (P 0),
C0 = ∅, 〈P k, Ck〉R〈P k+1, Ck+1〉 for all k < ω and the corresponding execution
(1) is standard. Given R-paths ρ1 and ρ2 and channels c1, . . . , cm ∈ D, we
write ρ1 ∼c1,...,cm,k ρ2 if E1 ∼a,k E2 for the corresponding executions E1 and
E2, and a such that {c1, . . . , cm} = CE1(a, 0) = CE2(a, 0).

Definition 2.4 Given a standard R-path (5), a valuation v of the individual
variables into D, k < ω and a formula ϕ, T , v, ρ, k |= ϕ is defined by the
clauses

T , v, ρ, k 6|= ⊥

T , v, ρ, k |= P (x1, . . . , x|fn(P )|) iff P k is [v(x1)/z1, . . . , v(x|fn(P )|)/z|fn(P )|]P

T , v, ρ, k |= C(x1, x2) iff Ck = {v(x1)(v(x2))}

T , v, ρ, k |= T iff Ck = ∅

T , v, ρ, k |= ϕ⇒ ψ iff either T , v, ρ, k 6|= ϕ, or T , v, ρ, k |= ψ

T , v, ρ, k |= ∃xϕ iff T , v[x 7→ d], ρ, k |= ϕ for some d ∈ D

T , v, ρ, k |= 	ϕ iff k > 0 and T , v, ρ, k − 1 |= ϕ

T , v, ρ, k |= ©ϕ iff T , v, ρ, k + 1 |= ϕ

T , v, ρ, k |= (ϕSψ) iff there exists an n ≤ k s.t. T , v, ρ, k − n |= ψ

and T , v, ρ, k − j |= ϕ for j = 0, . . . , n− 1

T , v, ρ, k |= (ϕUψ) iff there exists an n < ω s.t. T , v, ρ, k + n |= ψ

and T , v, ρ, k + j |= ϕ for j = 0, . . . , n− 1
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T , v, ρ, k |= ∃ϕ iff there exists a standard R-path ρ′

s.t. ρ′[0..k] = ρ[0..k] and T , v, ρ′, k |= ϕ

T , v, ρ, k |= Kx1,...,xmϕ iff T , v, ρ′, k |= ϕ for all standard

R-paths ρ′ s.t. ρ ∼v(x1),...,v(xm),k ρ
′

Here ρ[0..k] stands for the finite prefix of ρ of length k + 1. As expected,
FV (Kx1,...,xmϕ) = FV (ϕ) ∪ {x1, . . . , xm}.

We use >, ¬, ∧, ∨ and ⇔ as abbreviations in the usual way; I, 3−ϕ, �ϕ,
3ϕ, 2ϕ, (ϕWψ) and (ϕVψ) abbreviate the formulas ¬	>, (>Sϕ), ¬3−¬ϕ,
(>Uϕ), ¬3¬ϕ, (ϕUψ) ∨2ϕ and (ϕSψ) ∨�ϕ, respectively.

Example 2.5 Let P 0 = p(c)|q(c) where

p(x) = xx.p(x) + (νy)xy.p(y), q(x) = x(y).if x = y then 0 else q(y).

A knower who can initially tap c is in a position to detect the termination
of the right operand of | in the process as soon as a tapped channel’s name
becomes transmitted along that same channel:

T (P 0), P 0, v, 0 |= ∀x∀w(C(x,w) ⇒ ∀2(∃zp(z)|0 ⇒ Kx(∃zp(z)|0)),

where the atomic formula p(z)|0 is underlined for better readability. To
achieve this, the knower must follow the communication along the new chan-
nels y introduced at each step. (Each of these channels is used once to an-
nounce the name of its successor, and then ”forgotten” by the process.)

3 From EPCTL∗ on finite control π-processes to QCTL∗

on trees

Consider standard annotated executions (1) with process terms of the form
(2) and the representation (3) of transitions in such executions again. The
representation (3) applies if we allow some of n1, . . . , nN to be the auxiliary
symbol ∗ 6∈ D too, provided that nj = ∗ only if yj 6∈ n(Q′) ∪ n(Q′′). To
facilitate the presentation, in the sequel we use (3) with n1, . . . , nN ranging
over D ∪ {∗} and put σ = [. . . , ∗/yj, . . .] instead of yj 6∈ domσ.

We fix P 0, P, D, {y1, . . . , yN} =
⋃

Q∈P

n(Q) and A for the rest of the section.

Given these, an annotated execution E of the form (1) can be written as

σ0Q
0 τ−→σ1B1 · · · τ−→σkBk σkQ

k τ−→σk+1Bk+1 · · · (6)

where Qk ∈ P, Bk+1 ∈ A and σk are substitutions as above which sat-
isfy σk+1Q

k = σkQ
k, and the additional condition ranσk \ {∗} = n(σkQ

k) ∪
7
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n(σkB
k) = n(P k) ∪ n(Ck) for all k. Then obviously LE(n) = {k < ω : n ∈

ranσk}. In the sequel we additionally require that if σk1(yi1) = σk2(yi2) 6= ∗ in
the form (6) of E, then i1 = i2, for all k1, k2 ∈ LE(σk1(yi1)), that is, a name n
should occupy the same slot y throughout its lifetime in E.

Up to a permutation of D, (6) is determined by the sequences Qk, k < ω,
and Bk, 1 ≤ k < ω, and, for each j = 1, . . . , N , the steps k at which

σk−1(yj) 6= σk(yj). (7)

To realise that, observe that in standard executions (7) is equivalent to k =
minLE(σk(yj)) and to k − 1 = maxLE(σk−1(yj)), provided that σk(yj) 6= ∗
and σk−1(yj) 6= ∗, respectively. Consequently, up to permutations of names,
the standard executions starting from a given P 0 can be described by means

of the finite Kripke frame F = 〈W,R,w0〉 with state space W
def
=P × A ×

P({y1, . . . , yN}), initial state w0
def
= 〈P 0, ∅, n(P 0)〉 and transition relationR such

that 〈P ′, B′, Y ′〉R〈P ′′, B′′, Y ′′〉 iff Y ′′ = (n(P ′′)∪ n(B′′))4(n(P ′)∪ n(B′)) and
either P ′ τ−→B′′ P ′′ is a derivable transition, or P ′ = P ′′, B′′ = ∅ and P ′ is

either deadlocked or terminated. Here n(∅)def=∅, n({yj1(yj2)})
def
={yj1 , yj2} and

A4Bdef
=A \ B ∪ B \ A, as expected. The component Y of 〈P,B, Y 〉 ∈ W

is meant to denote the names from among y1, . . . , yN , which disappear or
(re)appear upon incoming transitions, respectively.

We use F to model-check the tree of all standard executions starting from
P 0 for EPCTL∗ properties. Instead of immediately interpreting EPCTL∗ for-
mulas on F , we use a propositional LTL formula E which describes the set
of paths of F . To this end introduce a finite vocabulary L = {q1, . . . , qK}
and a valuation V : W → P(L). No connection between the values of the
variables from L and the structure of the states of F is assumed. We only
require V to satisfy V (w′) 6= V (w′′) whenever w′ 6= w′′, which can be achieved

iff K ≥ log2 |W |. Given a state w ∈ W , let ŵ
def
=

∧
q∈V (w) qi∧

∧
q∈L\V (w) ¬q. We

put

E 
 ŵ0 ∧
∧

w∈W

2(ŵ ⇒©
∨

w′∈R(w)

ŵ′). (8)

Now the validity of an arbitrary QCTL∗ formula ϕ in M is equivalent to
|=QCTL∗ ∀E ⇒ ϕ. By chj, busyj, commj,k, j, k = 1, . . . , N , and tau, we denote
boolean combinations of q1, . . . , qK which, up to equivalence, are determined
by the following conditions, where M = 〈W,R,w0, V 〉 and w = 〈Q,B, Y 〉:

M,w |= chj iff yj ∈ Y M,w |= busyj iff yj ∈ n(Q) ∪ n(B)

M,w |= tau iff B = ∅ M,w |= commj1,j2 iff B = {yj1(yj2)}

The intended meaning of chj is to indicate that the occupation of yj was
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changed upon the incoming transition, i.e., either k = 0, or σk−1(yj) 6= σk(yj)
in the representation (6) of executions; busyj means that yj currently holds a
name and not ∗; tau means that the incoming transition was τ , and commj1,j2

means that the incoming transition was σk(yj1)(σk(yj2)).

Given P ∈ P and a sequence of indices j1, . . . , j|fn(P )| ∈ {1, . . . , N},
Pj1,...,j|fn(P )| denotes some boolean combination of q1, . . . , qK such that
M, 〈Q,B, Y 〉 |= Pj1,...,j|fn(P )| iff Q is [yj1/z1, . . . , yj|fn(P )|/z|fn(P )|]P where
z1, . . . , z|fn(P )| is the fixed ordering of fn(P ) previously associated with P .

Next we describe a translation t(.) of EPCTL∗ into QCTL∗ on tree Kripke
models. Tree models allow the values of bound propositional variables to
vary unrestrictedly along paths, whereas repeated occurrences of states along
paths in non-tree models constrain the values of quantified variables at the
respective positions to be the same too. By abuse of notation, we write M =
〈W,R,w0, V 〉 for the result of the unravelling of the finite Kripke model M
described above into a tree one too. QCTL∗ extends propositional CTL∗ by
formulas of the form ∃qϕ. M,ρ, k |= ∃qϕ holds iff there exists a V ′ : W →
P(L) such that V ′(p) = V (p) for p 6= q and 〈W,R,w0, V

′〉, ρ, k |= ϕ.

The QCTL∗ translation t(ϕ) of an EPCTL∗ sentence ϕ satisfies |=QCTL∗

∀E ⇒ t(ϕ) where E is as in (8) iff ϕ is true about all the executions starting
with a fixed P 0. As mentioned above, E allows the appearance of names in
E to be determined up to a permutation on D. Since we assume ϕ to be a
sentence, this is sufficient.

To handle quantification over names in EPCTL∗ we augment the descrip-
tion of the possible executions E which can be derived from E with a descrip-
tion of the identities between the names which appear in E and the values of
the (bound) variables of ϕ. Without loss of generality we assume that no indi-
vidual variable in ϕ is bound by more than one occurrence of ∃. Let x1, . . . , xM

be all the individual variables of ϕ. To describe the occurrences of v(xl) in
an execution E for the relevant v, we take the form (6) of E and introduce
the propositional variables pj,l, j = 1, . . . , N . The intended meaning of pj,l at
step k is v(xl) = σk(yj). As it becomes clear below, this enables translating
P (xl1 , . . . , xlm) into

∨
j1,...,jm

Pj1,...,jm ∧ pj1,l1 ∧ . . . pjm,lm .

The translation of a formula of the form ∃xlψ includes a formula of the
form ∃p1,l . . . ∃pN,l(Vl∧ t(ψ)), in which Vl constrains pj,l to mark some possible
extent LE(v(xl)) = LE(σk(yj)) of v(xl) in the executions E which correspond
to the paths in T and in the corresponding QCTL∗ model M . The case of pj,l

being satisfied nowhere along the given path corresponds to the name v(xl)
appearing nowhere in E. Let

Fj,l 
 pj,l ∧ busyj ∧
∧
j′ 6=j

¬pj′,l ∧
∧
l′ 6=l

¬pj,l′ .

9
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Fj,l means that xl evaluates to σk(yj) at time k, and j is the only one with
this property, and no other individual variable evaluates to σk(yj) at time k.
The latter condition is included to simplify the handling of atomic formulas
built using =. To express that xl evaluates to none of the names σk(yj), we

use the formula Gl 

N∧

j=1

¬pj,l. Using Fj,l and Gl, we write

Hj,l 
 (GlWchj ∧ Fj,l ∧©(Fj,l ∧ ¬chjWchj ∧2Gl)).

The satisfaction of Hj,l at step 0 means that either LE(v(xl)) = ∅, or there
exists a k such that σk(yj) 6= ∗ for some k and v(xl) = σk′(yj) for k′ ∈

LE(v(xl)) = LE(σk(yj)). Now we can put Vl 
 3−(I ∧ ∀
N∨

j=1

Hj,l). The clauses

for the translation, except that for epistemic formulas, are as follows:

t(⊥) 
 ⊥

t(xl1 = xl2) 
 ⊥ if l1 6= l2

t(xl = xl) 
 >

t(P (xl1 , . . . , xlm)) 

∨

j1,...,jm

(
Pj1,...,jm ∧

m∧
i=1

pji,li

)
t(C(xl1 , xl2)) 


∨
j1,j2

(commj1,j2 ∧ pj1,l1 ∧ pj2,l2)

t(T ) 
 tau

t(Xϕ) 
 Xt(ϕ) for X ∈ {©,	,∃}

t((ϕXψ)) 
 (t(ϕ)Xt(ψ)) for X ∈ {U, S,⇒}

t(∃xlϕ) 

∨

z∈FV (∃xlϕ)

t([z/xl]ϕ) ∨ ∃p1,l . . . ∃pN,l(Vl ∧ t(ϕ))

To facilitate translating formulas of the form xl1 = xl2 , the clause for t(∃xlϕ)
provides that the values of the free variables of ∃xlϕ are excluded from the
range of xl by treating the cases of v(xl) being one of these values separately.

The translation of formulas of the form Kx1,...,xmϕ requires us to write a
description of CE(a, k), k < ω, for an arbitrary execution E and a knower
a such that CE(a, 0) = {v(x1), . . . , v(xm)} in our propositional temporal lan-
guage. We do this by introducing the propositional variables oj, j = 1, . . . , N .
Just like the variables pj,l, oj have only bound occurrences in the translations
of EPCTL∗ sentences. Assuming that the considered execution E is written
in the form (6), the intended meaning of oj in the translation of Ka . . . at step
k is σk(yj) ∈ CE(a, k). Next we construct an LTL formula to express that oj,
j = 1, . . . , N , behave according to the defining properties of CE(a, k), k < ω,

10
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with respect to the adopted way of propositional description of executions E.

Consider an individual variable xl such that v(xl) ∈ CE(a, 0) and let k < ω.
Then the satisfaction of

Ij,l 
 Fj,l ⇒ (ojSchj ∧ oj) ∧ oj ∧©(ojWchj)

at step k means that if k ∈ LE(v(xl)) and v(xl) = σk(yj), then a taps commu-
nication over channel σk(yj) throughout its extent LE(σk(yj)) = LE(v(xl)).
We put

IL 

N∧

j=1

∧
l∈L

2Ij,l for L ⊆ {1, . . . ,M}.

The satisfaction of IL at step 0 means that a taps communication over the
channels denoted by xl, l ∈ L, throughout their extents.

To express the definition (4) of CE(a, k + 1) in terms of CE(a, k), we use
the formula

C 
 2
∧
h

(©oh ⇔ (¬© chh ∧ oh) ∨
∨
j

oj ∧ commj,h). (9)

The satisfaction of C at step 0, means that communicating a channel name
σk(yh) over an observed channel σk(yj) at an arbitrary step k makes commu-
nication over σk(yh) observable from step k + 1 on and for the rest of the
extent of σk(yh), that is, until eventually a step k′ > k is reached such that
σk′(yh) 6= σk(yh), which is indicated by chh. LetOL be the formula 3−(I∧IL∧C).
OL states that oj holds at step k iff σk(yj) ∈ CE(a, k) for all k < ω and j ∈ L.

Expressing Kx1,...,xm furthermore requires reference to executions E ′ which
exhibit the same sequence of observable actions as the actual execution E.
To this end we introduce an extra copy L′ = {q′1, . . . , q′K} of the vocab-
ulary L of our Kripke model M , whose paths we described using the for-
mula E . We write x′ for the boolean combination [q′i/qi : i = 1, . . . , K]x,
x = tau, busyj, commj1,j2 , chj. Similarly we assume additional sets p′j,l, o

′
j,

j = 1, . . . , N , l = 1, . . . ,M , of the variables pj,l and oj, to describe the extents
of the values of individual variables and channel observability in E ′, and write
I ′L, C ′, etc. for the variants of IL, C, etc., written in the primed vocabulary.

Let the substitutions involved in writing E ′ in the form (6) be σ′k, k < ω.
According to our encoding, observing the same actions in E and E ′ means
that if oj and commj,h, hold at some step k, then oj′ and comm′

j′,h′ hold for
some j′, h′ such that σk(yj) = σ′k(yj′) and σk(yh) = σ′k(yh′). To express the
latter identities, we introduce the atomic propositions ej,j′ , j, j

′ = 1, . . . , N .
The intended meaning of ej,j′ at step k is that σk(yj) = σ′k(yj′) 6= ∗, that is,
k ∈ LE(n) ∩ LE′(n) where n = σk(yj) = σ′k(yj′).

The valuation of ej,j′ , j, j
′ = 1, . . . , N , along a path describes correctly a

possible overlap of the extents LE(n) and LE′(n) of some name n in a pair

11
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of executions E and E ′, iff it has the properties which are expressed by the
following LTL formulas

ej,j′ ⇒ busyj ∧ busy′j′ ∧
∧

h 6=j

¬eh,j′ ∧
∧

h′ 6=j′
¬ej,h′

ej,j′ ⇒©

ej,j′ ∧ ¬chj ∧ ¬ch′j′W
chj ∧

(∧
h

¬eh,j′ ∧ ¬ch′j′Wch′j′

)
∨

ch′j′ ∧
(∧

h

¬ej,h ∧ ¬chjWchj

)


ej,j′ ⇒

ej,j′ ∧ ¬chj ∧ ¬ch′j′V
chj ∧ 	

(∧
h

¬eh,j′ ∧ ¬ch′j′Vch′j′

)
∨

ch′j′ ∧ 	
(∧

h

¬ej,h ∧ ¬chjVchj

)


At step k, the first formula states that σk(yj) = σ′k(yj′) 6= ∗ can hold for at
most one pair j, j′. The second and the third formulas state that σk(yj) =
σ′k(yj′) = n at step k implies σk′(yj) = σ′k′(yj′) for all k′ ∈ LE(n) ∩ LE′(n),
σk′(yj) 6= σ′k′(yh) for all h and k′ ∈ LE(n) \ LE′(n), and σ′k′(yj′) 6= σk′(yh) for
all h and k′ ∈ LE′(n) \ LE(n). Let Nj,j′ be the conjunction of these formulas.
We denote the formula 3−(I ∧ ∀2

∧
j,j′
Nj,j′) by N .

Using the variables ej,j′ we can express that E and E ′ have the same
observable communication by the formulas

oj ⇒
∧
h

(ej,h ⇒ o′h), o′j′ ⇒
∧
h

(ek,j′ ⇒ oh) (10)

ej,j′ ⇒ (pj,l ⇔ p′j′,l) (11)

oj ∧ commj,h ⇒
∨
j′,h′

(ej,j′ ∧ eh,h′ ∧ comm′
j′,h′) (12)

o′j′ ∧ comm′
j′,h′ ⇒

∨
j,h

(ej,j′ ∧ eh,h′ ∧ commj,h). (13)

The formulas (10) state that CE(a, k) = CE′(a, k) for the reference step k.
The formula (11) states that the account of the valuation of individual vari-
ables given by pj,l and p′j′,l is consistent with the identities between in E and
E ′ as described using ej,j′ . The formulas (12) and (13) state that the actions
on observable channels in the two executions are identical. We denote the
conjunction of (10)-(13) by Sj,j′,h,h′ . We denote �

∧
j,j′,h,h′

Sj,j′,h,h′ by S. The

satisfaction of S at step k means that E ∼a,k E
′ holds, provided that execu-

tions E and E ′ correspond to the satisfying path, that is, provided that busyj,
chj, tau, commj1,j2 , busy′j′ , ch′j′ , tau and comm′

j′1,j′2
correctly describe E and

E ′, respectively, pj,l, p
′
j′,l and ej,j′ correctly describe the identities between the

names involved in E and E ′, and the values of the individual variables xl,

12
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and, finally, oj and o′j, correctly describe the observability of channels. This
condition is expressed by the conjunction

N ∧ E ∧
∧

xn∈FV (ϕ)

Vn ∧O{1,...,m} ∧

E ′ ∧ ∧
xn∈FV (ϕ)

V ′
n ∧O′

{1,...,m}


The subscripts written with i and j, and also l as the main symbol above
range over {1, . . . , N} and {1, . . . ,M}, respectively.

Now we are ready to write a translation clause for Kx1,...,xmϕ. (The initially
observable channels are chosen to be values of the first m individual variables
x1, . . . , xm for the sake of simplicity.) Kx1,...,xmϕ translates into

∀q′1 . . . ∀q′1
∀p′1,1 . . . ∀p′1,M . . . ∀p′N,1 . . . ∀p′N,M

∀o1 . . . ∀oN∀o′1 . . . ∀o′N
∀e1,1 . . . ∀e1,N . . . ∀eN,1 . . . ∀eN,N

N ∧ S ∧ E ′ ∧
∧

xn∈FV (ϕ)

V ′
n∧

O{1,...,m} ∧O′
{1,...,m} ⇒ t(ϕ)′



The quantifier prefix of t(Kx1,...,xmϕ) provides fresh sets of variables q′1, . . . , q
′
K

to enable the description of E ′, p′j′,l′ to describe the identities between the
values of the individual variables and the names involved in E ′, oj and o′j′
to mark the observability of channels in E and E ′, respectively, and a set of
variables ej,j′ to express whatever identities hold between the names occurring
in E and E ′ during their various extents. The conditions on these variables
which actually force their truth values to give a consistent account of E ′, the
way individual variables refer to names in E ′, the observability of channels
in both executions, the identities between names occurring in E and E ′, and
the fact that E ∼a E

′ for a knower a who can initially observe the channels
v(x1), . . . , v(xm) are expressed in the conjunction on the left of⇒ in the matrix
of the formula by E ′,

∧
xn∈FV (ϕ)

V ′
n, O{1,...,m}, O

′
{1,...,m}, N , and S, respectively.

On the whole, the translation states that if a cannot tell apart some E ′ from
the actual execution E, then the encoding of E ′ satisfies t(ϕ) as well, which is
the defining condition for the satisfaction of Kx1,...,xmϕ. The free propositional
variables of t(Kx1,...,xmϕ) are q1, . . . , qK , and pj,l, j = 1, . . . , N , xl ∈ FV (ϕ),
which describe the actual execution E and the identities between the names
occurring in E and the values of the (free) variables of ϕ, provided that their
truth values satisfy E and the relevant Vl, respectively.

The correctness of our translation can be formuated as follows:

Theorem 3.1 Given a π-process P 0 and an EPCTL∗ sentence ϕ in the re-
spective predicate vocabulary, T (P 0), v, 〈P 0, ∅〉 |= ϕ iff |=QCTL∗ E ⇒ t(ϕ).
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The proof can be obtained by following the detailed explanation of the
meaning of the formulas used to define the various clauses for t(.) above.

4 Unsolvability of model-checking with external com-
munication

Model-checking is not recursively enumerable for finite control π-processes
with external communication even for the LTL subset of EPCTL∗, without
the epistemic modality. To prove this, we define a class of behaviours in which
the environment e acts as unbounded storage by an LTL formula. Let I and
O be binary predicate symbols which denote input from and output to e,
respectively, just like the predicate symbol C about internal communication.
We intend to state that whenever e receives two names x and y in a row along
a dedicated channel cons , it ”registers” the pair 〈x, y〉 under some name z
and, from that step onwards, whenever given z along the dedicated channels
car (cdr), e sends back x (y) along reply . A formula constraining e to behave
this way can be written as follows. The formula

silence 
 ∀x
(
∧c∈{cons,car ,cdr ,reply} ¬I(c, x) ∧ ¬O(c, x)

)
.

states that the latest action was not communication with e. Let

3sϕ 
 (silenceUϕ) and 3−sϕ 
 (silenceSϕ);

R 
 �silence ∨3−s∃xI(reply , x).

R states that the latest communication with e, if any, was a reply. Then

3−s(O(cons , y) ∧ 	3−s(O(cons , x) ∧ 	R)) ⇒

∃z3s(I(reply , z) ∧©∀t2(O(car , z) ∧©3s(I(reply , t) ⇒ t = x)))

states that e is bound to return x whenever asked to retrieve the first member
of the pair 〈x, y〉 previously registered as z. Similar formulas can be written
to express retrieving y, and registering pairs. We leave it to the reader to
realise that, with e assumed to behave this way, a finite control process PM

can be constructed to simulate the working of any given Turing machine M ,
with the parts of M ’s tape on the left and on the right of M ’s current position
represented as two lists built of pairs, which can be stored by e in the above
fashion. This entails that the non-halting problem for Turing machines M
reduces to the model-checking problem for processes of the form PM against
the conjunction of the formulas which describe the working of e as storage and
a formula which states the non-termination of M .
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The same plan can be used to show that the problem of model-checking
finite-control processes which communicate with a finite memory environment
for predicate LTL properties, that is, the problem of whether there exists a
finite-control E such that the runs of P | E for a given P have a given property
written in the LTL subset of our EPCTL∗, is recursively enumerable but still
undecidable, as long as E is unrestricted. This can be realised by choosing P
to range over the processes PM which simulate Turing machines M as above,
and the property in question to be M terminates and E behaves as storage
in the above way until M terminates. By restricting M to be deterministic,
PM |E can be chosen to have just one run. For terminating M , the unique run
of PM | E will satisfy the above property for any E which is big enough to
serve as storage throughout the terminating run of the simulated M .

Concluding remarks

We have examined model checking of finite control π-calculus processes against
formulas in an epistemic extension of predicate CTL∗ with perfect recall. Since
model checking is undecidable for open π-calculus processes even for LTL,
we instead address closed process terms and tapping internal communication
across a distinguished set of channels. This constrains the storage capacity of
processes sufficiently to render model checking decidable.

Model checking the π-calculus has been considered by several authors,
but so far only in branching time settings. Dam [Dam96] obtained a first
decidability result for a predicate extension of modal µ-calculus. This result
has been improved upon in [Fra96,YRS04]. The latter work has been adapted
to the stochastic π-calculus [NPPW07]. Recent applications of π-calculus and
its dialects to security protocol verification mostly appeal to Dolev-Yao type
knowledge extraction. An exception is [CDK09], where the use of epistemic
reasoning in the context of π-calculus is suggested. An epistemically flavoured
extension of modal logic applied to CCS, a precursor of the π-calculus, is
proposed in [Mar07].

We leave three main questions open for future investigation. First, we
have not explored the practical implications of the closed system modelling
approach suggested in this paper, and whether it can offer new approaches
to specification and verification, for instance along the lines suggested by
[CDK09]. Second, the model checking algorithm presented here is non-
elementary and needs to be improved in order to become practically useful.
It remains to be seen if existing approaches to model checking of epistemic
logics [GvdM04,RL07] can be extended. Third, it is of interest to extend the
results presented here to capture also strategic ability, for instance along the
lines of ATL [AHK02].

15



Guelev and Dam

Acknowledgements

Dimitar Guelev worked on the topic of this paper during a research visit to
KTH in September, 2009, which was partially supported by the ACCESS
Linnaeus Excellence Centre, funded by the Swedish National Research Coun-
cil. The work was also partly supported by Bulgarian National Science Fund
Grant ID-09-112. D. Guelev is grateful to Mark Ryan for some comments on
a draft version of the paper.

References

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In POPL, pages 104–115. ACM Press, 2001.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. J. ACM, 49(5):672–713, 2002.

[CD07] Mika Cohen and Mads Dam. A complete axiomatization of knowledge and
cryptography. In LICS, pages 77–88. IEEE Computer Society, 2007.

[CDK09] Rohit Chadha, Stéphanie Delaune, and Steve Kremer. Epistemic Logic for the Applied
Pi Calculus. In FMOODS/FORTE, volume 5522 of LNCS, pages 182–197. Springer,
2009.

[Dam96] Mads Dam. Model Checking Mobile Processes. Information and Computation,
129(1):35–51, 1996.

[FHMV95] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning about
Knowledge. MIT Press, 1995.

[Fra96] T. Franzen. A Theorem-Proving Approach to Deciding properties of Finite-Control
Agents, 1996.

[Fre01] Tim French. Decidability of quantifed propositional branching time logics. In AI 2001,
volume 2256 of LNCS, pages 165–176. Springer, 2001.

[Fre06] Tim French. Bisimulation Quantifiers for Modal Logics. Ph.d. thesis, The University
of Western Australia, 2006.

[GvdM04] Peter Gammie and Ron van der Meyden. MCK: Model Checking the Logic of
Knowledge. In CAV, pages 479–483, 2004.

[Mar07] Radu Mardare. Observing Distributed Computation. A Dynamic-Epistemic Approach.
In CALCO, volume 4624 of LNCS, pages 379–393. Springer, 2007.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes, I.
Information and Computation, 100(1):1–40, 1992.

[NPPW07] Gethin Norman, Catuscia Palamidessi, David Parker, and Peng Wu. Model checking
the probabilistic pi-calculus. In QEST, pages 169–178. IEEE Computer Society, 2007.

[Par01] Joachim Parrow. An introduction to the π-calculus. In J.A. Bergstra, A. Ponse, and
S.A. Smolka, editors, Handbook of Process Algebra, pages 479–544. Elsevier Science Inc.,
New York, NY, USA, 2001.

[RL07] Franco Raimondi and Alessio Lomuscio. Automatic Verification of Multi-agent Systems
by Model Checking via Ordered Binary Decision Diagrams. Journal of Applied Logic,
5(2):235 – 251, 2007.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
CUP, 2001.

[YRS04] Ping Yang, C. R. Ramakrishnan, and Scott A. Smolka. A logical encoding of the pi-
calculus: model checking mobile processes using tabled resolution. STTT, 6(1):38–66,
2004.

16


	Background on -Calculus
	Epistemic Predicate Full CTL* on Finite Control -Processes
	From EPCTL* on finite control -processes to QCTL* on trees
	Unsolvability of model-checking with external communication
	References

