
On the Completeness and Decidability

of Duration Calculus with Iteration∗

Dimitar P. Guelev and Dang Van Hung
Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences
e-mail: gelevdp@math.bas.bg

United Nations University
International Institute for Software Technology

P.O.Box 3058, Macau
Fax: +853 712 940, Phone: +853 712 930

e-mail: dvh@iist.unu.edu

Abstract

The extension of the Duration Calculus (DC ) by iteration, which is
also known as Kleene star, enables the straightforward specification of
repetitive behaviour in DC and facilitates the translation of design de-
scriptions between DC , timed regular expressions and timed automata.
In this paper we present axioms and a proof rule about iteration in DC .
We consider abstract-time DC and its extension by a state-variable bind-
ing existential quantifier known as higher-order DC (HDC ). We show
that the ω-complete proof systems for DC and HDC known from our ear-
lier work can be extended by our axioms and rule in various ways in order
to axiomatise iteration completely. The additions we propose include ei-
ther the proof rule or an induction axiom. We also present results on the
decidability of a subset of the extension DC ∗ of DC by iteration.

Keywords: real-time systems, formal methods, duration calculus, com-
pleteness, decidability.

Introduction

The Duration Calculus (DC ) was introduced by Zhou, Hoare and Ravn in
[ZHR91] as a logic to specify requirements on real-time systems. DC is a first
order classical interval-based real-time logic with one normal binary modality

∗This paper supercedes the paper “Completeness and Decidability of a Fragment of Dura-
tion Calculus with Iteration”, LNCS 1742, Springer-Verlag, 1999, pp. 139–150
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known as chop. It was developed by augmenting the real-time variant of Inter-
val Temporal Logic (ITL, [Mos85, Mos86]), with boolean expressions for state
and real-valued terms to denote state durations. DC has been used successfully
in many case studies such as [ZZ94, YWZP94, HZ95, DW96, WHCZ96, XH95,
Dan98, PD99]. We refer the reader to [HZ97] or the recent monograph [ZH04]
for a comprehensive introduction to DC .

DC was originally introduced for real time. Variants of DC have been
developed for discrete time, combinations of real time and discrete time [PD98,
He 99a] and abstract time [Gue98], where an arbitrary (commutative) linearly
ordered group can be the model of time. Real-time and discrete-time semantics
are best suited for applications. The more general abstract-time semantics gives
some technical advantages for theoretical studies.

Iteration, also known as Kleene star, was introduced to DC to facilitate the
reasoning about repetitive behaviour. Iteration is particularly important for the
description of the repetitive behaviour of timed automata in DC . It facilitates
the translation of designs between timed regular expressions, timed automata
and DC . DC ∗ stands for the extension of DC by iteration. In [DW96] we
developed a method for designing real-time hybrid systems from specifications
written using a subset of DC ∗ which consists of the so-called simple DC ∗ for-
mulas. Simple DC ∗ formulas are sufficient to describe the behaviour of timed
automata. One can reason about the correctness of designs in terms of the
semantics of DC ∗. However, it would be more practical and interesting to be
able to prove correctness syntactically. This requires the development of a proof
system for DC ∗.

A Hilbert-style proof system for DC (without iteration) was first presented
in [HZ92]. This proof system was shown to be complete for real-time DC relative
to real-time ITL. Validity in DC is not recursively enumerable and therefore no
finitary complete proof system for DC exists. A small non-recursively enumer-
able subset of DC was presented in [Gue05]. The ω-completeness of a system
with an ω-rule for abstract-time DC was shown in [Gue98]. In [Gue00c] it
was shown that by adding a few axioms and (finitary) rules the scope of the
ω-completeness of the system from [Gue98] can be extended to DC with quan-
tification over state as introduced in [Pan95] also known as Higher-order DC
(HDC or HODC, see [ZGZ00], where HDC has other useful features such as
neighbourhood values [ZL94] and super-dense chop [HZ96] which we omit here.)

In this paper we study the deductive power of three groups of axioms and a
rule for iteration in DC which we add to a variant of the ω-complete proof system
from [Gue98]. The first group of axioms has been obtained from the axioms
about Kleene star in Propositional Dynamic Logic (PDL, cf e.g. [AGM92]). It
contains an induction axiom. This group was presented in the precursor of this
paper [DG99]. Some examples which demonstrate the working of this group of
axioms can be found in [He 99b]. The second group contains an induction axiom
too. Unlike the first, its induction axiom is the instance about iteration of an
axiom about the general least fixed point operator µ which was introduced to
DC in [Pan95] and later studied in [Gue00b]. This axiom corresponds to Park’s
rule as known from the modal µ-calculus [Koz83]. This rule was formulated for
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Figure 1: A simple gas burner design

DC in [Pan95] too. The third group has a proof rule instead of an induction
axiom. Unlike the induction axioms, which are examples of a general pattern
occurring in the axiomatisation of Kleene star in other logics, that proof rule
refers to the DC -specific notion of state and its deductive power stems from the
finite variability requirement which is imposed on state in DC . The idea behind
this rule was earlier used in [Gue05] to express a finite variability requirement
on propositional temporal letters in DC .

We show that adding our third group of axioms, which includes the proof
rule, to the proof system from [Gue98] leads to an ω-complete proof system
for DC ∗. We show that iteration is definable in HDC and the correctness of
the definition can be proved in the extension of an ω-complete proof system
for HDC by the second group of axioms. We show that there is a straightfor-
ward correspondence between the induction axiom of that second group and the
induction axiom of the first group.

To illustrate the working of our axioms, we employ the well-known simple
gas burner example taken from [ZHR91]. The DC formula

S ⇀↽ 2(` > 60 ⇒ (20
∫

leak ≤ `)) (1)

specifies that a gas burner can be in the leak state for no more than one-twentieth
of the time in any time interval that is at least 1 minute long. Consider the
gas burner design described by the real-time automaton shown on Fig. 1. We
assume that leak is the initial state for the sake of simplicity. In this design
leak becomes detected within 1 second and leaks are separated by at least 30
seconds. This can be specified by the DC ∗ formula

D ⇀↽ ((ddleakee ∧ ` ≤ 1)_(ddnonleakee ∧ ` ≥ 30))∗ . (2)

In Section 6 we give a proof of D ⇒ S by means of our axioms about iteration.
Both S and D are simple DC ∗ formulas. Validity is decidable for such formu-

las. This implies that whether a design written in simple DC ∗ is implementable
can be decided algorithmically. Furthermore, the validity of implications from
simple DC ∗ formulas to DC formulas of certain forms such as linear duration
invariants (see [ZZYL94, LDZ97, DP98]) can be checked by a simple algorithm.

Structure of the paper

After a brief introduction to DC and its extensions by iteration and state vari-
able binding quantifier we present our axioms and rule about iteration and show

3



that adding some of these to a complete proof system for DC without iteration
leads to a complete proof system for DC ∗. Next we show that the proof rule
can be replaced by each of the proposed induction axioms in a complete proof
system for HDC , where iteration can also be defined explicitly. We illustrate
the working of the proof rule by giving derivations of the alternative induction
axioms and show how one of them can be derived using the other. We show
how the explicit definition of iteration in HDC can be derived from our axioms
about iteration and the state variable binding quantifier too. In a separate short
section we explain how one of the proposed induction axioms can be obtained by
translating a PDL induction axiom into DC . We derive some other interesting
DC ∗ theorems in our system to illustrate its working too, and use one of them
in a proof of D ⇒ S about the gas burner design. Finally, we discuss work on
the axiomatisation of iteration in related systems, summarise some decidability
results about the subset of DC ∗ known as simple DC ∗ which have been obtained
either independently or using connections with timed regular expressions and
timed automata, and make some concluding remarks.

1 Preliminaries on the duration calculus

Here follows the formal definition of DC .

1.1 Language

A DC vocabulary consists of constant symbols c, d, . . ., individual variables x, y, z, . . .,
state variables P, Q, . . ., temporal variables v, . . ., function symbols f, g, . . ., re-
lation symbols R, . . . and temporal propositional letters A,B, . . .. The constant
0, addition + equality = and the temporal variable ` are mandatory in DC
vocabularies.

Given a vocabulary, the definition of a DC language is essentially that of its
sets of state expressions S, terms t and formulas ϕ. These sets can be defined
by the following BNFs:

S ::= 0 | P | ¬S | S ∨ S
t ::= c | x | v | ∫ S | f(t, . . . , t)
ϕ ::= A | R(t, . . . , t) | ¬ϕ | (ϕ ∨ ϕ) | (ϕ_ϕ) | ∃xϕ

Terms and formulas with no occurrences of _ (chop), nor of temporal variables,
nor of

∫
, are called rigid.

The set of the variables which have free occurrences in a formula ϕ is denoted
by FV (ϕ). For sets of formulas Γ, FV (Γ) is defined as

⋃
ϕ∈Γ

FV (ϕ). The state

variables occurring freely in a formula ϕ are assumed to be in FV (ϕ) too. All
occurrences of state variables are free in DC , but not in HDC .

1.2 Semantics

Our completeness results about DC ∗ apply to the abstract semantics which
was defined for DC in [Gue98] after the semantics of ITL from [Dut95a]. The
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linearly ordered set of the reals is the model of time in the original semantics of
DC . The durations of real-time intervals are non-negative reals with ordinary
arithmetic on them in that semantics. In the abstract-time case the durations
form the monoid of the positive elements of some linearly ordered group [Sko00],
and the time domain is isomorphic to a possibly unbounded interval in the same
group. Here follow the detailed definitions.

Definition 1 A time domain is a linearly ordered set 〈T,≤〉.
〈R,≤〉, 〈Z,≤〉 and 〈N,≤〉 are examples of time domains.

Definition 2 Given a time domain 〈T,≤〉, we denote the set

{[t1, t2] : t1, t2 ∈ T, t1 ≤ t2}
of the closed and bounded intervals in T by I(T ).

We use ( and ) to mark open ends of time intervals, for instance, [t1, t2) stands
for the semi-open interval {t ∈ T : t1 ≤ t < t2}.
Definition 3 A duration domain is a system of the type 〈D, +(2), 0(0)〉 which
satisfies the axioms

(D1) x + (y + z) = (x + y) + z
(D2) x + 0 = 0 + x = x
(D3) x + y = x + z ⇒ y = z, x + z = y + z ⇒ x = y
(D4) x + y = 0 ⇒ x = y = 0
(D5) ∃z(x + z = y ∨ y + z = x), ∃z(z + x = y ∨ z + y = x)

For example, 〈R+, +, 0〉 and 〈N, +, 0〉 are duration domains, but 〈Z, +, 0〉 is not,
because it violates D4. The axioms D1-D5 do not imply commutativity of +
(cf. e.g. [Sko00]). However, to our knowledge, all practically relevant duration
domains are commutative. Adding commutativity to D1-D5 affects neither the
validity, nor the proofs of the results in this paper. In the sequel we assume
that duration domains are linearly ordered by the relation

x ≤ y ⇀↽ ∃z(x + z = y) . (3)

We regard ≤ as a mandatory symbol in DC with (3) being its definition.

Definition 4 Given a time domain 〈T,≤〉, and a duration domain 〈D, +, 0〉,
m : I(T ) → D is a measure if it satisfies the axioms

(M1) m([τ1, τ2]) = m([τ1, τ
′
2]) ⇒ τ2 = τ ′2

(M2) m([τ1, τ ]) + m([τ, τ2]) = m([τ1, τ2])
(M3) m([τ1, τ2]) = x + y ⇒ ∃τ(m([τ1, τ ]) = x).

Definition 5 An abstract DC frame is a tuple of the form F = 〈〈T,≤〉, 〈D, +, 0〉,m〉,
where 〈T,≤〉 is a time domain, 〈D,+, 0〉 is a duration domain, and m : I(T ) → D
is a measure.

The existence of a measure m : I(T ) → D clearly imposes restrictions on 〈T,≤〉.
Some linearly ordered sets do not admit such a measure for any duration domain.
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Definition 6 Given a DC vocabulary L and an abstract DC frame F = 〈〈T,≤〉, 〈D, +, 0〉, m〉,
an interpretation of L into F is a mapping I of L which satisfies the following
conditions:

I(c), I(x) ∈ D for constant symbols c and individual variables x;
I(f) : Dn → D for n-place function symbols f ;
I(v) : I(T ) → D for temporal variables v;
I(R) : Dn → {0, 1} for n-place relation symbols R;
I(P ) : T → {0, 1} for state variables P ;
I(A) : I(T ) → {0, 1} for temporal propositional letters A.
I(0) = 0, I(+) = +, I(=) is = and I(`) = m.

The following condition, known as finite variability of state, is imposed on the
interpretations of state variables:

For every [τ1, τ2] ∈ I(T ) such that τ1 < τ2, and every state variable P
there exist τ ′1, . . . , τ

′
n ∈ T such that τ1 = τ ′1 < . . . < τ ′n = τ2 and I(P )

is constant on the semi-open intervals [τ ′i , τ
′
i+1), i = 1, . . . , n− 1.

Finite variability can be defined as piece-wise continuity of I(P ) in the real-time
case. This is less restrictive but leads to the same notion of validity in DC .

Definition 7 Given DC vocabulary L, a DC abstract model for L is a tuple of
the form M = 〈F, I〉 where F is a DC abstract frame, and I is an interpretation
of L into F .

Definition 8 Let s be in some DC vocabulary L. Interpretations I and J of L
into the same abstract frame are said to s-agree, if I(s′) = J(s′) for all s′ in L,
except possibly s.

Given intervals σ1 and σ2 in the same time domain, we denote σ1 ∪ σ2 by
σ1

_σ2, in case maxσ1 = min σ2. This use of _ in our meta-language is related
but formally different from its use in DC formulas. Since _ is associative, we
omit parentheses in expressions with consecutive occurrences of _.

Definition 9 Let 〈F, I〉 be an abstract DC model, F = 〈〈T,≤〉, 〈D, +, 0〉,m〉
and τ ∈ T . Then the values Iτ (S) of state expressions S in the vocabulary of I
are defined by the clauses:
Iτ (0) = 0
Iτ (P ) = I(P )(τ) for state variables P
Iτ (¬S) = 1− Iτ (S)
Iτ (S1 ∨ S2) = max(Iτ (S1), Iτ (S2))

Given an interval σ ∈ I(T ), the values Iσ(t) of terms t are defined by the
clauses:
Iσ(c) = I(c) for constant symbols c,
Iσ(x) = I(x) for individual variables x,
Iσ(v) = I(v)(σ) for temporal variables v,

Iσ(
∫

S) =
max σ∫
min σ

Iτ (S)dτ for state expressions S,

Iσ(f(t1, . . . , tn)) = I(f)(Iσ(t1), . . . , Iσ(tn)) for n-place function symbols f .
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To define
max σ∫
min σ

Iτ (S)dτ , let n < ω and σ1, . . . , σn ∈ I(T) be such that σ =

σ1
_. . . _σn, and Iτ (S) is constant for τ ∈ [minσi, maxσi), i = 1, . . . , n. Then

max σ∫
min σ

Iτ (S)dτ =
∑

i=1,...,n, Imin σi
(S)=1

m(σi) .

Clearly, this value does not depend on the precise choice of σ1, . . . , σn.
The modelling relation |= is defined by the clauses:

〈F, I〉, σ 6|= ⊥
〈F, I〉, σ |= A iff I(A)(σ) = 1 for temporal propositional letters A
〈F, I〉, σ |= R(t1, . . . , tn) iff I(R)(Iσ(t1), . . . , Iσ(tn)) = 1
〈F, I〉, σ |= ¬ϕ iff 〈F, I〉, σ 6|= ϕ
〈F, I〉, σ |= (ϕ ∨ ψ) iff either 〈F, I〉, σ |= ϕ or 〈F, I〉, σ |= ψ
〈F, I〉, σ |= (ϕ_ψ) iff 〈F, I〉, σ1 |= ϕ and 〈F, I〉, σ2 |= ψ

for some σ1, σ2 ∈ I(TF ) such that σ1
_σ2 = σ

〈F, I〉, σ |= ∃xϕ iff 〈F, J〉, σ |= ϕ for some I which x-agrees with J

Sometimes it is convenient to work with the set of intervals which satisfy a
formula. Let 〈F, I〉 be a DC model where F = 〈〈T,≤〉, 〈D, +, 0〉, m〉. Then we
denote the set

{σ ∈ I(T ) : 〈F, I〉, σ |= ϕ}
by Ĩ(ϕ). Let X, Y ⊆ I(T ). Then X_Y stands for the set

{σ1
_σ2 : σ1 ∈ X, σ2 ∈ Y, max σ1 = min σ2}.

1.3 Abbreviations

The customary infix notation for +, ≤ and = is used in DC . >, ∧, ⇒ and
⇔, ∀, 6=, ≥, < and > are used in the usual way. We assume that _ binds less
tightly than boolean connectives. Since _ is associative, we omit parentheses
in formulas with consecutive occurrences of _. The following abbreviations are
generally accepted in DC :

1 ⇀↽ ¬0
ddSee ⇀↽

∫
S = ` ∧ ` 6= 0

3ϕ ⇀↽ >_ϕ_> (there is a subinterval for which ϕ holds)
2ϕ ⇀↽ ¬3¬ϕ (for all subintervals ϕ holds)
ϕ0 ⇀↽ ` = 0
ϕk ⇀↽ ϕ_. . . _ϕ︸ ︷︷ ︸

k times

for k > 0

The temporal variable ` is often introduced as an abbreviation or
∫

1. As usual,
we write nt for t + . . . + t︸ ︷︷ ︸

n times

.
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1.4 Iteration and quantification over state in DC

DC is extended by iteration and quantification over state by allowing formulas
of the forms ϕ∗ and ∃Pϕ where P is a state variable, respectively. The relation
|= is defined on such formulas by the clauses:
〈F, I〉, σ |= ϕ∗ iff either m(σ) = 0, or there exist n < ω and σ1, . . . , σn ∈ I(TF )

such that σ1
_. . . _σn = σ and 〈F, I〉, σi |= ϕ for i = 1, . . . , n,

〈F, I〉, σ |= ∃Pϕ iff 〈F, J〉, σ |= ϕ for some I which P -agrees with J .
Iteration ∗ binds more tightly than _ and the propositional connectives.

1.5 Proof systems for DC

Here we present the relatively complete proof system for DC from [HZ92] and
the ω-complete system from [Gue98], because our new axioms and rule about
iteration are supposed to work as additions to these systems. Next, we give
the axioms and rules about quantification over state in HDC . We use them
together with our axioms about iteration to prove the correctness of an explicit
definition of iteration in HDC .

The Hilbert-style proof system for DC from [HZ92] includes a proof system
for first order logic with equality (cf. e.g. [Sho67]), axioms and rules for ITL
(cf. e.g. [Dut95a]) and some DC -specific axioms and rules ([HZ92]). We assume
that the readers are familiar with Hilbert-style proof systems for first order logic.
Here follow the ITL- and DC -specific axioms and rules.

1.5.1 Axioms and rules for ITL

(A1) (ϕ_ψ) ∧ ¬(χ_ψ) ⇒ (ϕ ∧ ¬χ_ψ), (ϕ_ψ) ∧ ¬(ϕ_χ) ⇒ (ϕ_ψ ∧ ¬χ)
(A2) ((ϕ_ψ)_χ) ⇔ (ϕ_(ψ_χ))
(R) (ϕ_ψ) ⇒ ϕ, (ψ_ϕ) ⇒ ϕ if ϕ is rigid
(B) (∃xϕ_ψ) ⇒ ∃x(ϕ_ψ), (ψ_∃xϕ) ⇒ ∃x(ψ_ϕ) if x 6∈ FV (ψ)
(L1) (` = x_ϕ) ⇒ ¬(` = x_¬ϕ), (ϕ_` = x) ⇒ ¬(¬ϕ_` = x)
(L2) ` = x + y ⇔ (` = x_` = y)
(L3) ϕ ⇒ (` = 0_ϕ), ϕ ⇒ (ϕ_` = 0)

(N) ϕ

¬(¬ϕ_ψ)
,

ϕ

¬(ψ_¬ϕ)

(Mono) ϕ ⇒ ψ

(ϕ_χ) ⇒ (ψ_χ)
,

ϕ ⇒ ψ

(χ_ϕ) ⇒ (χ_ψ)
The presence of the modality _ and flexible symbols in ITL brings a restric-

tion on the use of first order logic rules and axioms which involve substitution:
[t/x]ϕ is allowed in proofs only if no variable in t becomes bound due to the
substitution, and either t is rigid or _ does not occur in ϕ. It is known that the
above proof system for ITL is complete with respect to abstract-time models
[Dut95a].
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1.5.2 DC axioms and rules

(DC1)
∫

0 = 0
(DC2)

∫
1 = `

(DC3)
∫

S ≥ 0
(DC4)

∫
S1 +

∫
S2 =

∫
(S1 ∨ S2) +

∫
(S1 ∧ S2)

(DC5) (
∫

S = x_
∫

S = y) ⇒ ∫
S = x + y

(DC6)
∫

S1 =
∫

S2 if S1 and S2 are propositionally equivalent
(IR1) [` = 0/A]ϕ ϕ ⇒ [A ∨ (A_ddSee ∨ dd¬See)/A]ϕ

[>/A]ϕ
(IR2) [` = 0/A]ϕ ϕ ⇒ [A ∨ (ddSee ∨ dd¬See_A)/A]ϕ

[>/A]ϕ
(ω) Γ ` (ddSee ∨ dd¬See)k ⇒ ϕ for all k < ω

Γ ` ϕ
The extension of the proof system for ITL by the axioms DC1-DC6 and the

rules IR1 and IR2 is complete with respect to the real time based frame relative
to the class of ITL sentences which are valid in this frame [HZ92]. Replacing
IR1 and IR2 by the infinitary rule ω leads to an ω-complete system for DC
with respect to the class of the abstract time based models [Gue98], which are
considered in this paper. The induction rules IR1 and IR2 are derivable in the
system which consists of the ITL axioms and rules, DC1-DC6 and the infinitary
rule ω. Despite that, IR1 and IR2 are preferable for practical purposes because
they are finitary. Note that DC3 is redundant in our setting.

The rule ω is part of an ω-complete proof system, and ω-completeness is the
equivalence between the consistency and the satisfiability of sets of formulas.
Consistency means the impossibility to derive ⊥ in the proof system from the
given set of formulas, which may be infinite. Since DC is not a compact logic,
derivability from infinite sets and derivability from a finite sets differ substan-
tially. That is why we put down the rule ω in the form

Γ ` . . .

Γ ` . . .
,

where Γ stands for a set of formulas, which may as well be infinite. We assume
that other proof rules included in the ω-complete proof system have this form
too. For instance, we adopt the first order logic left ∃-introduction rule in the
form
(∃l)

Γ ` ϕ ⇒ ψ

Γ ` ∃xϕ ⇒ ψ
, where x 6∈ FV (Γ), FV (ψ).

Semantically, Γ ` ϕ corresponds to (
∧

Γ) ⇒ ϕ, which may be impossible to
write as a single DC formula for infinite Γ.

1.5.3 Axioms about quantification over state in DC

(∃s
r) [S/P ]ϕ ⇒ ∃Pϕ where S is a state expression

(Bs) (∃Pϕ_ψ) ⇒ ∃P (ϕ_ψ), (ψ_∃Pϕ) ⇒ ∃P (ψ_ϕ) if P 6∈ FV (ψ)
(_s) x = 0 ∨ ` ≤ x ∨ ∃P (ddS1 ⇔ P ee ∧ ` = x_ddS2 ⇔ P ee)
(∃s

l )
Γ ` ϕ ⇒ ψ

Γ ` ∃Pϕ ⇒ ψ
, where P 6∈ FV (Γ), FV (ψ).
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The meanings of Bs, ∃s
r and ∃s

l are self-explanatory. The axiom _s states
that, given two states S1 and S2 and a chopping point which is internal to the
reference interval, there is a state P which equals S1 on the left of the chopping
point and S2 on the right. Recall here that our definition of finite variability
implies that states are right-continuous.

1.5.4 ω-Completeness of DC and HDC

A set Γ of DC (HDC ) formulas is called consistent, if ⊥ cannot be derived from
Γ, and theorems of the above proof system for DC (HDC ) using only the rules
MP and ω. Consistency in DC implies consistency in HDC , because it is a
conservative extension of DC . The ω-completeness theorem for abstract-time
DC is as follows:

Theorem 1 ([Gue98]) Let Γ be a consistent set of DC formulas in some vo-
cabulary L. Then there exists an abstract model M for L and an interval σ in
its time domain such that M, σ |= ϕ for all ϕ ∈ Γ.

The rule ω facilitates the use of maximal consistent sets of formulas in the proof
of Theorem 1. We use such sets to prove our completeness results for DC ∗ and
therefore the proof systems we consider are extensions of the system including
ω. Theorem 1 applies to the proof system for HDC which includes the axioms
from Section 1.5.3 too [Gue00c].

2 Axioms and a rule about iteration in DC

We combine the axioms DC ∗1-DC ∗4 and the rule DC ∗5 below into three groups.
All the groups include the axioms DC ∗1 and DC ∗2. Each group includes one
of DC ∗3, DC ∗4 and DC ∗5.
(DC ∗1) ` = 0 ⇒ ϕ∗

(DC ∗2) (ϕ∗ _ϕ) ⇒ ϕ∗

The meanings of DC∗1 and DC∗2 are straightforward.
(DC ∗3) (ϕ∗ ∧ ψ_>) ⇒ (ψ ∧ ` = 0_>) ∨ (((ϕ∗ ∧ ¬ψ_ϕ) ∧ ψ)_>),

To understand the meaning of DC ∗3, assume that some initial subinterval σ′

of the reference interval σ satisfies ψ and ϕ∗. Then σ′ can be represented as
σ′1

_. . . _σ′n where n < ω and all the intervals π0 = [min σ, min σ] = [min σ′, min σ′],
πk = σ′1

_. . . _σ′k, k = 1, . . . , n, satisfy ϕ∗, and πn satisfies ψ as well. Now de-
pending on whether the least k such that πk satisfies ψ is 0 or not, σ satisfies
either the left or the right disjunctive member after ⇒ in DC ∗3.
(DC ∗4) 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ (ϕ∗ ⇒ ψ),

DC ∗4 is an expression of the fact that Ĩ(ϕ∗) is the least set of time intervals
X ⊆ I(T ) which satisfies the inclusion

Ĩ(` = 0) ∪ Ĩ(ϕ)_X ⊆ X.

To put down the rule DC ∗5, we need the formula

f(ϕ,Q) ⇀↽ ¬((>_ddQee) ∨ ` = 0_dd¬Qee ∧ ¬ϕ_(ddQee_>) ∨ ` = 0).
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This formula means that every maximal non-trivial subinterval of the reference
interval which satisfies dd¬Qee satisfies ϕ too. Let

g(ϕ,P ) ⇀↽ f(ϕ,P ) ∧ f(ϕ,¬P ).

This formula means that all maximal non-trivial subintervals of the reference
interval σ which satisfy either ddP ee or dd¬P ee satisfy ϕ too. Since these intervals
form a finite partition of σ, if σ satisfies g(ϕ,P ), then it also satisfies ϕ∗. Here
follows the rule itself:
(DC ∗5) Γ ` (α_g(ϕ,P )_β) ⇒ ψ

Γ ` (α_ϕ∗_β) ⇒ ψ
, where P 6∈ FV (Γ ∪ {ϕ,ψ, α, β}).

To understand DC ∗5, consider the simpler rule

Γ ` g(ϕ,P ) ⇒ ψ

Γ ` ϕ∗ ⇒ ψ
, where P 6∈ FV (Γ ∪ {ϕ,ψ}),

which can be derived from the instance of DC ∗5 with α and β both being ` = 0.
As mentioned above, if a reference interval σ satisfies g(ϕ,P ), then the time
points at which P changes its value inside σ partition it into subintervals which
satisfy ϕ, and therefore σ itself satisfies ϕ∗. Given a concrete interpretation of
P , the points at which P changes its value define a concrete finite partition of
σ, whereas for σ to satisfy ϕ∗ we just need the existence of such a partition.
The role of the side condition P 6∈ FV (Γ ∪ {ϕ,ψ}) is to handle this. This side
condition implies that the validity of

g(ϕ,P ) ⇒ ψ (4)

is equivalent to the validity of

∃Pg(ϕ, P ) ⇒ ψ . (5)

Putting P in the scope of ∃ gives exactly what needed, because σ satisfies ϕ∗

iff there exists a finite partition of σ into subintervals each of which satisfies ϕ,
and a fresh state variable P can always be chosen to change its value exactly
at the dividing points of such a finite partition. Hence the antecedent of (5) is
equivalent to ϕ∗. By putting down a proof rule instead of the equivalence

∃Pg(ϕ, P ) ⇔ ϕ∗ , (6)

we axiomatise iteration in DC without resorting to the state variable binding
quantifier. Below we show how (6) can be proved in the system for HDC from
Section 1 using the axioms DC ∗1, DC ∗2 and DC ∗4 about iteration.

Note that the scope of the soundness of DC∗1 − DC∗4 is, in fact, the ex-
tension ITL∗ of ITL by iteration, because these axioms involve no DC -specific
constructs.

11



3 Completeness of DC ∗1, DC ∗2 and DC ∗5 for it-
eration in abstract-time DC ∗

The ω-completeness of the proof system for abstract-time DC which includes the
axioms and the rule ω from Section 1.5.2 can be proved following the example
from [Gue98], which on its turn builds on [Dut95a]. In this section we prove
that adding DC ∗1, DC ∗2 and DC ∗5 to this system leads to an ω-complete
proof system for abstract-time DC ∗. The proof involves a Lindenbaum lemma
to extend the given consistent set of formulas Γ0 to a maximal consistent set Γ
with appropriately chosen witnesses, the construction of a canonical model M
from Γ and a truth lemma to prove that a distinguished interval in M satisfies
all the formulas from Γ and, consequently, from Γ0. The presence of iteration
and DC ∗1, DC ∗2 and DC ∗5 affects mostly the Lindenbaum lemma and the
truth lemma. The rest of the completeness proof is much like in [Gue98] and
therefore we skip most of the details.

3.1 Maximal consistent sets and the Lindenbaum lemma
for DC ∗

The use of a maximal consistent set of formulas in the completeness proof for
a quantified logic involves Henkin constants also known as witnesses for the
existential formulas in the set. In the case of first order predicate logic the
only existential formulas are those in which the quantifier binds an individual
variable. A constant c is called a witness for the existential formula ∃xϕ in a
set of formulas Γ if ∃xϕ ⇒ [c/x]ϕ ∈ Γ. Along with the first order quantifier
∃, DC ∗ implicitly involves two more kinds of existential formulas. The finite
variability requirement on state means that DC models validate the formula
(∃k < ω)(ddSee ∨ dd¬See)k for every state expression S. The definition (6) of
iteration in HDC involves the quantifier prefix ∃P . We use maximal consistent
sets which have witnesses for such formulas, despite that they do not occur in
DC ∗ languages explicitly. These witnesses are freely occurring state variables
and therefore can be regarded as constants, and formulas of the form (ddSee ∨
dd¬See)k for concrete k, respectively.

Definition 10 Let C be a set of constants and state variables. A set of DC ∗

formulas Γ written in some vocabulary L has witnesses in C if for every existen-
tial formula ∃xϕ ∈ Γ there is a constant c ∈ C such that [c/x]ϕ ∈ Γ, for every
state expression S written in L there is a k < ω such that (ddSee ∨ dd¬See)k ∈ Γ
and for every formula of the form (α_ϕ∗_β) ∈ Γ there is a state variable P
such that (α_g(ϕ,P )_β) ∈ Γ.

Lemma 1 (Lindenbaum lemma) Let L be a countable DC vocabulary and
Γ0 be a consistent set of DC ∗ formulas in this vocabulary. Let a set C consist of
countably many constant symbols and countably many state variables such that
C ∩ L = ∅. Then there exists a maximal consistent set Γ of DC ∗ formulas in
the vocabulary L ∪ C which has witnesses in C.

12



Proof: This proof follows a general pattern known from numerous modal logics.
Let the set of all the DC ∗ formulas written in the vocabulary L ∪ C be

{ϕi : i < ω} and the set of all the state expressions from L∪C be {Sj : j < ω}.
We define the sequence Γk, k < ω of consistent sets of such formulas by induction
on k. Γ0 is as given in the theorem. Since Γ0 consists of formulas in L and we
obtain Γk+1 by adding finitely many formulas written in L ∪ C to Γk for each
k, we can assume that there are both constants and state variables in C which
do not occur in Γk for all k. To define the sequence Γk, k < ω, we use a pair
of functions π1, π2 : ω → ω such that for every pair i, j < ω there is a k < ω
satisfying π1(k) = i and π2(k) = j. Here follow the definition of Γk for k > 0:

Assume that Γk has been defined for some k < ω and let i = π1(k), j = π2(k).
If Γk ∪ {ϕi} is not consistent, then Γk+1 = Γk. Otherwise we consider the
following cases:

1. ϕi is the existential formula ∃xψ. Then we choose a constant c ∈ C such
that c does not occur in the formulas from Γk and put Γk+1 = Γk∪{ϕi, [c/x]ψ}.
Assume that Γk+1 is not consistent for the sake of contradiction. Then we have
Γk,∃xψ ` ¬[c/x]ψ. Since c occurs neither in Γk, nor in ψ, replacing it by a fresh
individual variable y will give Γk, ∃xψ ` ¬[y/x]ψ again. This, by an application
of ∃l, will bring Γk, ∃xψ ` ∀y¬[y/x]ψ, which is a contradiction.

2. ϕi is (α_ψ∗_β). Then we choose a state variable P ∈ C which does not
occur in Γk ∪ {ϕi} and put Γk+1 = Γk ∪ {ϕi, (α_g(ψ, P )_β)}. Assuming that
Γk, ϕi ` (α_g(ψ, P )_β) ⇒ ⊥ brings a contradiction by an application of the
rule DC ∗5. Hence Γk+1 is consistent.

3. ϕi is >. Then we choose a l < ω such that Γk ∪ {(ddSjee ∨ dd¬Sjee)l} is
consistent and put Γk+1 = Γk ∪ {(ddSjee ∨ dd¬Sjee)l}. Such an l exists because
assuming that Γk ` ¬(ddSjee ∨ dd¬Sjee)l for all l < ω implies that Γk itself is
inconsistent by an application of the infinitary rule ω.

4. ϕi is of none of the above forms. Then we put Γk+1 = Γk ∪ {ϕi}.
Now let us prove that the union Γ =

⋃
k<ω

Γk is consistent, has witnesses in

L ∪ C and either ϕ ∈ Γ or ¬ϕ ∈ Γ for every formula ϕ written in L ∪ C, which
implies that Γ is maximal.

To prove that Γ is maximal, assume that ϕ is a formula in L∪C and ϕ,¬ϕ 6∈ Γ
for the sake of contradiction. Let k1, k2 < ω be such that ϕ is ϕπ1(k1) and ¬ϕ
is ϕπ1(k2). Then, by the definition of the sets Γk, Γmax k1,k2 is inconsistent with
both ϕ and ¬ϕ, which is a contradiction.

The cases 1-3 of the inductive definition of the sequence Γk clearly imply
that Γ has witnesses in C.

Since ⊥ 6∈ Γk for all k, ⊥ 6∈ Γ as well. Hence, to establish the consistency of
Γ, we just need to prove that Γ contains all the theorems of our proof system
written in the vocabulary L ∪ C and is closed under the rules MP and ω.
The only non-trivial part of this proof is about the closedness under ω. Let
(ddSee∨dd¬See)l ⇒ ϕ ∈ Γ for all l < ω. Let S be Sj , k < ω be such that π2(k) = j
and ϕπ1(k) is >. Then there is an l < ω such that (ddSjee ∨ dd¬Sjee)l ∈ Γk+1 by
the definition of this set, whence ϕ ∈ Γ. 2

13



We intend to use the set Γ whose existence was shown in Lemma 1 to con-
struct a model M for the vocabulary L ∪ C so that M satisfies the formulas
from Γ at a distinguished interval σ. To define the interpretations of the sym-
bols from L ∪ C at the subintervals of σ, we intend to use sets of formulas of
the form

{ϕ : ((` = c′_ϕ) ∧ ` = c′′_>) ∈ Γ} (7)

for appropriately chosen constants c′, c′′ ∈ C.

Lemma 2 Let Γ be a maximal consistent set of formulas written in the vocabu-
lary L∪C and c′ and c′′ be constants from C such that c′ ≤ c′′ and c′′ ≤ ` ∈ Γ.
Then (7) is a maximal consistent set in the vocabulary L∪C which has witnesses
in C.

Proof: Let us denote the set (7) by ∆. For every formula ϕ either ((` =
c′_ϕ) ∧ ` = c′′_>) ∈ Γ or ((` = c′_¬ϕ) ∧ ` = c′′_>) ∈ Γ. Hence for every
ϕ either ϕ ∈ ∆ or ¬ϕ ∈ ∆ and therefore ∆ is maximal. To realise that ∆
has witnesses in C, note that ∃xϕ ∈ ∆ is equivalent to ∃x((` = c′_ϕ) ∧ ` =
c′′_>) ∈ Γ, (α_ϕ∗_β) ∈ ∆ is equivalent to ((` = c′_α)_ϕ∗_(β_` = c′′′)) ∈ Γ
for some c′′′ ∈ C such that c′′ + c′′′ = ` ∈ Γ, and (ddSee ∨ dd¬See)l ∈ Γ implies
(ddSee ∨ dd¬See)l′ ∈ ∆ for some l′ ≤ l. ⊥ 6∈ ∆ and therefore the consistency of ∆
follows from its closedness under the proof rules, which is established like in the
proof of Lemma 1. 2

3.2 The canonical construction for abstract-time DC ∗

Let L and C be as in the previous section and Γ be a maximal consistent set of
formulas in the vocabulary L ∪ C with witnesses in C. Let

c1 ≡ c2 iff c1 = c2 ∈ Γ

for constants c1, c2 ∈ C. Clearly, ≡ is an equivalence relation on the constants
from C. Let [c] denote the ≡-equivalence class which contains c for each constant
c ∈ C. Let D be the set

{[c] : c is a constant in C}.
Let T be the set

{[c] : c ∈ C, c ≤ ` ∈ Γ}.
Let

[c′] ≤ [c′′] iff c′ ≤ c′′ ∈ Γ.

Clearly, ≤ is a linear ordering on T and 〈T,≤〉 is a time domain. Let the
mapping I be defined on the vocabulary L ∪ C by the clauses:

1. I(x), I(d) ∈ D for individual variables x and constants d, and

I(x) = {c ∈ C : c = x ∈ Γ}, I(d) = {c ∈ C : c = d ∈ Γ}.

14



2. I(f) : Dn → D for n-ary function symbols f and

I(f)([c1], . . . , [cn]) = {c ∈ C : c = f(c1, . . . , cn) ∈ Γ}.

3. I(R) : Dn → D for n-ary relation symbols R and

I(R)([c1], . . . , [cn]) = 1 iff R(c1, . . . , cn) ∈ Γ.

4. I(v) : I(T ) → D for temporal variables v and

I(v)([[c′], [c′′]]) = {c ∈ C : ((` = c′_v = c) ∧ ` = c′′_>) ∈ Γ}.

5. I(A) : I(T ) → {0, 1} for temporal propositional letters A and

I(A)([[c′], [c′′]]) = 1 iff ((` = c′_A) ∧ ` = c′′_>) ∈ Γ.

6. I(P ) : (T ) → {0, 1} for state variables P and

I(P )([c′]) = 1 iff (` = c′_ddP ee_>) ∈ Γ.

A lengthy but otherwise straighforward argument, which is standard for
canonical models, shows that the above definitions are correct, 〈D, I(0), I(+)〉
is a duration domain, I(`) is a measure function from I(T ) to D, F = 〈〈T,≤
〉, 〈D, I(0), I(+)〉, I(`)〉 is an abstract DC frame and I is a DC interpretation of
L∪C into F , which means that M = 〈F, I〉 is an abstract DC model for L∪C.
What makes M relevant is the following lemma.

Lemma 3 (Truth lemma) Let σ ∈ I(T ) and σ = [[c′], [c′′]] for some c′, c′′ ∈
C. Let ∆ = {ϕ : ((` = c′_ϕ) ∧ ` = c′′_>) ∈ Γ}. Then

Iσ(t) = {c ∈ C : t = c ∈ ∆} and M,σ |= ϕ iff ϕ ∈ ∆

for every term t and every formula ϕ written in the vocabulary L ∪ C.

Proof: The proof about terms is by induction on their construction. The proof
about formulas is by induction on the lexicographical ordering of the pairs
〈|ϕ|∗, |ϕ|〉, where |ϕ| denotes the length of ϕ and |ϕ|∗ = max{|ψ| : ψ∗ is a subformula of ϕ}.
Since we are focussing on iteration in this paper, we do only the induction step
about ϕ of the form ψ∗.

Let ψ∗ ∈ ∆. ∆ has witnesses in C by Lemma 2. This implies that there is
a state variable P ∈ C such that g(ψ, P ) ∈ ∆ and there is an l < ω such that
(ddP ee ∨ dd¬P ee)k ∈ ∆. Let k be chosen to be the least one with this property.
Then we have (ddQ1ee_. . . _ddQkee) ∈ ∆ where Q1, . . . , Qk ∈ {P,¬P} and Qi is P
iff Qi−1 is ¬P for i ≥ 2. Together with g(ψ, P ) ∈ ∆, this implies that ψk ∈ ∆,
which, by the induction hypothesis, implies that M,σ |= ψk and, consequently,
M, σ |= ψ∗.

Now let M,σ |= ψ∗. Then M,σ |= ψk for some k < ω, which implies that
(` = 0_ψk) ∈ ∆ for that k. This implies ψ∗ ∈ ∆ by one application of DC ∗1
and k applications of DC ∗2. 2
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3.3 The completeness theorem

Now we are ready to prove the ω-completeness of our proof system for abstract-
time DC ∗.

Theorem 2 Let Γ0 be a consistent set of DC ∗ formulas in the DC vocabulary
L. Then there is an abstract DC model M0 for L and an interval σ in the time
domain of M0 such that M0, σ |= ϕ for all ϕ ∈ Γ0.

Proof: According to Lemma 1, Γ0 can be extended to a maximal consistent set
Γ of formulas in the extension L ∪ C by a set C consisting of countably many
fresh individual constants and countably many fresh state variables. The set Γ
can be constructed to have witnesses in C. Now consider the model M = 〈F, I〉
which was constructed from such a set Γ in Section 3.2. Let c′, c′′ ∈ C satisfy the
conditions c′ = 0, c′′ = ` ∈ Γ. Then c′ ≤ c′′ ∈ Γ and the set (7) is Γ itself. Then
Lemma 3 implies that M, [[c′], [c′′]] |= ϕ for all ϕ ∈ Γ and, in particular, for all
ϕ ∈ Γ0. To obtain M0 from M , one only needs to replace I by its restriction to
the vocabulary L. 2

4 The interderivability between DC ∗3, DC ∗4 and
DC ∗5

As seen in the previous section, the proof rule DC ∗5 is implicitly related to the
state variable binding existential quantifier in DC ∗. The key ingredient in this
rule is the formula g(ϕ,P ). In this section we first show that in HDC , which
includes this quantifier, one can prove the correctness of an explicit definition
for iteration involving this formula by means of the HDC -specific axioms and
rules from Section 1.5.3 and the group of axioms about iteration which consists
of DC ∗1, DC ∗2 and DC ∗4. This means that DC ∗5 can be regarded as a derived
rule in the extension of the proof system for HDC by the axioms DC ∗1, DC ∗2
and DC ∗4 about iteration. We also prove that DC ∗4 is derivable from DC ∗3
in the proof system for DC without quantification over state. Furthermore,
we prove that DC ∗3 and DC ∗4 are derivable in the the proof system for DC
which has the axioms DC ∗1, DC ∗2 and the rule DC ∗5 about iteration. Taken
apart from the other axioms about iteration, DC ∗4 is weaker than DC ∗3. 5dvh
change We give no proof of DC ∗3 in a system with DC ∗4 being as the induction
axiom.

In the deductions below we give in detail only the steps which involve
iteration- and state-variable-quantifier-specific axioms and rules. We skip the
detail on other steps and mark them by “DC” to indicate that they can be
made in DC with neither iteration, nor state variable quantifier.

Proposition 1 Let P 6∈ FV (ϕ). Then

∃Pg(ϕ, P ) ⇔ ϕ∗
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is provable in the extension of the proof system for HDC by the axioms DC ∗1,
DC ∗2 and DC ∗4, and also in the extension of this proof system by DC ∗1, DC ∗2
and DC ∗3

Proof: Here follow deductions of ϕ∗ ⇒ ∃Pg(ϕ, P ) and ∃Pg(ϕ,P ) ⇒ ϕ∗ involv-
ing DC ∗4.
ϕ∗ ⇒ ∃Pg(ϕ,P ) :

1 (g(ϕ, P )_ϕ) ⇒
⇒ g(ϕ,P ) ∨ ϕ ∨ ∃x(x 6= 0 ∧ x < ` ∧ (g(ϕ,P ) ∧ ` = x_ϕ)) DC

2 ϕ ⇒ ` = 0 ∨ (dd1ee ∧ ϕ) DC
3 ` = 0 ⇒ g(ϕ,P ) DC
4 dd1ee ∧ ϕ ⇒ ∃P (ddP ee ∧ ϕ) ∃s

5 ddP ee ∧ ϕ ⇒ g(ϕ,P ) DC
6 ∃P (ddP ee ∧ ϕ) ⇒ ∃Pg(ϕ,P ) 5, ∃s

r, ∃s
l

7 ϕ ⇒ g(ϕ,P ) ∨ ∃Pg(ϕ,P ) 2-4, 6, DC
8 x 6= 0 ∧ x < ` ⇒ ∃Q(` = x ∧ ddQ ⇔ P ee_ddQ ⇔ 0ee) _s

9 x 6= 0 ∧ x < ` ⇒ ∃Q(` = x ∧ ddQ ⇔ P ee_ddQ ⇔ 1ee) _s

10 x 6= ` ∧ (g(ϕ,P ) ∧ ` = x_ϕ) ⇒(
(g(ϕ,P ) ∧ (>_ddP ee) ∧ ` = x_ϕ)∨
(g(ϕ,P ) ∧ (>_dd¬P ee) ∧ ` = x_ϕ)

)
DC

11
(

(` = x ∧ ddQ ⇔ P ee_ddQ ⇔ 0ee)∧
(g(ϕ,P ) ∧ (>_ddP ee) ∧ ` = x_ϕ)

)
⇒

⇒ (g(ϕ,Q) ∧ (>_ddQee)_ϕ ∧ dd¬Qee) DC
12 (g(ϕ, Q) ∧ (>_ddQee)_ϕ ∧ dd¬Qee) ⇒ g(ϕ,Q) DC

13
(

(` = x ∧ ddQ ⇔ P ee_ddQ ⇔ 0ee)∧
(g(ϕ,P ) ∧ (>_ddP ee) ∧ ` = x_ϕ)

)
⇒ ∃Qg(ϕ,Q) 11, 12, DC , ∃s

r

14 ∃Q(` = x ∧ ddQ ⇔ P ee_ddQ ⇔ 0ee) ⇒
⇒ ((g(ϕ, P ) ∧ (>_ddP ee) ∧ ` = x_ϕ) ⇒ ∃Qg(ϕ,Q)) 13, DC

15 x 6= 0 ∧ x < ` ∧ (g(ϕ,P ) ∧ (>_ddP ee) ∧ ` = x_ϕ) ⇒
⇒ ∃Qg(ϕ, Q) 8, 14, DC

16 x 6= 0 ∧ x < ` ∧ (g(ϕ,P ) ∧ (>_dd¬P ee) ∧ ` = x_ϕ) ⇒ like 15, but
⇒ ∃Qg(ϕ, Q) using 9 instead of 8

17 x 6= 0 ∧ x < ` ∧ (g(ϕ,P ) ∧ ` = x_ϕ) ⇒ ∃Qg(ϕ,Q) 10, 15, 16, DC
18 ∃x(x 6= 0 ∧ x < ` ∧ (g(ϕ,P ) ∧ ` = x_ϕ)) ⇒ ∃Qg(ϕ,Q) 17, DC
19 (g(ϕ, P )_ϕ) ⇒ g(ϕ,P ) ∨ ∃Pg(ϕ,P ) ∨ ∃Qg(ϕ,Q) 1, 7, 18, DC
20 ∃Qg(ϕ,Q) ⇒ ∃Pg(ϕ,P ) ∃s

l c ,∃s
r, DC

21 g(ϕ,P ) ⇒ ∃Pg(ϕ,P ) ∃s
r

22 (g(ϕ, P )_ϕ) ⇒ ∃Pg(ϕ,P ) 19, 20, 21, DC
23 ∃P (g(ϕ, P )_ϕ) ⇒ ∃Pg(ϕ,P ) 22, ∃s

l

24 (∃Pg(ϕ, P )_ϕ) ⇒ ∃P (g(ϕ, P )_ϕ) Bs

25 (∃Pg(ϕ, P )_ϕ) ⇒ ∃Pg(ϕ,P ) 23, 24, DC
26 ` = 0 ⇒ ∃Pg(ϕ, P ) 3, ∃s

r, DC
27 ` = 0 ∨ (∃Pg(ϕ,P )_ϕ) ⇒ ∃Pg(ϕ,P ) 25, 26, DC
28 2(` = 0 ∨ (∃Pg(ϕ,P )_ϕ) ⇒ ∃Pg(ϕ,P ) 27, DC
29 ϕ∗ ⇒ ∃Pg(ϕ,P ) 28, DC ∗4, DC
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∃Pg(ϕ, P ) ⇒ ϕ∗ :
1 g(ϕ,P ) ∧ (ddP ee ∨ dd¬P ee)k ⇒ ∨

l≤k

ϕl k < ω, DC

2 ϕl ⇔ (` = 0_ϕl) l < ω, DC
3 (` = 0_ϕl) ⇒ ϕ∗ l < ω, DC ∗1, DC ∗2, DC
4 (ddP ee ∨ dd¬P ee)k ⇒ (g(ϕ,P ) ⇒ ϕ∗) k < ω, 1-3, DC
5 g(ϕ,P ) ⇒ ϕ∗ 4, ω
6 ∃Pg(ϕ,P ) ⇒ ϕ∗ 5, ∃s

l

A deduction of ϕ∗ ⇒ ∃Pg(ϕ,P ) can be obtained using the instance of DC ∗3
with ψ being ¬∃g(ϕ, P ). We skip it here.

2

Proposition 2 DC ∗4 is provable in the extension of the proof system for DC
by just DC ∗3.

Proof: Here follows a deduction of DC ∗4 involving DC ∗3:
1 ϕ∗ ∧ ¬ψ ⇒ (ϕ∗ ∧ ¬ψ_>) DC
2 (ϕ∗ ∧ ¬ψ_>) ⇒ (` = 0 ∧ ¬ψ_>) ∨ ((ϕ∗ ∧ ψ_ϕ) ∧ ¬ψ_>) DC ∗3
3 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ ¬(` = 0 ∧ ¬ψ_>) DC
4 ((ϕ∗ ∧ ψ_ϕ) ∧ ¬ψ_>) ⇒ ((ψ_ϕ) ∧ ¬ψ_>) DC
5 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ ¬((ψ_ϕ) ∧ ¬ψ_>) DC
6 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ (ϕ∗ ⇒ ψ) 1-5, DC

2

Proposition 3 DC ∗3 and DC ∗4 is provable in the extension of the proof sys-
tem for DC by the axioms DC ∗1, DC ∗2 and DC ∗5.

Proof: Here follows a deduction of DC ∗3 involving DC ∗5:
1 (ddP ee ∨ dd¬P ee)k ∧ g(ϕ,P ) ⇒ ∨

l≤k

ϕl k < ω, DC

2 ¬(` = 0 ∧ ψ_>) ∧ ϕl ⇒ (ϕ∗ ∧ ¬ψ_ϕl) l < ω, DC ∗1, DC
3 ¬(¬((ϕ∗ ∧ ¬ψ_ϕ) ⇒ ¬ψ)_>) ∧ (ϕ∗ ∧ ¬ψ_ϕm+1) ⇒ (ϕ∗ ∧ ¬ψ_ϕm) m < ω, DC ∗2, DC ∗

4 ¬(` = 0 ∧ ψ_>) ∧ ϕl ∧ ¬(¬((ϕ∗ ∧ ¬ψ_ϕ) ⇒ ¬ψ)_>)∧ ⇒ ¬ψ l < ω, 2, 3, DC

5
(

(ddP ee ∨ dd¬P ee)k ∧ g(ϕ, P ) ∧ ¬(` = 0 ∧ ψ_>)∧
¬(¬((ϕ∗ ∧ ¬ψ_ϕ) ⇒ ¬ψ)_>)

)
⇒ ¬ψ k < ω, 1, 4, DC

6 g(ϕ,P ) ∧ ¬(` = 0 ∧ ψ_>) ∧ ¬(¬((ϕ∗ ∧ ¬ψ_ϕ) ⇒ ¬ψ)_>) ⇒ ¬ψ 5, ω
7 ¬(` = 0 ∧ ψ_>) ∧ ¬(¬((ϕ∗ ∧ ¬ψ_ϕ) ⇒ ¬ψ)_>) ⇒ (ϕ∗ ⇒ ¬ψ) 6, DC ∗5
8 ϕ∗ ∧ ψ ⇒ (` = 0 ∧ ψ_>) ∨ ((ϕ∗ ∧ ¬ψ_ϕ) ∧ ψ_>) 7, DC
9 (ϕ∗ ∧ ψ_>) ⇒ (` = 0 ∧ ψ_>_>) ∨ ((ϕ∗ ∧ ¬ψ_ϕ) ∧ ψ_>_>) 8, DC

10 (ϕ∗ ∧ ψ_>) ⇒ (` = 0 ∧ ψ_>) ∨ ((ϕ∗ ∧ ¬ψ_ϕ) ∧ ψ_>) 9, DC

Here follows a deduction of DC ∗4 involving DC ∗5:
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1 (ddP ee ∨ dd¬P ee)k ∧ g(ϕ,P ) ⇒ ∨
l≤k

ϕl k < ω, DC

2 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ∧ ϕl ⇒ (ψ_ϕl) l < ω, DC
3 2(` = 0 ∨ (ψ,ϕ) ⇒ ψ) ∧ (ψ_ϕm+1) ⇒ (ψ_ϕm) m < ω, DC
4 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ∧ (ψ_ϕl) ⇒ ψ l < ω, 3, DC
5 (ddP ee ∨ dd¬P ee)k ⇒ (g(ϕ,P ) ⇒ (2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ ψ)) k < ω, 1, 2, 4, DC
6 g(ϕ,P ) ⇒ (2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ ψ) 5, ω
7 ϕ∗ ⇒ (2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ ψ) 6, DC ∗5
8 2(` = 0 ∨ (ψ_ϕ) ⇒ ψ) ⇒ (ϕ∗ ⇒ ψ) 7, DC

2

5 DC ∗3 as a translation of a PDL induction ax-
iom

The origins of the axiom DC ∗4 and the rule DC ∗5 were given in the introduc-
tion. In this section we point to a certain degree of semantical compatibility
between the models for ITL and the models for propositional dynamic logic
(PDL). We give a truth-preserving translation of PDL formulas into ITL for-
mulas, that is based on this semantic correspondence. We show that the axiom
DC ∗3 can be obtained by means of this translation from an induction axiom
known from PDL. Basic definitions about PDL can be found in, e.g., [AGM92].

Let us assume that set of the time points T of some abstract ITL frame
F = 〈〈T,≤〉, 〈D,+, 0〉,m〉 is also the set of the possible worlds of some PDL
frame. Consider a PDL vocabulary consisting of the set of propositional letters
P and the set of relation letters R. Let v be a PDL valuation of the vocabulary
P ∪ R into the PDL frame based on T , that is, let v(p) ⊆ T for p ∈ P and
v(r) ⊆ T × T for r ∈ R. Let us consider only PDL valuations v which satisfy
the condition v(r) ⊆ ≤ for r ∈ R. Since IdT ⊆ ≤, and R, S ⊆ ≤ implies
R∪S, R ◦S and R∗ ⊆ ≤, we can assume that the standard extensions ṽ of such
v over relation terms give only subrelations of ≤ too.

Assume that 〈T,≤〉 is bounded, that is, let T = [minT, max T ] and consider
an ITL vocabulary L whose set of temporal propositional letters is P ∪ R. We
are not interested in specifying the rest of L. Given the PDL valuation v, we
can define an interpretation I of these temporal propositional letters into F by
putting

I(p)([τ1, τ2]) = 1 iff τ1 ∈ v(p) and τ2 = maxT for p ∈ P ;
I(r)([τ1, τ2]) = 1 iff 〈τ1, τ2〉 ∈ v(r) for r ∈ R.

Let the translation t of the PDL language based on the vocabulary P ∪ R
into the ITL∗ language based on L be defined by the clauses:
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t(⊥) ⇀↽ ⊥
t(q) ⇀↽ q for q ∈ P ∪R;
t(ϕ ∨ ψ) ⇀↽ t(ϕ) ∨ t(ψ)
t(¬ϕ) ⇀↽ ¬t(ϕ)
t(Id) ⇀↽ ` = 0
t(α ∪ β) ⇀↽ t(α) ∨ t(β)
t(α ◦ β) ⇀↽ t((α)_t(β))
t(α∗) ⇀↽ (t(α))∗

t(〈α〉ϕ) ⇀↽ (t(α)_t(ϕ))
The following proposition explains the correspondence between the PDL

model based on T and v, and the ITL model 〈F, I〉 using t:

Proposition 4 Let ϕ be a PDL formula in the vocabulary P ∪R. Then

T, v, min T |= ϕ iff 〈F, I〉, [minT, max T ] |= t(ϕ).

Proof: Direct check by induction on the construction ϕ. 2

PDL has the following induction axiom about iteration in its proof system
([AGM92]):

[α∗](ϕ ⇒ [α]ϕ) ⇒ (ϕ ⇒ [α∗]ϕ) .

The t-translation of this axiom is equivalent to

(α∗ _(α∗ _ψ) ∧ ¬ψ) ∨ ((α∗ _ψ) ⇒ ψ) (8)

where ψ stands for ¬ϕ.
The validity of the PDL induction axiom enforces (ṽ(α))∗ ⊇ ṽ(α∗) on the

frame level and therefore characterises iteration the way local correspondents
do in modal logic (cf. e.g. [vB83]). Characterisation on the frame level assumes
the freedom to choose interpretations into a fixed frame and generally does not
imply deductive characterisation. The corresponding inclusion about iteration
in DC ∗ is enforced on the frame level by DC ∗3, which can be obtained from (8)
by replacing its subformulas with ψ of the form (χ1

_ψ ∧ χ2) by (χ1 ∧ ψ_χ2),
and some simple ITL transformations. To understand this replacement, note
that the satisfaction of formulas of the kind (χ1

_ψ ∧ χ2) at an interval σ in
a model M depends on the set of those τ ∈ σ for which M, [τ, max σ] |= ψ.
However, such a set of time points τ can be defined by a condition of the form
M, [min σ, τ ] |= ψ′ for some appropriate ψ′ as well. The move from (χ1

_ψ∧χ2)
to (χ1 ∧ ψ_χ2) facilitated the proof of the completeness of a system for DC ∗

with DC ∗3 in it for subsets of DC ∗ in [Gue98, Gue00c] and the precursor of this
paper [DG99]. To achieve deductive characterisation, the benefit from choosing
interpretations as allowed on the frame level can be supplied by finding formulas
with appropriate meanings. In the case of DC ∗3 the scope of the result from
[DG99] is limited by our ability to find formulas ψ which approximate ϕ∗ for ϕ
in the considered subset and argue that the respective instances of DC ∗3 force
ϕ∗ to have the right truth value.

The axioms DC ∗1 and DC ∗2 can be obtained by the same translation from
the PDL axioms [α∗]ϕ ⇒ ϕ and [α∗]ϕ ⇒ [α∗][α]ϕ, respectively.

20



6 Some more examples of the use of DC ∗1–DC ∗5

The interderivability proofs from Section 4 illustrate the working of our axioms
and proof rule. In this section we give derivations for a couple of DC ∗ theorems
of general interest and use one of them in a proof about our introductory gas-
burner example in order to give some such illustration with a practical flavour.

Here are two derivations of the monotonicity of iteration. One of them
involves DC ∗3:

α∗ ∧ ¬β∗ ⇒ (¬β∗ ∧ ` = 0_>) ∨ (((α∗ ∧ β∗_α) ∧ ¬β∗)_>) by DC∗3
⇒ (((α∗ ∧ β∗_α) ∧ ¬β∗)_>) by DC∗1
⇒ (¬β∗ ∧ β∗)_> by DC∗2

and α ⇒ β
⇒ ⊥

The other involves the proof rules ω and DC ∗5:

1 (ddP ee ∨ dd¬P ee)k ⇒
(

g(α, P ) ⇒
(

2(ϕ ⇒ β) ⇒ ∨
l≤k

βl

))
k < ω, DC

2 βm ⇒ β∗ m < ω, DC ∗1, DC ∗2, DC
3 (ddP ee ∨ dd¬P ee)k ⇒ (g(α, P ) ⇒ (2(ϕ ⇒ β) ⇒ β∗)) k < ω, 1, 2, DC
4 g(α, P ) ⇒ (2(ϕ ⇒ β) ⇒ β∗) 3, ω
5 α∗ ⇒ (2(ϕ ⇒ β) ⇒ β∗) 4, DC ∗5
6 2(ϕ ⇒ β) ⇒ (α∗ ⇒ β∗)

Here follows another useful DC ∗ theorem:

`DC∗ 2(ϕ ⇒ ¬(>_¬α) ∧ ¬(¬β_>))∧
2(` = 0 ⇒ α ∧ β) ∧2(β ⇒ ¬(>_¬γ)) ⇒
⇒ ϕ∗ ⇒ 2(γ ∨ (α_ϕ∗_β)) .

(9)

To prove it in our system, below we give a derivation of ϕ∗ ⇒ 2(γ∨ (α_ϕ∗_β))
using

ϕ ⇒ ¬(>_¬α), ϕ ⇒ ¬(¬β_>), β ⇒ ¬(>_¬γ) and ` = 0 ⇒ α, ` = 0 ⇒ β

as assumptions. Then (9) will follow by the deduction theorem for DC [HZ97].
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1 ϕ ⇒ ¬(>_¬α) assumption
2 ϕ ⇒ ¬(>_¬(α_` = 0)) by 1
3 ` = 0 ⇒ ϕ∗ by DC∗1
4 ϕ ⇒ ¬(>_¬(α_ϕ∗)) by 2, 3, Monor

5 ` = 0 ⇒ α asumption
6 ` = 0 ⇒ (` = 0_` = 0) L2
7 ` = 0 ⇒ (α_ϕ∗)) by 5, 6, DC∗1 ,

Monol, Monor

8 (>_¬(α_ϕ∗)) ⇒ ¬` = 0 by 7, DC
9 ¬((>_¬(α_ϕ∗)) ∧ ` = 0_>) by 8, Nl

10 (ϕ∗ ∧ (>_¬(α_ϕ∗))) ⇒
((>_¬(α_ϕ∗)) ∧ ` = 0_>)∨
((ϕ∗ ∧ ¬(>_¬(α_ϕ∗))_ϕ)∧

(>_¬(α_ϕ∗))_>) by DC∗3
11 (ϕ∗ ∧ ¬(>_¬(α_ϕ∗))_ϕ)∧

(>_¬(α_ϕ∗)) ⇒
(>_(α_ϕ∗_ϕ) ∧ ¬(α_ϕ∗))∨

(ϕ ∧ (>_¬(α_ϕ∗)))) DC
12 (α_ϕ∗_ϕ) ⇒ (α_ϕ∗) by DC∗2 , Monor

13 ¬((α_ϕ∗_ϕ) ∧ ¬(α_ϕ∗))
∨(ϕ ∧ (>_¬(α_ϕ∗))) by 4, Monor, 14

14 ¬(>_((α_ϕ∗_ϕ) ∧ ¬(α_ϕ∗))
∨(ϕ ∧ (>_¬(α_ϕ∗)))) by 13, Nr

15 ¬((ϕ∗ ∧ ¬(>_¬(α_ϕ∗))_ϕ)∧
(>_¬(α_ϕ∗))) by 11, 14

16 ϕ∗ ⇒ ¬(>_¬(α_ϕ∗))) by 9, 10, 15, Monol

17 ϕ∗ ∧ (¬(ϕ∗_β)_>) ⇒
((¬(ϕ∗_β)_>) ∧ ` = 0_>)∨
(((ϕ∗ ∧ ¬(¬(ϕ∗_β)_>))_ϕ) ∧ (¬(ϕ∗_β)_>)_>) DC∗3

18 ` = 0 ⇒ β assumption
19 ` = 0 ⇒ ϕ∗ DC∗1
20 ` = 0 ⇒ ¬(¬(ϕ∗_β)_>) 18, 19, DC
21 ¬((¬(ϕ∗_β)_>) ∧ ` = 0_>) 20, DC
22 ¬(((ϕ∗ ∧ ¬(¬(ϕ∗_β)_>))_ϕ) ∧ (¬(ϕ∗_β)_>)_>) DC
23 ϕ∗ ⇒ ¬(¬(ϕ∗_β)_>) 17, 20, 22, DC
24 β ⇒ ¬(>_¬γ) assumption
25 ϕ∗ ⇒ 2(γ ∨ (α_ϕ∗_β)) 16, 23, 24, DC

Now let us prove the correctness of the gas-burner design from the introduction
as a last example of the working of our DC ∗ axioms and rule. We have to give
a derivation for

((ddleakee ∧ ` ≤ 1)_(ddnonleakee ∧ ` ≥ 30))∗ ⇒ 2(` ≥ 60 ⇒ 20
∫

leak ≤ `) .

Let
ϕ ⇀↽ ddleakee ∧ ` ≤ 1_dd¬leakee ∧ ` ≥ 30,
α ⇀↽ ` = 0 ∨ dd¬leakee ∨ (ddleakee ∧ ` ≤ 1_dd¬leakee ∧ ` ≥ 30) ,

β, γ ⇀↽ ` = 0 ∨ (` ≤ 1 ∧ ddleakee_` = 0 ∨ dd¬leakee) .
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The formulas

2(ϕ ⇒ ¬(>_¬α) ∧ ¬(¬β_>)), 2(` = 0 ⇒ α ∧ β) and β ⇒ ¬(>_¬γ)

are valid in DC without iteration. Therefore we can complete our derivation
using (9), provided we can derive

γ ⇒ 20
∫

leak ≤ ` and (α_ϕ∗_β) ∧ ` ≥ 60 ⇒ 20
∫

leak ≤ `.

The first formula is straightforward to derive without DC ∗-specific axioms. Here
follows a derivation for the second formula:

1 α ⇒ 31
∫

leak ≤ ` DC
2 ϕ∗ ∧ 31

∫
leak > ` ⇒ (ϕ∗ ∧ 31

∫
leak > `_>) DC

3 ϕ ⇒ 31
∫

leak ≤ ` DC
4 (ϕ∗ ∧ 31

∫
leak > `_>) ⇒

(` = 0 ∧ 31
∫

leak > `_>)∨
(((ϕ∗ ∧ 31

∫
leak ≤ `_ϕ) ∧ 31

∫
leak > `)_>) by DC∗3

5 ` = 0 ⇒ 31
∫

leak ≤ ` DC
6 (ϕ∗ ∧ 31

∫
leak > `_>) ⇒

(((ϕ∗ ∧ 31
∫

leak ≤ `_ϕ) ∧ 31
∫

leak > `)_>) by 4, 5, Monor

7 (ϕ∗ ∧ 31
∫

leak ≤ `_ϕ) ⇒ 31
∫

leak ≤ ` by 2, 3, DC
8 ϕ∗ ⇒ 31

∫
leak ≤ ` by 6, 7, Monor

9 (α_ϕ∗) ⇒ 31
∫

leak ≤ ` by 1, 8, DC
10 β ⇒ ∫

leak ≤ 1 DC
11 (α_ϕ∗_β) ∧ ` ≥ 60 ⇒ 20

∫
leak ≤ ` by 9, 10, DC

7 Related work on the axiomatisation of itera-
tion

Iteration is known chop-star in Moszkowski’s original discrete-time ITL, where
it is regarded as part of the basic system. Unlike real- and abstract-time DC ,
finite variability is a trivial property in bounded discrete time intervals and
therefore discrete-time ITL is recursively axiomatisable, whereas in DC one has
to settle for relative completeness or bring in ω-rules like in this paper. Apart
from that, the axioms DC ∗1–DC ∗4 are valid in discrete-time ITL too and can
be derived in its proof system. The rule DC ∗5, however, is new and DC -specific.
An analogous rule can, in principle, be put together for discrete-time ITL too
by writing a formula with a meaning like that of f(ϕ, P ), but we do not know
this to have been worked on.

Another difference with discrete-time ITL is the adoption of the locality
principle there. This means that the truth values of propositional temporal
letters depend only on the beginning point of the reference interval. The locality
principle makes propositional discrete-time ITL equivalent to (untimed) regular
expressions in both expressive power and complexity. We should note the recent
advances in both the axiomatisation and the decision procedures for discrete-
time ITL from [Mos03] where both issues are elegantly handled using a proposed
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hierarchical complete proof system. The role of propositional temporal letters
with the locality principle can largely be taken by DC state variables, which
means that the decidability results about the duration-free subset of simple
DC known as the ddP ee-subset of DC from [ZHS93] look akin to some earlier
results on propositional discrete-time ITL. By contrast, adding propositional
temporal letters without the locality principle to the ddP ee-subset of DC renders
it non-recursively axiomatisable [Gue04].

8 Discussion on the decidability results for sim-
ple DC ∗

As said in the introduction of the paper, representing the repetitive behaviour of
real-time systems is the main motivation for introducing the iteration operator
into DC. An important subset of DC∗ for this purpose has been introduced
in [DW96] as the class of so-called simple DC ∗ formulas, whose syntax can be
defined by the BNF

ϕ ::= ddSee | a ≤ ` | ` ≤ a | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ_ϕ) | ϕ∗ (10)

In this section, we discuss the decidability of the satisfiability of simple DC∗

formulas at the real-time frame, i.e. the frame in which the time domain is
〈R,≤〉 and the duration domain is 〈R+,+, 0〉.

One of the notions in the literature that are close to our notion of simple
DC ∗ is the notion of timed regular expressions introduced by Asarin et al in
[ACM97], a subset of which has been introduced by us earlier in [LD96]. Simple
DC ∗ formulas syntactically correspond exactly to timed regular expression, and
their semantics coincide. Therefore, a simple DC ∗ formula can be viewed as a
timed regular expression. It was shown in how from a timed regular expression
E one can build a timed automaton A which recognises exactly the models of E
and has only constants from E in the constraints for its clock variables (guards,
tests and invariants). It is well known that emptiness is decidable for timed
automata with integer constants in their guards and tests [AD94]. This entails
the following theorem:

Theorem 3 The satisfiability of formulas with the syntax (10) in which a
stands for integer constants is decidable.

The complexity of the decidability procedure, however, is exponential in the size
of the constants occurring in the clock constraints (see e.g. [AD94]).

In [ACM97] it is also shown how given a timed automaton A, one can build
a timed regular expression E and a renaming of the locations of A such that
each model of E is the renaming of a behaviour of A. In this sense simple DC ∗

formulas and timed automata have the same expressive power.
If we restrict ourselves to the class of sequential simple DC ∗ formulas, which

can be defined by the BNF

ϕ ::= ` = 0 | ddSee | ϕ ∨ ϕ | (ϕ_ϕ) | ϕ∗ | ϕ ∧ a ≤ ` | ϕ ∧ ` ≤ a ,
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then we can have a very simple decision procedure for satisfiability and some
interesting results. Since the operators _ and ∧ distribute over ∨, and because
of the equivalence (ϕ ∨ ψ)∗ ⇔ (ϕ∗_ψ∗)∗, each sequential simple DC ∗ formula
ϕ is equivalent to a disjunction of ∨-free simple formulas. Such a ϕ is satisfi-
able iff at least one of its disjunctive members is satisfiable. The satisfiability
of ∨-free sequential simple DC ∗ formulas is very easy to decide indeed. Let
min(ϕ), max(ϕ) ∈ R be defined for such ϕ by the clauses

min(` = 0) = max(` = 0) = 0
min(ddSee) = 0, max(ddSee) = ∞
min(ϕ1

_ϕ2) = min(ϕ1) + min(ϕ2), max(ϕ1
_ϕ2) = max(ϕ1) + max(ϕ2)

min(ϕ∗) = 0, If max(ϕ) > 0 then max(ϕ∗) = ∞ otherwise max(ϕ∗) = 0.
min(ϕ ∧ a ≤ `) = max{min(ϕ), a}, max(ϕ ∧ a ≤ `) = max(ϕ)
min(ϕ ∧ ` ≤ a) = min(ϕ), max(ϕ ∧ ` ≤ a) = min{max(ϕ), a}

Obviously ϕ is satisfiable iff min(ϕ) ≤ max(ϕ).
In [LD96, LDZ97], we have developed some simple algorithms for checking

a real-time system whose behaviour is described by a ‘sequential’ timed regular
expression for a linear duration invariants of the form

2(a ≤ ` ≤ b ⇒ ∑
S∈S cS

∫
S ≤ M) ,

where S is a finite set of state variables. Because of the obvious correspondence
between sequential simple DC ∗ formulas and sequential timed regular expres-
sions, these algorithms can be used for proving automatically the implication
from a sequential simple DC ∗ formula to a linear duration invariant. An ad-
vantage of the method is that it reduces the problem to well-understood linear
programming problems. Because of this advantage, in [DP98], we tried to gen-
eralise the method for the general simple DC ∗ formulas, and showed that in
most cases, the method can still be used for checking the implication from a
simple DC ∗ formula to a linear duration invariant.

9 Concluding remarks

The contribution of this paper is to show that iteration can be defined and/or
axiomatised (relatively) completely in quantified systems of DC with some sup-
port from the notion of finite variability of state which is more deeply seated
in DC . This approach helps to identify and restrict finite variability of state
as DC ’s only source of recursive unaxiomatisability, which can be regarded as
imcompleteness in the sense of Gödel. Having the infinitary rule about the finite
variability of state, the class of duration domains targetted by our completeness
theorem can be narrowed down to each of the practically important domains
〈R+, 0, +〉 and 〈N, 0, +〉 by enforcing other principles which defy recursive ax-
iomatisation with no further infinitary additions. For instance,

x = 0 ∨ (` ≤ x)∗
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means that there are no intervals with “infinitely small” (non-standard) dura-
tions, which is one possible form of the “the missing part” in the relatively
complete axiomatisation with respect to real time from [HZ92]. By extend-
ing arithmetic with multiplication and division and the real-closed field axioms
about them (cf. e.g. [Sho67]) this axiom can be shown to entail the principle
of Archimedes which rules out “infinitely large” real numbers. As for discrete
time,

(` = 1 ∧ ¬(` 6= 0_` 6= 0))∗

means that every interval is a finite union of unit intervals which themselves
have no internal points.

Finite variability of state does not seem to be helpful enough for the ax-
iomatisation of the general least-fixed-point operator µ in DC as known from
[Pan95]. For the time being, the method from [Gue00a] which is similar to that
from the precursor [DG99] of this paper, allows us to do only subsets of HDC
with µ.
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