Prefix and Projection onto State in Duration Calculus

Dimitar P. Guelev ${ }^{[12]}$
School of Computer Science, University of Birmingham, UK
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Sofia, Bulgaria
Dang Van Hung ${ }^{33}$
International Institute for Software Technology, The United Nations University UNU/IIST, P.O.Box 3058, Macau SAR, China

Abstract

We study a new operator of projection onto state and the prefix operator in the extension $\mu H D C$ of $D C$ by quantifiers over state and a polyadic least fixed point operator. We give axioms and rules to enable deduction in the extension of $\mu H D C$ by the new operators. Our axioms can be used to eliminate the new operators from formulas in a practically significant fragment of $\mu H D C$. This entails the decidability of certain subfragments of this fragment is preserved in the presence of the new operators.

Introduction

It is widely recognised that the basic operators of $D C$ [ZHR91] such as the chop operator, the least fixed point operator and the quantifiers [Pan95], are only theoretically sufficient to specify the behaviour of real time systems. The proof rules and axioms about these operators are only theoretically adequate to manipulate the obtained specifications and do verification. In practice it often pays back to use an extended kit of basic constructs in specifications and this way achieve brevity in denoting recurring patterns of clear intuitive meaning. That is why a number of derived operators have been proposed

[^0]© 2002 Published by Elsevier Science B. V.
by various authors. The use of such operators and derived axioms and rules about them can turn crucial to keep the complexity of specification and deductive verification by $D C$ reasonably low. Derived operators often make the correspondence between design and specification by $D C$ simpler and more intuitive. A thoroughly studied set of such operators are e.g. the implementables [Rav95,Die00]

In this paper we study a new operator of projection onto state and the prefix operator in the extension of $D C$ by quantifiers over state and a polyadic least fixed point operator known as $\mu H D C$ Gue00a. Projection onto state was introduced to $D C^{*}$ in [DVH99]. It can be regarded as a real time variant of a discrete time ITL projection operator as known from [HMM83]. This operator provides a way to reconcile the true synchrony hypothesis, which says that computation does not take time in real-time systems, with reality, where computation does take time, which is difficult to calculate accurately and of negligible size, but needed to keep the causal ordering of computation steps clear. By means of projection onto state requirements on concurrent real-time programs' behaviour which have been formulated without taking computation time into account and specifications of this behaviour where computation time is explicitly accounted of can be put together in $\mu H D C$ formulas.

We draw attention to the prefix operator, because it allows to straightforwardly define properties of initial parts of observed behaviours. Together with the suffix operator, which is defined symmetrically, it allows to specify the possibility for an observed behaviour to be part of some behaviour that extends out of observation into the future and/or into the past.

Along with the definition of the two operators and a proposal of their application to the specification and verification of concurrent real time programs, the paper presents the following results: We give comprehensive lists of axioms and rules which enable deduction in the extension of $\mu H D C$ by the new operators. Our axioms can be used as reduction rules which enable the elimination of the new operators from formulas which commence in specifications of the proposed kind. This entails that there is a practically significant fragment of $\mu H D C$ where the prefix and projection-onto-state operators can be regarded as derived operators and the decidability of certain subfragments of this fragment is preserved in the presence of the new operators.

1 Preliminaries on Real Time $\mu H D C$

In this paper we present $\mu H D C$ for the case of real time only. We allow realvalued state variables [ZRH93], which are used to specify data manipulation in our example specification of the behaviour of concurrent interleaving processes by $D C$ with projection and prefix. We do not mention neighbourhood terms and some of the higher-order quantifiers of $\mu H D C$ to keep our presentation concise. That is why the variant of $\mu H D C$ here is closer to that of $\mu D C$ from [Pan95], where μ was first introduced to $D C$, and $H D C$ from [ZGZ99].

1.1 Languages

A $\mu H D C$ vocabulary consists of constant symbols a, b, c, \ldots, function symbols
f, g, \ldots and relation symbols R, \ldots of specified arities, individual variables x, y, \ldots and boolean state variables P, Q, \ldots and real state variables p, q, \ldots. . Throughout the paper we denote the various kinds of $\mu H D C$ symbols by the same letters as here. We rely on the usage of these letters to implicitly indicate the kinds of the particular symbols in consideration, for the sake of brevity.

Constant symbols, function symbols and relation symbols can be either rigid or flexible. Rigid symbols are distinguished for a restriction imposed on their interpretations. Flexible relation symbols of arity 0 and flexible constant symbols are also called temporal propositional letters and temporal variables respectively. The letters X, Y, \ldots, are tacitly assumed to denote temporal propositional letters. Individual variables are rigid. State variables are flexible.

Every $\mu H D C$ language contains the rigid constant symbol 0 , the temporal variable ℓ, the rigid binary function symbol + , the rigid binary relation symbols $=$ and \leq, and infinite sets of individual variables, state variables and temporal propositional letters.

Given the vocabulary of a $\mu H D C$ language, its state terms s, state expressions S, terms t and formulas φ are defined by the BNFs:

$$
\begin{aligned}
s & ::=c|x| p \mid f(s, \ldots, s) \\
S & ::=0|P| R(s, \ldots, s) \mid S \Rightarrow S \\
t & ::=c|x| \int S \mid f(t, \ldots, t) \\
\varphi & ::=\perp|R(t, \ldots, t)| \neg \varphi|\varphi \vee \varphi|(\varphi ; \varphi)|\exists x \varphi| \exists p \varphi|\exists P \varphi| \mu_{i} X \ldots X . \varphi, \ldots, \varphi
\end{aligned}
$$

Only rigid constant, function and relation symbols are allowed in state terms s and state expressions S. Formulas of the kind $\mu_{i} X_{1} \ldots X_{m} \cdot \varphi_{1}, \ldots, \varphi_{n}$ are well-formed only if X_{1}, \ldots, X_{m} are distinct variables with all their occurrences in $\varphi_{1}, \ldots, \varphi_{n}$ being in the scope of an even number of negations, and $m=n$. Terms and formulas built using rigid symbols only are called rigid.

1.2 Semantics

An abstract model M for a $\mu H D C$ language \mathbf{L} is a pair $\langle F, I\rangle$, where F describes the particular structure of time in M, and I describes the meaning of \mathbf{L} 's non-logical symbols in M, including the variables. In this paper F is always the linearly ordered group of the reals $\langle\mathbf{R}, 0,+, \leq\rangle$. For this reason we identify models with their interpretation components I.

The auxiliary notation below helps define these interpretations concisely.
Definition 1.1 We denote the set $\left\{\left[\tau_{1}, \tau_{2}\right]: \tau_{1}, \tau_{2} \in \mathbf{R}, \tau_{1} \leq \tau_{2}\right\}$ by \mathbf{I}. Given $\sigma_{1}, \sigma_{2} \in \mathbf{I}, \sigma_{1} ; \sigma_{2}$ stands for $\sigma_{1} \cup \sigma_{2}$ iff $\max \sigma_{1}=\min \sigma_{2}$. A function f on \mathbf{R}
has the finite variability property, if its range is finite and, given $\tau_{1}, \tau_{2} \in \mathbf{R}$, $\left\{\tau: f(\tau)=c\right.$ and $\left.\tau_{1} \leq \tau<\tau_{2}\right\}$ is a finite union of intervals of the kind $\left[\tau^{\prime}, \tau^{\prime \prime}\right)$ for every c in the range of f.

The finite variability property reflects the well-known fact that $\{0,1\}$ valued signals and other program variables, which are common parts of modelled systems, change their values only finitely many times in any given bounded interval of time.

Let \mathbf{L} be some $\mu H D C$ language.
Definition 1.2 An $\mu H D C$ interpretation I of \mathbf{L} is a function on the set of L's non-logical symbols, including the variables. The types of the values of I for symbols of the various kinds are as follows:

$$
\begin{array}{lll}
I(x) \in \mathbf{R} & I(f): \mathbf{I} \times \mathbf{R}^{n} \rightarrow \mathbf{R} & I(P): \mathbf{R} \rightarrow\{0,1\} \\
I(c): \mathbf{I} \rightarrow \mathbf{R} & I(R): \mathbf{I} \times \mathbf{R}^{n} \rightarrow\{0,1\} & I(p): \mathbf{R} \rightarrow \mathbf{R}
\end{array}
$$

Here n stands for the arity of R and f, respectively. Interpretations of state variables should have the finite variability property. Rigid symbols' interpretations should not depend on their interval argument at all. That is why they are often treated as functions of their real arguments only, and just elements of \mathbf{R} in the case of 0 -ary symbols.
$I(0), I(+), I(\leq), I(=)$ and $I(\ell)$ should be the corresponding components of $\langle\mathbf{R}, 0,+, \leq\rangle$, equality on \mathbf{R} and $\lambda \sigma$. $\max \sigma-\min \sigma$, respectively.

Definition 1.3 Given an interpretation I of \mathbf{L}, the values $I_{\tau}(s)$ of state term s and $I_{\tau}(S)$ of a state expression S at time point τ, and $I_{\sigma}(t)$ of a term t at an interval $\sigma \in \mathbf{I}$ are defined by the clauses:

$$
\begin{aligned}
& I_{\tau}(c)=I(c)([\tau, \tau]) \quad I_{\tau}(p)=I(p)(\tau) \\
& I_{\tau}(x)=I(x) \quad I_{\tau}\left(f\left(s_{1}, \ldots, s_{n}\right)\right)=I(f)\left([\tau, \tau], I_{\tau}\left(s_{1}\right), \ldots, I_{\tau}\left(s_{n}\right)\right) \\
& I_{\tau}(\mathbf{0})=0 \quad I_{\tau}\left(R\left(s_{1}, \ldots, s_{n}\right)\right)=I(R)\left([\tau, \tau], I_{\tau}\left(s_{1}\right), \ldots, I_{\tau}\left(s_{n}\right)\right) \\
& I_{\tau}(P)=I(P)(\tau) \quad I_{\tau}\left(S_{1} \Rightarrow S_{2}\right) \quad=\max \left\{1-I_{\tau}\left(S_{1}\right), I_{\tau}\left(S_{2}\right)\right\} \\
& I_{\sigma}(c)=I(c)(\sigma) \quad I_{\sigma}\left(\int S\right) \quad=\int_{\min \sigma}^{\max \sigma} I_{\tau}(S) d \tau \\
& I_{\sigma}(x)=I(x) \quad I_{\sigma}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \quad=I(f)\left(\sigma, I_{\sigma}\left(t_{1}\right), \ldots, I_{\sigma}\left(t_{n}\right)\right)
\end{aligned}
$$

The choice of $[\tau, \tau]$ to occur in the clause about $I_{\tau}(c)$ is arbitrary. Only rigid c are allowed in state expressions, and such c do not depend on the reference interval for their values. The same applies to the clause about $I_{\tau}\left(R\left(s_{1}, \ldots, s_{n}\right)\right)$.

Given a variable V of any kind, interpretations I and J of \mathbf{L} are said to V-agree, if $I(s)=J(s)$ for all non-logical symbols $s \neq V$ from \mathbf{L}.

Let $\chi_{A}: \mathbf{I} \rightarrow\{0,1\}$ stand for the characteristic (membership) function of $A \subseteq \mathbf{I}$. Let X_{1}, \ldots, X_{n} be temporal propositional letters from L. Given $A_{1}, \ldots, A_{n} \subseteq \mathbf{I}$, we introduce the interpretation $I_{X_{1}, \ldots, X_{n}}^{A_{1}, \ldots, A_{n}}$ of \mathbf{L} which is defined
by the equalities $I_{X_{1}, \ldots, X_{n}}^{A_{1}, \ldots, A_{n}}\left(X_{i}\right)=\chi_{A_{i}}, i=1, \ldots, n$, and $I_{X_{1}, \ldots, X_{n}}^{A_{1}, \ldots, A_{n}}(s)=I(s)$ for $s \notin\left\{X_{1}, \ldots, X_{n}\right\}$. Let $\mu_{j} X_{1} \ldots X_{n} . \varphi_{1}, \ldots, \varphi_{n}$ be a formula in \mathbf{L}. Then the mappings $F_{i}:\left(2^{\mathbf{I}}\right)^{n} \rightarrow 2^{\mathbf{I}}$ that we define by the equalities:

$$
F_{i}\left(A_{1}, \ldots, A_{n}\right)=\left\{\sigma \in \mathbf{I}: I_{X_{1}, \ldots, X_{n}}^{A_{1}, \ldots, A_{n}}, \sigma \models \varphi_{i}\right\}, \quad i=1, \ldots, n
$$

are monotonic, and consequently the system of equations:

$$
F_{i}\left(A_{1}, \ldots, A_{n}\right)=A_{i}, \quad i=1, \ldots, n
$$

has a least solution with respect to A_{1}, \ldots, A_{n}, relative to the \subseteq ordering relation. We denote the components of this solution, as they appear in their standard ordering, by $A_{I, \mu_{1} X_{1} \ldots X_{n} \cdot \varphi_{1}, \ldots, \varphi_{n}}, \ldots, A_{I, \mu_{n} X_{1} \ldots X_{n} \cdot \varphi_{1}, \ldots, \varphi_{n}}$.

Definition 1.4 The modelling relation \vDash is defined on interpretations I of \mathbf{L}, intervals $\sigma \in \mathbf{I}$ and formulas φ from \mathbf{L} by the clauses:

$$
\begin{array}{ll}
I, \sigma \not \models \perp & \\
I, \sigma \models R\left(t_{1}, \ldots, t_{n}\right) & \text { iff } I(R)\left(\sigma, I_{\sigma}\left(t_{1}\right), \ldots, I_{\sigma}\left(t_{n}\right)\right)=1 \\
I, \sigma \models \neg \varphi & \text { iff } I, \sigma \not \models \varphi \\
I, \sigma \models \varphi \vee \psi & \text { iff either } I, \sigma \models \psi \text { or } I, \sigma \models \varphi \\
I, \sigma \models(\varphi ; \psi) & \text { iff there exist } \sigma_{1}, \sigma_{2} \in \mathbf{I} \text { such that } \\
I, \sigma \models \exists V \varphi & \sigma=\sigma_{1} ; \sigma_{2}, I, \sigma_{1} \models \varphi \text { and } I, \sigma_{2} \models \psi \\
I, \sigma \models \mu_{i} X_{1} \ldots X_{n} . \varphi_{1}, \ldots, \varphi_{n} & \text { iff } \sigma \in A_{I, \mu_{i} X_{1} \ldots X_{n} . \varphi_{1}, \ldots, \varphi_{n}}
\end{array}
$$

1.3 Abbreviations

We use $\top, \wedge, \Rightarrow, \Leftrightarrow, \forall, \neq, \geq,<,>$ as abbreviations and infix notation in the usual way. The following abbreviations are $D C$-specific:

$$
\mathbf{1} \rightleftharpoons \mathbf{0} \Rightarrow \mathbf{0},\lceil S\rceil \rightleftharpoons \int S=\ell \wedge \ell \neq 0, \diamond \varphi \rightleftharpoons((\top ; \varphi) ; \top), \square \varphi \rightleftharpoons \neg \diamond \neg \varphi
$$

Iteration (.)* and positive iteration (. $)^{+}$can be defined in $\mu H D C$ by the clauses
$\varphi^{*} \rightleftharpoons \mu X . \ell=0 \vee(\varphi ; X), \varphi^{+} \rightleftharpoons\left(\varphi ; \varphi^{*}\right)$.
The state variable quantifier enables the specification of hiding of local variables ZGZ99 HX99]. Another use of this quantifier is to express superdense chop [ZH96.HX99].

The least fixed point operator in $D C$ enables the straightforward specification of recursive invocations in temporal programs. Assume that the temporal propositional letter X is used to denote a complete execution of some recursive temporal procedure. Then the behaviour of this procedure can be described by a formula φ which has occurrences of X to denote recursive self-invocations. Finally, a closed form of the specification of this behaviour can be given by the formula $\mu_{1} X . \varphi$. The $\mu H D C$ polyadic form of μ can similarly be used to specify the behaviour of collections of mutually recursive procedures, as shown
in Section 3 below. Polyadic μ has the same expressive power as unary μ. A polyadic μ formula can be reduced to an equivalent unary μ one using the Bekič principle (cf. e.g. AN01]). For instance,

$$
\models_{\mu H D C} \mu_{1} X_{1} X_{2} \cdot \varphi_{1}, \varphi_{2} \Leftrightarrow \mu X_{1} \cdot\left[\mu X_{2} \cdot \varphi_{2} / X_{2}\right] \varphi_{1} .
$$

Polyadic μ seems more convenient than unary μ with nested occurrences of for the purposes of this paper.

2 Definitions of Projection onto State and Prefix

2.1 Projection onto State

The projection (φ / S) of formula φ onto state expression S holds at interval σ under interpretation I, if φ holds at the interval $\sigma^{\lambda \tau \cdot I_{\tau}(S)}$ under the interpretation $I^{\lambda \tau . I_{\tau}(S)}$. The interval $\sigma^{\lambda \tau . I_{\tau}(S)}$ is obtained by gluing the parts of σ that satisfy $S . I^{\lambda \tau . I_{\tau}(S)}$ is obtained by transferring the correspondence of (truth) values of symbols under I from time points and subintervals of σ to their images in $\sigma^{\lambda \tau \cdot I_{\tau}(S)}$. This definition can be made precise in several ways. Below we give our choice of doing so.

Let the syntax for $\mu H D C$ formulas be extended to allow formulas of the kind (φ / S). We use the auxiliary notation below to extend the relation \models to formulas of this kind.

Let $h: \mathbf{R} \rightarrow\{0,1\}$ have the finite variability property, and $\delta_{h}: \mathbf{R} \rightarrow \mathbf{R}$ be defined by the equality

$$
\delta_{h}(\tau)=\int_{0}^{\tau} h\left(\tau^{\prime}\right) d \tau^{\prime}
$$

Let $\Sigma_{h}=\left\{\delta_{h}(\tau): \tau \in \mathbf{R}\right\}$. By δ_{h}, the collection of intervals $\{\tau \in \mathbf{R}: h(\tau)=1\}$ is glued into a single interval Σ_{h}. Clearly Σ_{h} is either a closed interval, or a semiclosed unbounded interval, or the entire \mathbf{R}, and $0 \in \Sigma_{h}$.

To transfer arbitrary interpretations from \mathbf{R} to Σ_{h} as embedded in \mathbf{R}, we need a converse of δ. Let $\delta_{h}^{-1}: \mathbf{R} \rightarrow 2^{\mathbf{R}}$ be the multiple-valued converse of δ_{h}, which is defined by the equality

$$
\delta_{h}^{-1}\left(\tau^{\prime}\right)=\left\{\tau \in \mathbf{R}: \delta_{h}(\tau)=\tau^{\prime}\right\} .
$$

We need a monotonic extension of a single-valued branch of δ_{h}^{-1} to \mathbf{R}. The extension γ_{h} with this property we choose to employ can be defined as follows:

$$
\gamma_{h}\left(\tau^{\prime}\right)= \begin{cases}\tau^{\prime}-\inf \Sigma_{h}+\max \delta_{h}^{-1}\left(\inf \Sigma_{h}\right) & \text { if } \tau^{\prime}<\inf \Sigma_{h}<\sup \Sigma_{h} ; \\ \max \delta_{h}^{-1}\left(\tau^{\prime}\right) & \text { if } \inf \Sigma \leq \tau^{\prime}<\sup \Sigma_{h} ; \\ \tau^{\prime}-\sup \Sigma_{h}+\min \delta_{h}^{-1}\left(\sup \Sigma_{h}\right) & \text { if } \inf \Sigma_{h}<\sup \Sigma_{h} \leq \tau^{\prime} ; \\ 0 & \text { if } \inf \Sigma_{h}=\tau^{\prime}=\sup \Sigma_{h}=0\end{cases}
$$

Note that the cases above depend on the kind of interval Σ_{h} is and not just
on τ^{\prime}. The reader should retrace the definition with the various possibilities for Σ_{h} in mind, to get used to it.
Definition 2.1 Given an interpretation I of some $\mu H D C$ language \mathbf{L}, the projection I^{h} of I onto (the support of) h is the $\mu H D C$ interpretation of \mathbf{L} which is defined by the equalities:

$$
\begin{array}{ll}
I^{h}(x) & =I(x) \text { for individual variables } x \\
I^{h}(c)(\sigma) & =I(c)\left(\left[\gamma_{h}(\min \sigma), \gamma_{h}(\max \sigma)\right]\right) \text { for constants } c \neq \ell \\
I^{h}(s)\left(\sigma, d_{1}, \ldots, d_{n}\right) & =I(s)\left(\left[\gamma_{h}(\min \sigma), \gamma_{h}(\max \sigma)\right], d_{1}, \ldots, d_{n}\right)
\end{array}
$$ for n-ary function and relation symbols s

$I^{h}(P)(\tau) \quad=I(P)\left(\gamma_{h}(\tau)\right)$ for state variables P
Given $\sigma \in \mathbf{I}$, the projection σ^{h} of σ onto (the support of) h is $\left[\delta_{h}(\min \sigma), \delta_{h}(\max \sigma)\right]$.
Now let φ be a formula and H be a state expression in \mathbf{L}, respectively. Let $h=\lambda \tau \cdot I_{\tau}(H)$. Then
$I, \sigma \models(\varphi / H)$ iff $I^{h}, \sigma^{h} \models \varphi$.
Note that with γ_{h} defined and used as above, I^{h} is obtained from I by clipping off parts of \mathbf{R} which are surrounded by parts where h evaluates to 1 only. In case Σ_{h} is (semi)bounded, that is, if $\inf \Sigma_{h} \in \mathbf{R}$, or $\sup \Sigma_{h} \in \mathbf{R}$, or both, the values of I on $\left\{\tau \in \mathbf{R}: \tau<\inf \Sigma_{h}\right\}$ and $\left\{\tau \in \mathbf{R}: \tau \geq \sup \Sigma_{h}\right\}$ are transferred to I^{h} with no loss.

2.2 Prefix and Suffix

Informally, $I, \sigma \models \operatorname{pref}(\varphi)$, if some extension of the restriction of I to σ into the future satisfies φ at a possibly longer interval beginning at the same time point as σ. In the case of suff the extension is sought into the past.

Definition 2.2 Given $\sigma \in \mathbf{I}(\mathbf{R})$, interpretations I_{1} and I_{2} of $\mu H D C$ language $\mathbf{L} \sigma$-agree, if

$$
\begin{array}{ll}
I_{1}(x)=I_{2}(x) & \text { for individual variables } x \\
I_{1}(c)\left(\sigma^{\prime}\right)=I_{2}(c)\left(\sigma^{\prime}\right) & \text { for constants } c, \text { if } \sigma^{\prime} \subseteq \sigma ; \\
I_{1}(s)\left(\sigma^{\prime}, d_{1}, \ldots, d_{n}\right)=I_{2}(s)\left(\sigma^{\prime}, d_{1}, \ldots, d_{n}\right) & \text { for } n \text {-ary function and rela- } \\
& \text { tion symbols } s, \text { if } \sigma^{\prime} \subseteq \sigma \text { and } \\
& d_{1}, \ldots, d_{n} \in \mathbf{R} ; \\
I_{1}(P)\left(\tau^{\prime}\right)=I_{2}(P)\left(\tau^{\prime}\right) & \text { for state variables } P \text { from } \mathbf{L} \\
\text { and } \min \sigma \leq \tau^{\prime}<\max \sigma
\end{array}
$$

The proposition below explains σ-agreeing:
Proposition 2.3 Let $\sigma, \sigma^{\prime} \in \mathbf{I}$ and $\sigma^{\prime} \subseteq \sigma$. Let I_{1} and I_{2} be interpretations of \mathbf{L} which σ-agree, and φ be a formula in \mathbf{L}. Then $I_{1}, \sigma^{\prime} \models \varphi$ is equivalent to $I_{2}, \sigma^{\prime} \models \varphi$.

We define the unary modal operators pref and suff by the clauses:

$$
\begin{array}{ll}
I, \sigma \models \operatorname{pref}(\varphi) & \text { iff } I^{\prime}, \sigma^{\prime} \models \varphi \text { for some } I^{\prime} \text { and } \sigma^{\prime} \text { such that } \\
& I^{\prime} \sigma \text {-agrees with } I, \sigma^{\prime} \supseteq \sigma \text { and } \min \sigma^{\prime}=\min \sigma . \\
I, \sigma \models \operatorname{suff}(\varphi) & \text { iff } I^{\prime}, \sigma^{\prime} \models \varphi \text { for some } I^{\prime} \text { and } \sigma^{\prime} \text { such that }
\end{array}
$$

$$
I^{\prime} \sigma \text {-agrees with } I, \sigma^{\prime} \supseteq \sigma \text { and } \max \sigma^{\prime}=\max \sigma \text {. }
$$

3 Specification by $D C$ with Projection and Prefix

In this section we show how the operators pref and (./.) can be used to specify the behaviour of interleaving processes and requirements on such behaviour. We consider real-time programs \mathbf{P} of the kind

$$
P_{1}\|\ldots\| P_{n},
$$

where P_{1}, \ldots, P_{n} are \mathbf{P} 's component processes, which run concurrently. The syntax of individual component processes P is described by the BNF

$$
\begin{aligned}
P::= & \operatorname{skip}|x:=e| X \mid \text { delay } r \mid \text { await } b|(P ; P)| \text { if } b \text { then } P \text { else } P \mid \\
& \text { letrec } P \text { where } X: P ; \ldots X: P ;
\end{aligned}
$$

where x stands for a variable, e, r and b stand for expressions of the appropriate types and are built using variables, constants and operations (e.g. arithmetic operations,) and X stands for a subprocess name in letrec. Subprocess name X may occur in process P only if P is in the scope of a letrec statement which binds X. We assume that real valued expressions have the syntax of real $\mu H D C$ state terms, and boolean valued expressions have the syntax of $\mu H D C$ state expressions, for the sake of simplicity.

The statements which appear in the above BNF are executed as follows:
skip Do nothing.
$x:=e$ Evaluate e and then set x to the value of e.
delay r Evaluate r and postpone all subsequent action of the relevant process by the obtained number of time units.
await b Wait until b becomes true and terminate. In case b never becomes true, await b never terminates.
$\left(P_{1} ; P_{2}\right)$ Execute P_{1} first, and, in case P_{1} terminates, execute P_{2}.
if b then P_{1} else P_{2} Evaluate b first. If b is true, then execute P_{1}. Otherwise execute P_{2}.
X Execute the subprocess labelled X from the innermost running letrec statement which binds X.
letrec P where $X_{1}: P_{1} ; \ldots X_{n}: P_{n}$; Execute P with this statement being the innermost running letrec statement which binds X_{1}, \ldots, X_{n}.

We denote the set of variables which occur in process P_{i} by $\operatorname{Var}\left(P_{i}\right)$. We specify the behaviour of \mathbf{P} by $\mu H D C$ formulas in the $\mu H D C$ language $\mathbf{L}(\mathbf{P})$
with the following non-logical symbols:
A state variable x for every $x \in \bigcup_{i=1}^{n} \operatorname{Var}\left(P_{i}\right)$.
Rigid symbols of the appropriate kinds and arities and the same names for all constants, functions and relations which occur in boolean and real-valued expressions in \mathbf{P}.

We assume that boolean variable x from \mathbf{P} are represented by boolean state variables, and real-valued variables are represented by real state variables.

The boolean state variables R_{i} and $W_{i}, i=1, \ldots, n .\left\lceil R_{i}\right\rceil$ indicates that P_{i} performs computation and therefore has exclusive access to the variables from $\operatorname{Var}\left(P_{i}\right)$ during the reference interval. W_{i} indicates that P_{i} has terminated.

The boolean state variable $N .\lceil N\rceil$ indicates that the reference interval consists of negligible time. N has a key role in our approach to handling the true synchrony hypothesis by $D C$ with projection onto state. According to this hypothesis, computation consumes no time, and only awaiting external synchronisation and explicitly stated delays consume time. We describe behaviours of real time programs by taking into account that in fact computation does take time. However, this time can be regarded as negligible and marked by N. The key observation in our approach is that models of $D C$ which describe behaviours of a program \mathbf{P}, should satisfy $(\varphi / \neg N)$, provided that φ is a $D C$ formula which specifies some property of the behaviours of \mathbf{P} under the true synchrony hypothesis.

Propositional temporal letters X and X^{\prime} for each subprocess name X which occurs in a letrec statement in \mathbf{P}.

The kinds of non-logical symbols which are obligatory for $\mu H D C$ languages in general, in particular, an individual variable u.

Given $\mathbf{L}(\mathbf{P})$, we introduce a formula \mathcal{A} in $\mathbf{L}(\mathbf{P})$ which specifies the general conditions of running \mathbf{P}. For each individual subprocess P of $P_{i}, i=1, \ldots, n$, we introduce two $\mu H D C$ formulas $\llbracket P \rrbracket_{i}$ and $\llbracket P \rrbracket_{i}^{\prime}$. Given a model M of $\mathbf{L}(\mathbf{P})$ and interval $\sigma \in \mathbf{I}$, we define $\llbracket P \rrbracket_{i}$ and $\llbracket P \rrbracket_{i}^{\prime}$ so that the following connection between them and the behaviour of P holds:
$I, \sigma \models \square \mathcal{A} \wedge \llbracket P \rrbracket_{i}$ iff I describes a complete finite run of P in σ.
I describes a non-terminating run of P starting at τ_{0} iff $I,\left[\tau_{0}, \tau\right] \models \square \mathcal{A} \wedge \llbracket P \rrbracket_{i}^{\prime}$ for all $\tau \geq \tau_{0}$.

To define $\mathcal{A}, \llbracket P \rrbracket_{i}$ and $\llbracket P \rrbracket_{i}^{\prime}$ concisely, we use some abbreviations. Let $V \subseteq \operatorname{Var}\left(P_{i}\right)$. The formula

$$
\mathrm{K}_{i}(V) \rightleftharpoons \bigwedge_{x \in \operatorname{Var}\left(P_{i}\right) \backslash V} \exists u\left(\int(x=u)=\ell\right)
$$

together with some conditions introduced below, says that P_{i} variables, except eventually the ones from V, change their values neither within the reference interval, nor at its end. The formula

$$
\mathrm{S}_{i}(S) \rightleftharpoons\left(\left\lceil N \wedge \neg R_{i}\right\rceil ; \mathrm{K}_{i}(\emptyset) \wedge\left\lceil R_{i} \wedge S\right\rceil\right)
$$

says that the reference interval consists of two non-zero-length parts. In the second part, neither a P_{i} variable changes its value, nor its value gets accessed by some other process. The parameter S holds place for a state expression of how P_{i} accesses variables in this part. The first part is inserted to allow interleaving. \mathcal{A} is the conjunction of the following formulas:
$\begin{array}{ll}\mathcal{A}_{0} & \begin{array}{l}\text { A rigid formula giving the relevant algebraic properties } \\ \text { of constants, operations and predicates which occurs in } \\ \text { expressions } e, r, b .\end{array} \\ \lceil\neg N\rceil \Rightarrow \bigwedge_{i=1}^{n} \mathrm{~K}_{i}(\emptyset) \quad \text { Variables get updated during computation time only. }\end{array}$
$\bigwedge_{i=1} \forall u \neg\left(\left\lceil x=u \wedge R_{i}\right\rceil ;\left\lceil x \neq u \wedge \neg R_{i}\right\rceil\right) \quad$ Each update takes place $i n$ -

$$
x \in \operatorname{Var}\left(P_{i}\right)
$$ side the computation

$$
\wedge \quad \forall u \neg\left(\left\lceil x=u \wedge \neg R_{i}\right\rceil:\left\lceil x \neq u \wedge R_{i}\right\rceil\right)
$$

$\begin{array}{ll}\substack{i=1, \ldots, n \\ x \in \operatorname{Var}\left(P_{i}\right)} \\ & \checkmark \neg \neg\left(\left\lceil x=u \wedge \neg R_{i}\right\rceil ;\left\lceil x \neq u \wedge R_{i}\right\rceil\right) \\ & \text { time of some process (where } \\ & R_{i} \text { is true). }\end{array}$
$\bigwedge_{1 \leq i<j \leq n} \int\left(R_{i} \wedge R_{j}\right)=0 \quad \begin{aligned} & \text { No two processes perform computation at the } \\ & \text { same time }\end{aligned}$ $\int\left(N \Leftrightarrow \bigwedge_{i=1}^{n} W_{i} \vee \bigvee_{i=1}^{n} R_{i}\right)=\ell \quad$ A part of the behaviour of \mathbf{P} is negligible iff some of the component processes is accessing its variables, that is, doing negligible time computation, or all the processes have terminated.
$\begin{array}{ll}\bigwedge_{i=1}^{n} \neg\left(\left\lceil W_{i}\right\rceil ;\left\lceil\neg W_{i}\right\rceil\right) & \text { Once } P_{i} \text { terminates, it stays terminated. } \\ \bigwedge_{i=1}^{n} \neg\left(\left\lceil W_{i} \wedge R_{i}\right\rceil\right) & \text { Terminated processes do not access their variables. }\end{array}$
Given $i \in\{1, \ldots, n\}$ and subprocess P of $P_{i}, \llbracket P \rrbracket_{i}$ and $\llbracket P \rrbracket_{i}^{\prime}$ are defined by the clauses:

$$
\begin{array}{lll}
\llbracket \text { skip } \rrbracket_{i} & \rightleftharpoons & \left\lceil N \wedge \neg R_{i}\right\rceil \\
\llbracket x:=e \rrbracket_{i} & \rightleftharpoons & \lceil N\rceil \wedge\left(\left\lceil\neg R_{i}\right\rceil ;\left\lceil R_{i}\right\rceil \wedge \mathrm{K}_{i}(\{x\}) \wedge\right. \\
& \left.\exists u(\lceil u=e\rceil ;\lceil x=u\rceil) ;\left\lceil\neg R_{i}\right\rceil\right) \\
\llbracket X \rrbracket_{i} & \rightleftharpoons & X \\
\llbracket \text { delay } r \rrbracket_{i} & \rightleftharpoons \exists u\left(\left(\mathrm{~S}_{i}(u=r) ;\left\lceil\neg R_{i}\right\rceil\right) \wedge u=\int \neg N\right) \\
\llbracket \text { await } b \rrbracket_{i} & \rightleftharpoons & \left(\int \neg\left(R_{i} \vee b\right)=\ell ; \mathrm{K}_{i}(\emptyset) \wedge\left\lceil N \wedge R_{i} \wedge b\right\rceil ;\left\lceil N \wedge \neg R_{i}\right\rceil\right) \\
\llbracket\left(P_{1} ; P_{2}\right) \rrbracket_{i} & \rightleftharpoons & \left(\llbracket P_{1} \rrbracket_{i} ; \llbracket P_{2} \rrbracket_{i}\right) \\
\llbracket \text { if } b \text { then } P_{1} \text { else } P_{2} \rrbracket_{i} & \rightleftharpoons & \left(\mathrm{~S}_{i}(b) ; \llbracket P_{1} \rrbracket_{i}\right) \vee\left(\mathrm{S}_{i}(\neg b) ; \llbracket P_{2} \rrbracket_{i}\right) \\
\llbracket \text { letrec } P \text { where } & \rightleftharpoons & \mu_{n+1} X_{1} \ldots X_{n} Y . \llbracket P_{1} \rrbracket_{i}, \ldots, \llbracket P_{n} \rrbracket_{i}, \llbracket P \rrbracket_{i} \\
X_{1}: P_{1} ; \ldots ; X_{n}: P_{n} \rrbracket_{i} & &
\end{array}
$$

$$
\begin{aligned}
& \llbracket \operatorname{skip} \rrbracket_{i}^{\prime} \rightleftharpoons \operatorname{pref}\left(\llbracket \operatorname{skip} \rrbracket_{i}\right) \quad \llbracket \text { delay } r \rrbracket_{i}^{\prime} \rightleftharpoons \operatorname{pref}\left(\llbracket \text { delay } r \rrbracket_{i}\right) \\
& \llbracket x:=e \rrbracket_{i}^{\prime} \rightleftharpoons \operatorname{pref}\left(\llbracket x:=e \rrbracket_{i}\right) \quad \llbracket \text { await } b \rrbracket_{i}^{\prime} \rightleftharpoons \int \neg\left(R_{i} \vee b\right)=\ell \\
& \llbracket X \rrbracket_{i}^{\prime} \rightleftharpoons X^{\prime} \quad \llbracket\left(P_{1} ; P_{2}\right) \rrbracket_{i}^{\prime} \rightleftharpoons \llbracket P_{1} \rrbracket_{i}^{\prime} \vee\left(\llbracket P_{1} \rrbracket_{i} ; \llbracket P_{2} \rrbracket_{i}^{\prime}\right) \\
& \llbracket \text { if } b \text { then } P_{1} \text { else } P_{2} \rrbracket_{i}^{\prime} \rightleftharpoons\binom{\operatorname{pref}\left(\mathrm{S}_{i}(b)\right) \vee\left(\mathrm{S}_{i}(b) ; \llbracket P_{1} \rrbracket_{i}^{\prime}\right) \vee}{\operatorname{pref}\left(\mathrm{S}_{i}(\neg b)\right) \vee\left(\mathrm{S}_{i}(\neg b) ; \llbracket P_{2} \rrbracket_{i}^{\prime}\right)} \\
& \llbracket \text { letrec } P \text { where } X_{1}: P_{1} ; \ldots ; X_{n}: P_{n} \rrbracket_{i}^{\prime} \rightleftharpoons \\
& \mu_{2 n+1} X_{1} \ldots X_{n} X_{1}^{\prime} \ldots X_{n}^{\prime} Y, \llbracket P_{1} \rrbracket_{i}, \ldots, \llbracket P_{n} \rrbracket_{i}, \llbracket P_{1} \rrbracket_{i}^{\prime}, \ldots, \llbracket P_{n} \rrbracket_{i}^{\prime}, \llbracket P \rrbracket_{i}^{\prime}
\end{aligned}
$$

Using $\llbracket P_{i} \rrbracket_{i}$ and $\llbracket P_{i} \rrbracket_{i}^{\prime}, i=1, \ldots, n$, terminating runs of \mathbf{P} can be specified by the formula

$$
\llbracket \mathbf{P} \rrbracket \rightleftharpoons \square \mathcal{A} \wedge \bigwedge_{i=1}^{n}\left(\llbracket P_{i} \rrbracket_{i} ;\left\lceil W_{i}\right\rceil\right)
$$

and initial subintervals of non-terminating runs of \mathbf{P} of sufficient duration satisfy the formula

$$
\llbracket \mathbf{P} \rrbracket^{\prime} \rightleftharpoons \square \mathcal{A} \wedge \bigvee_{J \subseteq\{1, \ldots, n\}, J \neq \emptyset}\left(\bigwedge_{i \in J} \llbracket P_{i} \rrbracket_{i}^{\prime} \wedge_{i \in\{1, \ldots, n\} \backslash J}\left(\llbracket P_{i} \rrbracket_{i} ;\left\lceil W_{i}\right\rceil\right)\right) .
$$

The projection operator allows to put down properties of the behaviours specified in the above way without keeping in mind that computation time is taken into account in the specification of these behaviours. Given an interpretation I of $\mathbf{L}(\mathbf{P})$ which describes a behaviour of \mathbf{P} in some interval $\sigma \in \mathbf{I}$ with computation time taken into account, that is, with N and $R_{i}, i=1, \ldots, n$, becoming 1 here and there, $I^{\lambda \tau \cdot I_{\tau}(\neg N)}$ describes the same behaviour of \mathbf{P} in the interval $\sigma^{\lambda \tau . I_{\tau}(\neg N)}$ under the true synchrony hypothesis, that is, with the computation time clipped off. Hence, if a requirement φ on this behaviour has been written without accounting of computation time, then the behaviour will satisfy φ iff $I, \sigma \models(\varphi / \neg N)$. Hence a requirement φ is generally satisfied by the terminating runs of \mathbf{P} iff

$$
\models_{\mu H D C} \llbracket \mathbf{P} \rrbracket \Rightarrow(\varphi / \neg N)
$$

and φ is satisfied by the initial subintervals of non-terminating runs of \mathbf{P} iff

$$
\models_{\mu H D C} \llbracket \mathbf{P} \rrbracket^{\prime} \Rightarrow \neg(\neg(\varphi / \neg N) ; \top)
$$

Similarly, projections of the kind $\left(. / R_{i} \vee \neg N\right)$ and $\left(. / \bigvee_{j \in J} R_{j} \vee \neg N\right)$ can be used to specify properties of behaviours of the entire program \mathbf{P} as observable by individual component process P_{i} or a subset $\left\{P_{j}: j \in J\right\}$ of the component processes, respectively.

4 Axioms and Rules for Projection onto State

In this section we study projection onto state as one of the operators of $\mu H D C$. We formulate some interesting properties of (./.) as $\mu H D C$ valid formulas and
proof rules. We specify a fragment of $\mu H D C$ with projection onto state which admits a simple truth preserving translation into $\mu H D C$ without projection. This translation can be defined by taking some of our axioms as the translation rules. The existence of the translation entails a decidability result about another smaller fragment of $\mu H D C$ with projection. Finally, we give a general proof rule about projection.

4.1 Projection onto State and Basic HDC Operators

(1) $\models_{\mu H D C} \varphi \Leftrightarrow(\varphi / H)$ for $\operatorname{rigid} \varphi$ from \mathbf{L}.

Let $\sigma \in \mathbf{I}, I$ be an interpretation of some $\mu H D C$ language \mathbf{L}, H be a state expression in \mathbf{L} and $h=\lambda \tau \cdot I_{\tau}(H)$. Then $\min \sigma^{h} \leq \tau<\max \sigma^{h}$ implies $I_{\tau}^{h}(H)=1$. Hence
(2) $\models_{\mu H D C}\left(\ell=\int H / H\right)$.

Since $\max \sigma^{h}-\min \sigma^{h}=\int_{\min \sigma}^{\max \sigma} I_{\tau}(H) d \tau, I_{\sigma}^{h}(\ell)=I_{\sigma}\left(\int H\right)$. This entails that
(3) $\models_{\mu H D C}(\ell=x / H) \Leftrightarrow \int H=x$

Similar considerations show that
(4) $\models_{\mu H D C}\left(\int S=x / H\right) \Leftrightarrow \int(S \wedge H)=x$.

This means that $(. / H)$ can be eliminated from (φ / H) in the case of atomic φ with rigid symbols and \int subterms only by putting $\int(S \wedge H)$ wherever $\int S$ occurs. (./ H) can be eliminated in case φ is an atomic flexible formula $R\left(t_{1}, \ldots, t_{n}\right)$ which satisfies

$$
\exists x\left(\int H=x \wedge\left(\square\left(\int H=x \Rightarrow R\left(t_{1}, \ldots, t_{n}\right)\right) \vee \square\left(\int H=x \Rightarrow \neg R\left(t_{1}, \ldots, t_{n}\right)\right)\right)\right.
$$

Given this,

$$
\models_{\mu H D C} R\left(t_{1}, \ldots, t_{n}\right) \Leftrightarrow\left(R\left(t_{1}, \ldots, t_{n}\right) / H\right)
$$

If neither \int, nor ℓ occur in t_{1}, \ldots, t_{n}, then
(5) $\models_{\mu H D C}(\lceil H\rceil ; \top) \wedge\left(\varepsilon R\left(t_{1}, \ldots, t_{n}\right) \wedge \int H=x ;\lceil H\rceil ; \top\right) \Rightarrow$

$$
\left(\left(\varepsilon R\left(t_{1}, \ldots, t_{n}\right) \wedge \ell=x ; \top\right) / H\right)
$$

where ε stands for either \neg or nothing. Straightforward arguments show that:
(6) $\models_{\mu H D C}(\neg \varphi / H) \Leftrightarrow \neg(\varphi / H)$
(7) $\models_{\mu H D C}(\varphi \vee \psi / H) \Leftrightarrow(\varphi / H) \vee(\psi / H)$
(8) $\models_{\mu H D C}((\varphi ; \psi) / H) \Leftrightarrow((\varphi / H) ;(\psi / H))$
(9) $\models_{\mu H D C}(\exists V \varphi / H) \Leftrightarrow \exists V(\varphi / H)$, if variable V does not occur in H
(10) $\models_{\mu H D C}((\varphi / S) / H) \Leftrightarrow(\varphi / S \wedge H)$
(11) $\models_{\mu H D C} \varphi \Rightarrow \psi$ implies $\models_{\mu H D C}(\varphi / H) \Rightarrow(\psi / H)$
(12) $\models_{\mu H D C} \int\left(H_{1} \Leftrightarrow H_{2}\right)=\ell$ implies $\models_{\mu H D C}\left(\varphi / H_{1}\right) \Leftrightarrow\left(\varphi / H_{2}\right)$
(13) $\models_{\mu H D C}(\varphi / \mathbf{1}) \Leftrightarrow \varphi$
(14) $\models_{\mu H D C}((\varphi ; \psi) / \mathbf{0}) \Leftrightarrow(\varphi \wedge \psi / \mathbf{0})$

4.2 Projection onto State and μ

The valid formulas listed so far are sufficient to deal with (./.) in $H D C$ without μ by, e.g., driving it towards atomic formulas. Next we extend this approach a fragment of $\mu H D C$ which properly contains $H D C$.

Proposition 4.1 Let H be a state expression, $\varphi \rightleftharpoons \mu_{i} X_{1} \ldots X_{n} \cdot \varphi_{1}, \ldots, \varphi_{n}$ and none of the occurrences of X_{1}, \ldots, X_{n} in $\varphi_{1}, \ldots, \varphi_{n}$ be in the scope of negation, nor in the scope of μ or (./.). Let ψ_{j} be obtained from $\left(\varphi_{j} / H\right)$ by driving projection inwards and finally replacing $\left(X_{1} / H\right), \ldots,\left(X_{n} / H\right)$ by X_{1}, \ldots, X_{n}, respectively, $j=1, \ldots, n$. Let $\psi \rightleftharpoons \mu_{i} X_{1} \ldots X_{n} \cdot \psi_{1}, \ldots, \psi_{n}$ Then $\models_{\mu H D C}(\varphi / H) \Leftrightarrow \psi$

Proof. Consider the finite sets of $H D C$ formulas $\Phi_{1}^{k}, \ldots, \Phi_{n}^{k}, k<\omega$, which are defined by putting:
$\Phi_{j}^{0}=\{\perp\}$
$\Phi_{j}^{k+1}=\Phi_{j}^{k} \cup\left\{\left[\alpha_{1} / X_{1}, \ldots, \alpha_{n} / X_{n}\right] \varphi_{i}: \alpha_{1} \in \Phi_{1}^{k}, \ldots, \alpha_{n} \in \Phi_{n}^{k}\right\}, j=1, \ldots, n$
Let $\Psi_{1}^{k}, \ldots, \Psi_{n}^{k}, k<\omega$, be defined similarly, yet using $\psi_{1}, \ldots, \psi_{n}$ instead of $\varphi_{1}, \ldots, \varphi_{n}$. Let $\left(\Phi_{j}^{k} / H\right)=\left\{(\alpha / H): \alpha \in \Phi_{j}^{k}\right\}, j=1, \ldots, n, k<\omega$. It can be shown that every formula from $\left(\Phi_{j}^{k} / H\right)$ has an equivalent one in Ψ_{j}^{k} and vice versa.

The restrictions on the use of \neg in $\varphi_{1}, \ldots, \varphi_{n}$ entail that $I, \sigma \models \varphi$ iff $\exists k<\omega \exists \alpha \in \Phi_{i}^{k}(I, \sigma \models \alpha)$. Hence $I, \sigma \models(\varphi / H)$ is equivalent to $\exists k<\omega \exists \alpha \in$ $\Phi_{i}^{k}(I, \sigma \models(\alpha / H))$. The latter is equivalent to $\exists k<\omega \exists \beta \in \Psi_{i}^{k}(I, \sigma \models \beta)$, that is to $I, \sigma \models \psi$.

Apparently, the most useful corollary to this proposition is:
(16) $\models_{\mu H D C}\left(\varphi^{*} / H\right) \Leftrightarrow\left((\varphi / H)^{*} ; \int H=0\right), \quad \models_{\mu H D C}\left(\varphi^{+} / H\right) \Leftrightarrow(\varphi / H)^{+}$

4.3 Projection onto State in General

We conclude this section with a general proof rule about (./.). It applies to virtually all conservative extensions of $D C$ with (./.) with introspective modalities only. We first give some observations that suggest this rule.

Assume the notation introduced to define (./.). Since the duration of σ^{h} never exceeds that of σ, the condition $I^{h}, \sigma^{h} \models \varphi$ can be replaced by an equivalent one of the kind $I^{\prime}, \sigma^{h^{\prime}} \models \varphi$, where $\sigma^{h^{\prime}}=\left[\min \sigma, \min \sigma+\max \sigma^{h}-\right.$ $\left.\max \sigma^{h}\right]$ and I^{\prime} is an interpretation of \mathbf{L} that behaves on $\sigma^{h^{\prime}}$ in the way I^{h} does on σ^{h}. Next, all the flexible symbols which occur in φ can be replaced by fresh ones, thus obtaining an isomorphic formula φ^{\prime}, and I^{\prime} can be replaced by an interpretation $I^{\prime \prime}$ which is defined on these symbols only and yields the same values on them as I^{\prime} does on the original symbols of φ. This allows the condition $I^{h}, \sigma^{h} \models \varphi$ to be replaced by $I^{\prime \prime}, \sigma^{h^{\prime}} \models \varphi^{\prime}$. The latter is equivalent to

$$
I^{\prime \prime}, \sigma \models \exists x\left(\int H=x \wedge\left(\ell=x \wedge \varphi^{\prime} ; \top\right)\right),
$$

provided x has no free occurrence in φ. Now let \mathbf{L}^{\prime} be the extension of \mathbf{L} by the fresh flexible symbols used to place in φ^{\prime}. Then $I \cup I^{\prime \prime}$ is an interpretation of \mathbf{L}^{\prime} and

$$
I \cup I^{\prime \prime}, \sigma \models(\varphi / H) \Leftrightarrow \exists x\left(\int H=x \wedge\left(\ell=x \wedge \varphi^{\prime} ; \top\right)\right)
$$

Let us specify the desired relationship between the values of I on the flexible symbols of φ at the subintervals of σ and the values of $I^{\prime \prime}$ on their counterparts from φ^{\prime} at the corresponding subintervals of $\sigma^{h^{\prime}}$ by $D C$ formulas. Let R and R^{\prime} be n-place relation symbols. We denote the formula
$\forall x_{1} \ldots \forall x_{n} \forall y \forall z\binom{y+z \leq \int H \Rightarrow}{\binom{\left.\left(\int H=y ;(\lceil H\rceil ; \top) \wedge \int H=z \wedge R\left(x_{1}, \ldots, x_{n}\right) ;(\lceil H\rceil ; \top)\right)\right)}{\Leftrightarrow\left(\ell=y ; R^{\prime}\left(x_{1}, \ldots, x_{n}\right) \wedge \ell=z ; \top\right)}}$
by $R \sim_{H} R^{\prime}$. Let $n \geq 2$ and f and f^{\prime} be $n-1$-ary function symbols. Then we denote formula that is obtained by putting $f\left(x_{1}, \ldots, x_{n-1}\right)=x_{n}$ and $f^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)=x_{n}$ in place of $R\left(x_{1}, \ldots, x_{n}\right)$ and $R^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ respectively by $f \sim_{H} f^{\prime}$. For flexible constants c and $c^{\prime}, c \sim_{H} c^{\prime}$ is the result of substituting $c=x_{1}$ and $c^{\prime}=x_{1}$ in the respective places in the above formula with $n=1$. The subformula ($\lceil H\rceil ; \top$) in $R \sim_{H} R^{\prime}$ is to ascertain that the restriction of I to the subintervals of σ bears enough information to define $I^{\prime \prime}$ to the subintervals of $\sigma^{h^{\prime}}$, because it is possible to have $\gamma_{h}\left(\delta_{h}(\tau)\right)>\tau$, in case $h(\tau)=0$. For boolean state variables P and $P^{\prime}, P \sim_{H} P^{\prime}$ is
$\forall x \forall y \forall z\left(y+z \leq \int H \Rightarrow\binom{\left(\int H=y ; \int H=z \wedge \int(P \wedge H)=x ; \top\right)}{\Leftrightarrow\left(\ell=y ; \ell=z \wedge \int P^{\prime}=x ; \top\right)}\right)$
Finally, for real state variables p and $p^{\prime}, p \sim_{H} p^{\prime}$ is $\forall x \forall y \forall z \forall t\left(y+z \leq \int H \Rightarrow\binom{\left(\int H=y ; \int H=z \wedge \int(p=t \wedge H)=x ; \top\right)}{\Leftrightarrow\left(\ell=y ; \ell=z \wedge \int\left(p^{\prime}=t\right)=x ; \top\right)}\right)$
Now, given that s_{1}, \ldots, s_{n} are the flexible symbols of φ, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ are fresh symbols of the same kinds and arities as s_{1}, \ldots, s_{n}, respectively, the rule can be put down as follows:
(PR)

$$
\frac{\theta \wedge \bigwedge_{i=1}^{n} s_{i} \sim_{H} s_{i}^{\prime} \Rightarrow\left(\ell=x ; \ell=y \wedge\left[s_{1}^{\prime} / s_{1}, \ldots, s_{n}^{\prime} / s_{n}\right] \varphi ; \top\right)}{\theta \wedge\left(\int H \geq x+y ;\lceil H\rceil ; \top\right) \Rightarrow \neg\left(\int H=x ; \int H=y \wedge \neg(\varphi / H) ;\lceil H\rceil ; \top\right)}
$$

5 The $\lceil P\rceil$-fragment of $H D C^{*}$ with Projection onto State is Decidable

The BNF for formulas in the $\lceil P\rceil$-fragment of $H D C^{*}$ is

$$
\varphi::=\perp|\ell=0|\lceil S\rceil|\neg \varphi| \varphi \vee \varphi|(\varphi ; \varphi)| \varphi^{*} \mid \exists P \varphi
$$

It is known that $\exists P$ and \neg can be eliminated from $H D C^{*}\lceil P\rceil$ formulas, that is, for every $H D C^{*}\lceil P\rceil$-formula an equivalent quantifier-free and negation-
free one in the same vocabulary can be built. A proof in the notation of this paper can be found in Gue00b. The valid equivalences from Subsections 4.1 and 4.2 entail that given such a formula φ and a state expression H, an equivalent ψ to (φ / H) can be built with projection occurring in ψ only in subformulas of the kinds $(\ell=0 / H)$ and $(\lceil S\rceil / H)$. Yet the valid equivalences

$$
(\ell=0 / H) \Leftrightarrow \ell=0 \vee\lceil\neg H\rceil \text { and }(\lceil S\rceil / H) \Leftrightarrow(\lceil H \Rightarrow S\rceil) \wedge \diamond\lceil H\rceil
$$

show that projection onto state can be eliminated from these subformulas too. Hence every formula from the $\lceil P\rceil$-fragment of $H D C^{*}$ with projection can be transformed into an equivalent quantifier- and projection-free one. Validity is decidable for such formulas, as known from [ZHS93].

6 Axioms and Rules for pref and suff in $\mu H D C$

This section is structured after the previous one about (./.) in $\mu H D C$.

6.1 pref, suff and Basic HDC Operators

The valid $\mu H D C$ formulas with pref and suff below make no explicit reference to μ. Most of them deal with the interaction between pref and the $H D C$ operators only. To obtain the corresponding equivalences about suff, one should interchange the operands of (.; .).
(1) $\models_{\mu H D C} \operatorname{pref}(\varphi) \Leftrightarrow \varphi$ for rigid φ
(2) $\models_{\mu H D C} \operatorname{pref}\left(\int S=x\right) \Leftrightarrow \int S \leq x$
(3) $\models_{\mu H D C} \operatorname{pref}\left(R\left(x_{1}, \ldots, x_{n}\right)\right)$ for flexible R
(4) $\models_{\mu H D C} \operatorname{pref}\left(f\left(x_{1}, \ldots, x_{n}\right)=x_{n+1}\right)$ for flexible f
(5) $\models_{\mu H D C} \operatorname{pref}(c=x)$ for flexible $c \neq \ell$
(6) $\models_{\mu H D C} \neg \operatorname{pref}(\varphi) \Rightarrow \operatorname{pref}(\neg \varphi)$
(7) $\models_{\mu H D C} \operatorname{pref}(\varphi \wedge \psi) \Rightarrow \operatorname{pref}(\varphi) \wedge \operatorname{pref}(\psi)$
(8) $\models_{\mu H D C} \operatorname{pref}(\varphi \vee \psi) \Leftrightarrow \operatorname{pref}(\varphi) \vee \operatorname{pref}(\psi)$
(9a) $\models_{\mu H D C} \operatorname{pref}((\varphi ; \psi)) \Rightarrow \operatorname{pref}(\varphi) \vee(\varphi ; \operatorname{pref}(\psi))$
(9b) $\models_{\mu H D C}(\varphi ; \operatorname{pref}(\psi)) \Rightarrow \operatorname{pref}((\varphi ; \psi))$
(9c) $\models_{\mu H D C} \ell=0 \wedge \operatorname{suff}(\varphi) \Rightarrow \operatorname{pref}(\psi)$ implies $\models_{\mu H D C} \operatorname{pref}(\varphi) \Rightarrow \operatorname{pref}((\varphi ; \psi))$
(10) $\models_{\mu H D C} \operatorname{pref}(\exists x \varphi) \Leftrightarrow \exists x \operatorname{pref}(\varphi)$
(11) $\models_{\mu H D C} \operatorname{pref}(\exists P \varphi) \Leftrightarrow \exists P \operatorname{pref}(\varphi)$
(12) $\models_{\mu H D C} \varphi \Rightarrow \psi$ implies $\models_{\mu H D C} \operatorname{pref}(\varphi) \Rightarrow \operatorname{pref}(\psi)$
(13) $\models_{\mu H D C}(\neg \operatorname{pref}(\varphi) ; \top) \Rightarrow \neg \varphi$
(14) $\models_{\mu H D C} \varphi \Rightarrow \neg(\neg \psi ; T)$ implies $\models_{\mu H D C} \operatorname{pref}(\varphi) \Rightarrow \psi$
(15) $\models_{\mu H D C} \operatorname{pref}(\operatorname{pref}(\varphi)) \Leftrightarrow \operatorname{pref}(\varphi)$
(16) $\models_{\mu H D C}(\operatorname{pref}(\varphi) / H) \Rightarrow \operatorname{pref}((\varphi / H))$

Superpositions of pref and suff
(17) $\models_{\mu H D C} \varphi \Rightarrow \square \operatorname{pref}(\operatorname{suff}(\varphi))$
(18) $\models_{\mu H D C} \varphi \Rightarrow \square \psi$ implies $\models_{\mu H D C} \operatorname{pref}(\operatorname{suff}(\varphi)) \Rightarrow \psi$
(19) $\models_{\mu H D C} \diamond \varphi \Rightarrow \psi$ implies $\models_{\mu H D C} \varphi \Rightarrow \operatorname{pref}(\operatorname{suff}(\psi))$
(20)
$\models_{\mu H D C} \operatorname{suff}(\operatorname{pref}(\varphi)) \Leftrightarrow \operatorname{pref}(\operatorname{suff}(\varphi))$
6.2 pref, suff and μ

Just like in the case of projection, the emphasis in the above list of valid formulas and rules about pref is to enable driving pref and suff towards atomic formulas to the possible extent. In this subsection we show that this can be done with some μ formulas too. The fragment of $\mu H D C$ we take is part of that from Proposition 4.1.

Let H be a state expression, $\psi_{i} \rightleftharpoons \mu_{i} X_{1} \ldots X_{n} \cdot \varphi_{1}, \ldots, \varphi_{n}, i=1, \ldots, n$ and none of the free occurrences of X_{1}, \ldots, X_{n} in $\varphi_{j}, j=1, \ldots, n$, be in the scope of negation, nor in the scope of $\mu,(. /$.$) or a quantifier which binds an$ individual variable.

Lemma 6.1 Each of the $\varphi_{j}, j=1, \ldots, n$, is equivalent to a disjunction of formulas of the kind $\left(\alpha_{1} ; \ldots ; \alpha_{l}\right)$, where either $\alpha_{k} \in\left\{X_{1}, \ldots, X_{n}\right\}$ or α_{k} has no free occurrences of $X_{1}, \ldots, X_{n}, k=1, \ldots, l$.

Proof. The equivalent formula can be obtained by applying

$$
\models_{\mu H D C} \exists P(\varphi \vee \psi) \Leftrightarrow \exists P \varphi \vee \exists P \psi \text { and } \models_{\mu H D C} \exists P(\varphi ; \psi) \Leftrightarrow(\exists P \varphi ; \exists P \psi)
$$

and the distributivity of (.; .) over disjunction as reduction rules on subformulas of φ_{j} which have occurrences of X_{1}, \ldots, X_{n}.

In the sequel we assume that

$$
\varphi_{j} \doteq \bigvee_{k=1}^{m_{j}}\left(\alpha_{j, k, 0} ; X_{i_{j, k, 1}} ; \alpha_{j, k, 0} ; \ldots ; \alpha_{j, k, l_{j, k}} ; X_{i_{j, k, l}, j_{j, k}} ; \alpha_{j, k, l_{j, k}}\right), \quad i, j=1, \ldots, n
$$

where $\alpha_{j, k, 0}, \ldots, \alpha_{j, k, l_{j, k}}$ have no free occurrences of X_{1}, \ldots, X_{n}. Since $\models_{\mu H D C}$ $\psi_{i} \Leftrightarrow\left[\psi_{1} / X_{1}, \ldots \psi_{n} / X_{n}\right] \varphi_{i}$ we have

$$
\models_{\mu H D C} \operatorname{pref}\left(\psi_{i}\right) \Leftrightarrow \bigvee_{k=1}^{m_{j}}\binom{\bigvee_{p=0}^{l_{j, k}}\left(\alpha_{j, k, 0} ; \psi_{i_{j, k, 1}} ; \ldots ; \psi_{i_{j, k, p} ;} ; \operatorname{pref}\left(\alpha_{j, k, p}\right)\right) \vee}{\bigvee_{p=1}^{l_{j, k}}\left(\alpha_{j, k, 0} ; \psi_{i_{j, k, 1}} ; \ldots ; \psi_{i_{j, k, p-1}} ; \alpha_{j, k, p-1} \operatorname{pref}\left(\psi_{i_{j, k, p}}\right)\right)}
$$

Substituting Y_{1}, \ldots, Y_{n} for $\operatorname{pref}\left(\psi_{1}\right), \ldots, \operatorname{pref}\left(\psi_{n}\right)$ in the above equivalences suggests that

$$
\models_{\mu H D C} \operatorname{pref}\left(\psi_{i}\right) \Leftrightarrow \mu_{i} Y_{1} \ldots Y_{n} \cdot \chi_{1}, \ldots, \chi_{n}, \quad i=1, \ldots, n
$$

where

$$
\chi_{i} \rightleftharpoons \bigvee_{k=1}^{m_{j}}\binom{\bigvee_{p=0}^{l_{j, k}}\left(\alpha_{j, k, 0} ; \psi_{i_{j, k, 1}} ; \ldots ; \psi_{i_{j, k, p}} ; \operatorname{pref}\left(\alpha_{j, k, p}\right)\right) \vee}{\bigvee_{p=1}^{l_{j, k}}\left(\alpha_{j, k, 0} ; \psi_{i_{j, k, 1}} ; \ldots ; \psi_{i_{j, k, p-1}} ; \alpha_{j, k, p-1} ; Y_{i_{j, k, p}}\right)}
$$

This can be established by a direct check with the definition of pref.

6.3 The Limits of the Expressibility of pref and suff

The valid equivalences about pref and suff from the previous two subsections entail that these operators can be expressed in the negation-free fragment of $\mu H D C$ with the restriction on temporal propositional letters bound by a μ operator not to occur in the scope of a quantifier over individuals, nor in the scope of (./.) in this μ operator's arguments.

Unfortunately, no general proof rule can be formulated about pref and suff. This is so, because $\models_{\mu H D C} \operatorname{pref}((\ell \neq 0 ; \varphi))$ is equivalent to the satisfiability of φ. Hence, only fragments of $\mu H D C$ with pref with the same complexity of validity and satisfiability may have complete axiomatic systems. In particular, if validity is recursively enumerable and not recursive in some fragment of $\mu H D C$ with negation, then satisfiability is not recursively enumerable due to the famous theorem of Post (cf. e.g. Sho67]). Hence, such a fragment could not be recursively axoimatisable.

Remarks and Related Work

As we mentioned in the introduction, the first logic akin to $D C$ to be extended by a projection operator was discrete-time ITL [HMM83.Mos86 Mos95]. Another interesting generalisation of an ITL projection operator introduced in [Mos86.Mos95] can be found in [He99.Gue00c].

The ideas behind projection onto state in $D C$ can be traced back to an early variant of $D C$, where heterogenous time domains consisting of discrete computation microtime to specify the internal working of a controller, and dense macrotime for the working of the controlled plant [PD97] were proposed. In that variant of $D C$ there were two flexible constants ℓ and η to measure macro- and micro-time respectively. In our example of specification these constants can be defined as $\int \neg N$ and $\int N$ respectively. These duration terms equal ℓ in the scope of $(. / \neg N)$ and $(. / N)$ respectively.

Special cases of the prefix operator have been used earlier to abbreviate notation, see e.g. [Die96,DVH99]. The operators pref and suff can be regarded as non-deterministic versions of the pair of expanding modalities introduced to $D C$ in Pan96].

The semantics of pref, suff and projection onto state given here, and the proposed axioms and proof rules about these operators aim the greatest possible generality within real-time $\mu H D C$. On the contrary, the proposed way to specify concurrent temporal programs' behaviour has been tailored to employ as few of the extending features of $D C$ as possible. In particular, nonterminating behaviour, which normally requires either expanding modalities or unbounded intervals to specify, has been dealt with by almost ordinary means - with the special condition on $\llbracket . \rrbracket^{\prime}$ formulas to hold on all the bounded initial
subintervals of the considered non-terminating behaviour only. The explicit account of computation time, which is compensated for by the possibility to use projection onto state for the formulation of requirements, has also enabled the specification of assignment without involving super-dense chop (cf. e.g. [HX99].)

A basic feature of $\mu H D C$ which was not made use of in the example behaviour specification, but would certainly be needed to manage a fullyfledged programming language, is the state variable binding quantifier. It is needed to specify local variables (cf e.g. [HX99]) which are not included in our example language for the sake of simplicity. Local variables can commence in unlimited numbers due to recursive invocations, and therefore cannot be treated as some of the finitely many variables of global scope and extent which occur freely in formulas of the kind $\llbracket P \rrbracket_{i}$ and $\llbracket P \rrbracket_{i}^{\prime}$. An appropriate clause of the definition of e.g. $\llbracket . \rrbracket_{i}$ for executing subprocess P with local variable p could be $\llbracket \operatorname{var} p ; P \rrbracket_{i} \rightleftharpoons \exists p \llbracket P \rrbracket_{i}$

References

[AN01] Arnold, A and D. NiwiŃski Rudiments of the μ-calculus. Elsevier, 2001.
[Die00] Dierks, H. Specification and Verification of Polling Real-Time Systems. Ph.D. Thesis, Oldenburg University, 2000.
[Die96] Dietz, C. Graphical formalization of real-time requirements. Proceedings of FTRTFT'96, LNCS 1135, pp. 366-385, Springer-Verlag, 1996.
[DVH99] Dang Van Hung. Projections: A Technique for Verifying Real-Time Programs in Duration Calculus. Technical Report 178, UNU/IIST, P.O. Box 3058, Macau, November 1999.
[Gue00a] Guelev, D. P. A Complete Fragment of Higher-Order Duration μ^{-} Calculus. Proceedings of FST TCS 2000. LNCS 1974, Sringer Verlag, 2000.
[Gue00b] Guelev, D. P. Interpolation and related results on $D C^{*}$. Research Report 203, UNU/IIST, P.O.Box 3058, Macau, June 2000.
[Gue00c] Guelev, D. P. A Complete Proof System for First Order ITL with Projection. Research Report 202, UNU/IIST, P.O.Box 3058, Macau, June 2000.
[HMM83] Halpern, J., Z. Manna and B. Moszkowski. A Hardware Semantics Based on Temporal Intervals. Proceedings of ICALP'83, pp. 278-91, LNCS 154, Springer Verlag, 1983.
[He99] He Jifeng. A Behavioral Model for Co-design. Proceedings of the World Congress on Formal Methods in the Development of Computing Systems, September, 1999, pp. 1420-1439, LNCS 1709, Springer Verlag, 1999.
[HX99] He Jifeng and Xu Qiwen. Advanced Features of DC and Their Applications. Millenial Perspectives in Computer Science, Palgrave, 2000.
[Mos86] Moszkowski, B. Executing Temporal Logic Programs. Cambridge University Press, 1986.
[Mos95] Moszkowski, B. Compositional Reasoning about Projected and Infinite Time. Proceedings of ICECCS'95, IEEE Computer Society Press, pp. 238-245, Los Alamitos, California, 1995.
[Pan95] Pandya, P. K. Some extensions to Mean-Value Calculus: Expressiveness and Decidability. Proceedings of CSL'95, LNCS 1092, 1995.
[Pan96] Pandya, P. K. Weak chop inverses and liveness in mean-value calculus. Proceedings of FTRTFT'96, LNCS 1135, 1996.
[PD97] Pandya, P. K. and Dang Van Hung. Duration Calculus of Weakly Monotonic Time. Technical Report 122, UNU/IIST, P.O.Box 3058, Macau, September 1997.
[Rav95] Ravn, A. P. Design of Embedded Real-Time Computing Systems. Technical report 1995-170, Technical University of Denmark, 1995.
[Sho67] Shoenfield, J. Mathematical Logic. Addison-Wesley, 1967.
[ZGZ99] Zhou Chaochen, D. P. Guelev and Zhan Naijun. A Higher-Order Duration Calculus. Millenial Perspectives in Computer Science, Palgrave, 2000.
[ZH96] Zhou Chaochen and M. Hansen Chopping a Point. Proceedings of BCS FACS 7th Refinement Workshop, Electronic Workshop in Computer Sciences, Springer-Verlag, 1996.
[ZHR91] Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A Calculus of Durations. Information Processing Letters, 40(5), pp. 269-276, 1991.
[ZHS93] Zhou Chaochen, M.R. Hansen and P. Sestoft. Decidability and Undecidability Results for Duration Calculus. Proceedings of STACS'93, Würzburg, LNCS 665, pp. 58-68, February 1993.
[ZRH93] Zhou Chaochen, A.P. Ravn and M.R. Hansen. An Extended Duration Calculus for Hybrid Real-Time Systems. Hybrid Systems, LNCS 736, Springer Verlag, 1993.

Remark: UNU/IIST reports are available through http://www.iist.unu.edu.

[^0]: ${ }^{1}$ D. Guelev's work on this article was partially supported through Contract No. I$1102 / 2001$ by the Ministry of Education and Science of the Republic of Bulgaria.
 2 Email: gelevdp@math.bas.bg
 ${ }^{3}$ Email: dvh@iist.unu.edu

