
Chapter 1

Introduction

The last decade of the twentieth century was marked by the penetration of partial dif-
ferential equations (PDEs) and the methods used to study them into the multivariate
constructive theory of functions, in particular in approximation theory and spline ana-
lysis. This trend differs from previous developments when standard objects such as
polynomial and rational functions and splines were used to approximate solutions of
partial differential equations.

The present book introduces and develops a new type of multivariate spline known
as polysplines.1 Although in the one-dimensional case there is a satisfactory theory of
one-dimensional splines, which includes all kinds of generalizations such as Chebyshev
splines andL-splines, in the multivariate case there are several alternatives which can
be considered to be multivariate splines in their own right, such as box splines, simplex
splines, radial basis functions etc. So far there are general principles which come from
an intuitive understanding of what a multivariate spline should be and which we wish to
discuss.

What is a multivariate spline? We will keep close to the following understanding of
a spline: assume that a domainD ⊂ Rn be given and a disjoint family of subdomains
Dj such that∪Dj = D, and the boundaries bdry(Dj ) are smooth enough, so that the
normaln exists almost everywhere on bdry(Dj ). Then asplineis a functionu defined in
D which is assembled of functionsuj defined onDj . These pieces are of similar nature
and match up to a certain degreed of smoothness on the joint boundaries. Imagine for
simplicity thatD ⊂ R2 andD = D1 ∪ D2, andD1 ∩ D2 = 0 which is a curve (see
Figure 1.1).

Throughout this book the joint boundary0 where two pieces match will be called
the interface or break-surface.

1 The name which completely characterizes the polysplines is “piecewise polyharmonic splines”. So far the
name “polyharmonic splines” has been used by W. Madych for radial basis functions made of the fundamental
solution of the polyharmonic operator.
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Then we require that
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where∂/∂n denotes the normal derivative (one of the two directions) on0. If we also
require more smoothness of the functionsu1 andu2 on the joint boundary0, sayu1 ∈
Cd1(D1) andu2 ∈ Cd1(D2), if 0 is also smooth enough, we may differentiate the
above equalities in the directionτ tangential to0 and obtain the equalities of the mixed
derivatives up to orderd1, i.e.
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where the indicesl andk satisfyl + k ≤ d1 and 0≤ k ≤ d. Let us fix a pointy on0.
To write the last equalities in a simpler way, let us introduce a local coordinate system
on the surface0 by puttingy = 0 and by choosing the normal vector (one of the two
directions) to0 to coincide with the coordinate axisx2. Then the above equality at the
pointy will read as follows:
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The really big questions arise if we are given a “data function”f on the set0 which
has to beinterpolatedby the splineu, i.e. if we would like to have

u1 = u2 = f on0.

Then the problem is to find for everyd a reasonableclass of functionsu1 andu2 for
which this interpolation equality can be solved for a large class of data functionsf. This
problem is a real intellectual challenge. In the present book we provide a solution only
for the integersd = 2p − 2 ≥ 0, wherep ≥ 1 is an integer. The functionsu1 andu2
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then satisfy the equations

1pu1 = 0 inD1,

1pu2 = 0 inD2,

where1p is the polyharmonic operator.
Our approach to this problem is widely based as will be seen in Chapters 3 and 4.
The theory of polysplines does not appear from nowhere. Even in its simplest cases

it relies heavily upon (and even reduces to) Chebyshev’s one-dimensional theory and
L-splines.

The reader has to be clear about the theory of polysplines. It is a theory which is a
genuine synthesis between two important areas in mathematics: approximation theory
and elliptic partial differential equations. This has increased the volume of the present
book by the inclusion of four appendixes: theCompendiumon spherical harmonics and
polyharmonic functions, andappendixeson elliptic boundary value problems (BVPs),
Chebyshev splines, and Fourier analysis.

Let us discuss right at the beginning of this book the so-called “data concept” of the
polysplines, addressing mainly the readers interested in practical applications: Where
do such data come from on a whole curve0 in R2 (or a surface0 in Rn)? Is not this
rather restrictive and making the polysplines uninteresting for many applications, since
the practical measurements are on a discrete set of points?

The answer to this argument is: In many practical applications (airborne, satellite
data, CAGD data) one may find a natural set of curves inR2 (respectively surfaces in
Rn) which contain the discrete data points. Further, in order to obtain data defined on the
whole curves one may apply the well-known one-dimensional methods for extending
data – one-dimensional splines, etc. In a similar way, and inductively, one proceeds in
the case of dimensionn ≥ 3.2

1.1 Organization of material

1.1.1 Part I: Introduction of polysplines

In Part I we provide a logical basis for the notion of polysplines. In Chapter 2 we
cover some basic results in one-dimensional spline theory. In Chapters 3 and 4 we
explain in detail the meaning of the data, smoothness and object concepts of the polyhar-
monic paradigm, and their implementation in spline analysis. In Chapter 5 we introduce
polysplines in the planeR2 when the interface set is equal to a finite number of parallel
straight lines (polysplines on strips). In Chapter 8 we consider the case when the inter-
face set equals a finite number of concentric circles inR2 (polysplines on annuli). In
the adjacent chapters we provide the necessary basics on harmonic and polyharmonic
functions on the strip, annulus and ball. The advantage of the two-dimensional case is
that the reader has absolutely no need to be familiar with PDEs. All that is necessary
is some basic results on the Fourier series which are provided in Chapter 12. The main

2 See also one of the statements in the last Chapter 24, “Afterword”.
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result is that the computation of the interpolation polysplines in the two cases reduces to
a computation of infinitely many proper one-dimensionalL-splines, whereL are opera-
tors with constant coefficients. In the case of polysplines on strips inR2 these operators
are given by

L

(
d

dt

)
=
(
d2

dt2
− ξ2

)p
,

whereξ is a real number, and in the case of the polysplines on annuli inR2 the operators
are given by

L

(
d

dt

)
=
p−1∏
l=0

(
d

dt
− (k + 2l)

) p∏
l=1

(
d

dt
− (−2− k + 2l)

)
for all integersk ≥ 0.

In Chapter 6 we provide experimental proofs for the superiority of the polysplines
over well established methods such as kriging, minimum curvature, radial basis functions
(RBFs) etc.3 This may be the most important reason for a reader whose main interest is
in numerical analysis to study polysplines. To such a reader we have to say that almost
all of Part I is simplified and algorithmic – the results are programmable.

Simple as they are, the polysplines inR2 have all the main features of the polysplines
with arbitrary interfaces and the proof of their existence is not easier. For that reason we
leave all the proofs of the existence of the interpolation polysplines to Part IV.

In Chapter 9 we define the polysplines on strips and on annuli inRn. For the
polysplines on annuli we need the structure of a polyharmonic function on the annu-
lus (Almansi-type theorem by I. Vekua inR2 and by S. L. Sobolev inRn). This is
thoroughly studied in Chapter 10. Matters are definitely simpler for the polysplines on
strips since we only need the Fourier transform of functions on strips. All necessary facts
about the Fourier transform are provided in Chapter 12. The basic result of Chapter 9
is again as in the two-dimensional case – the polysplines on strips and annuli reduce to
some special types of one-dimensionalL-splines whereL is an operator with constant
coefficients (see Theorem 9.3, p. 119, and Theorem 9.7, p. 124).

Part I is logically very self-contained and would meet the interests of a reader occu-
pied with smoothing methods and computer-aided geometric design (CAGD) but not
with wavelet analysis.

1.1.2 Part II: Cardinal polysplines

In Part II we concentrate on the polyspline analog to Schoenberg’s one-dimensional
cardinal splines. This theory will be very important for the wavelet analysis studied in
Part III.

As became clear in Part I, we need the theory of the one-dimensionalL-splines for
the successful study of polysplines on strips and annuli. In Chapter 13 we start with
the theory of cardinalL-splines (whereL is an operator with constant coefficients) as

3 The comparison has been made with all methods which are implemented in the “Surfer” package (Golden
Software, Golden, Colorado).
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presented by Ch. Micchelli and I. Schoenberg, and include some results from N. Dyn
and A. Ron. The classical polynomial case studied by Schoenberg is a simple special
case when the operatorL = (dn+1)/(dtn+1).

The major discovery of Part II is that thecardinal polysplines on annuliare
polysplines which have as interfaces (break-surfaces) all concentric spheresSj with
radii ej (or more generallyabj where the constantsa, b > 0). They are studied in Chap-
ter 15. We prove that if on every such sphereSj a functionfj is prescribed such that∥∥fj∥∥L2

has a “power growth” as|j |γ for someγ > 0 then the interpolation polyspline
u exists, i.e.

u = fj onSj for all j ∈ Z,
and satisfies an estimate of the type

‖u(rθ)‖
L2(Sn−1

θ )
≤ C| logr|γ .

HereSn−1 is the unit sphere inRn.
In Chapter 14 we prove that the shifts of the compactly supportedL-splineQ (for

a fixed operatorL) form a Riesz basis. This result is a generalization of the polynomial
case considered by Ch. Chui. This is a preparation for the wavelet analysis in Part III.

The case of cardinal polysplines on strips is definitely easier to consider. In that case
the cardinal polysplines have as break-surfaces infinitely many parallel hyperplanes
which are equidistant. There are again two cases – the periodic polysplines and the
polysplines with fast decay. Unfortunately, lack of space prevents us from giving a
detailed description of these results.

1.1.3 Part III: Wavelet analysis using polysplines

Thewavelet analysisin Part III can be read without any preparation in the area, but it
would be best if the reader were already familiar with Chui’s results on cardinal spline
wavelet analysis.

In Chapter 16 we present briefly Chui’s results on cardinal spline wavelet analysis
so that the reader is familiar with the material that will be generalized.

In Chapter 17 we provide a thorough study of the cardinalL-spline wavelet analysis,
i.e. we use cardinalL-splines on refining grids 2jZ and study the structure of the spaces.
The germs of this theory have been laid by C. de Boor, R. DeVore and A. Ron. The
case of nonuniformL-spline wavelets (finite case) has been considered by T. Lyche
and L. Schumaker. We will prove generalizations of all Chui’s basic results for cardinal
spline wavelet analysis.

Chapter 18 may be considered as the apex of the pyramid built in the previous chap-
ters. We use all results proved up to this point as bricks for the synthesis of the “polyspline
wavelets” on annuli which represent aspherical polyharmonic multiresolution analysis.
It should be noted that they are compactly supported. It seems that this will be a new
framework for further studies in multivariate multiresolution analysis.

On the other hand thecardinal polysplines on stripsgenerate aparallel polyharmonic
multiresolution analysis. Technically its description is easier but no compactly supported
“polyspline wavelets” exist!
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1.1.4 Part IV: Polysplines on general interfaces

Part IV has a quite different flavour. It is not concrete analysis as the previous parts where
we have considered the two special cases of polysplines. It considers the polysplines for
general interfaces (break-surfaces). Even more generally, we introduce a very general
class of polysplines, which are piecewise solutions of a large class of higher-order elliptic
equations. We prove a generalization of the Holladay extremal property as well as the
existence of interpolation polysplines for the so-called “even-order polysplines”. Unfor-
tunately, there is no simpler setting than Sobolev spaces or Hölder spaces if one wants
to obtain solutions. For that reason Part IV may be read without problem only by some-
body who is already familiar with the classical theory of elliptic BVPs. Almost all the
necessary references are given in Chapter 23. We also provide an extensive introduction
to explain the leading ideas of polyspline theory, and references which are classified
according to their level and accessibility. Although this is the most abstract part of the
book the most technical and deep remains Part III (wavelet analysis).

The following are the surveys and appendixes which we have provided as necessary
for our study:

• Compendiumon spherical harmonics and polyharmonic functions in annular domains
following Stein and Weiss, and Sobolev (Chapter 10, p. 129). Not available elsewhere.

• Surveyof cardinalL-splines (or Chebyshev splines) following Micchelli (Chapter 13,
p. 221). Not available elsewhere.

• Surveyof the sharp estimates and properties of the fundamental functionL of the
cardinal polynomial splines following several papers by Schoenberg (Section 15.5,
p. 294). Not available elsewhere.

• Surveyof the cardinal polynomial wavelets following Chui (Chapter 16, p. 313).

• Appendixon Chebyshev splines following Schumaker (Chapter 11, p. 187).

• Appendixon elliptic BVPs in Sobolev and Ḧolder spaces (Chapter 23, p. 461).

• Appendixon Fourier analysis (Chapter 12, p. 209).

1.2 Audience

Part I (except for the existence theorems in Chapter 9), and Parts II and III could be
read by anyone who has a good knowledge of classical mathematical analysis, while the
Compendiumon spherical harmonics and polyharmonic functions makes the exposition
self-contained. One may say that technically this is nineteenth-century mathematics,
wavelets also being included. Part IV is somewhat different. The application of ellip-
tic BVPs is essential and is unavoidable. It would be best if the reader was already
familiar with this material. However, we have supplied Part IV with an extended and
comprehensive introduction, to at least enable the reader who is not competent in this
area to understand that the leading ideas stem from one-dimensional spline theory. This
accords with the author’s conviction that ideas are more important to the development
of mathematics than formulas.
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The author has misgivings about not providing elementary proofs to the existence
theorems in Chapter 9, but that might have been a lengthy process. For that reason the
elementary proofs are left to the reader; we have only supplied the main hints.

The following parts of the book may be used as graduate course texts:

1. Introduction to polysplines (Chapters 2–8). Knowledge of PDEs is not required.
Chapter 9, devoted to the polysplines inRn, may be included with the exception of
the existence theorems.

2. Introduction to spherical harmonics and polyharmonic functions (Chapter 10).

3. Introduction to cardinalL-splines (Micchelli’s approach) (Chapter 13). Introduction
to cardinal polysplines (Chapter 15).

4. Introduction to cardinalL-spline wavelet analysis (approach of Chui and de Boor
et al.) (Chapter 17). Introduction to cardinal polyharmonic wavelet analysis
(Chapter 18).

1.3 Statements

• The author is convinced that, in the near future, polyharmonic functions will be studied
in multivariate mathematical analysisin the same way that polynomials are studied
in one-dimensional mathematical analysis. From this point of view the constructive
theory of functions (including approximation theory) is a qualitative theory of PDEs,
whereas the solutions to the elliptic equations form the case of Chebyshev systems.

• Why polyharmonic functions? That is the most natural question which would be
asked by any practically oriented mind. “Polynomials are so simple! Andradial basis
functionsare simpler to compute! Why should we learn this complicated theory?”
First, the answer to this question is far from obvious. There are two ways to answer
the above questions. The first is by supplying sufficiently beautiful theorems and other
notional arguments which show that the theory of polysplines isa natural multivariate
spline theory. The second way is simply by providing more experimental material
which shows that the polysplines are better than the usual splines, kriging, minimum
curvature, RBFs, and other known methods.

This book is devoted mainly to the first way, the notional one. We show the flexibility
of the polysplines concept and provide sufficient argumentation to show that it is a
very natural generalization of the notion of one-dimensional splines. We also devote
a chapter to showing what the polysplines can do in practice.

• It was the initial intention of the author to scatter the results of this research in several
papers. In fact, the most important fundamental results have been published in journals
or conference proceedings. But the brevity of such publications does not allow for an
extended presentation, explaining the ideas, making comparisons and finishing with
a complete description of the illustrative examples.

• One may consider as a proof that the polysplines are a genuine generalization of the
one-dimensional splines the fact that all cases of symmetric interfaces are reduced to
studying one-dimensional Chebyshev splines. We prove this in Chapter 9 for the case
of polysplines on strips, and for the case of polysplines on annuli, all inRn.
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• The Chebyshev systems (see work by Karlin and Studden, or Schumaker) play an
important role in univariate approximation theory. In fact, all the beautiful results in
the classical and trigonometric moment problem and best approximation theory are
also available when the Chebyshev systems are used instead.

The very deep reason for using pieces of polyharmonic functions as bricks for
constructing splines comes fromapproximation theory. It is based on the obser-
vation (thus far not rigorously proved) that the polyharmonic functions play the
role of Chebyshev systems in several dimensions. We would refer to a series of
papers by the author and others establishing theorems in approximation theory
through polyharmonic functions which are analogs to one-dimensional approxima-
tion theory through polynomials. This area is called by the author thepolyharmonic
paradigm.

• Finally, we have to say that a major motivation to write “yet another theory in analy-
sis” was the experimental success of the polysplines. Experiments with data from
magnetism have shown that polysplines give much better results than the Briggs
algorithm (minimum curvature), kriging, and RBFs functions which are very pop-
ular in that area. The experiments with data in CAGD have shown the superiority of
the polysplines even over the usual spline methods, for which CAGD is a priority
area.

• The exposition is by no means uniform. Some places are written at an extremely
elementary level, things are oversimplified, especially where algorithmic questions
are concerned, in order to allow a constructively thinking reader to be able to make
the algorithm. Other places, in particular those devoted to the existence theory and
applications of Sobolev spaces etc., are intended for the more advanced reader and
may be rather tough.

• Many of the results in this book are appearing for the first time. If it is not indicated
that the result belongs to someone else, then the result is new.

• We wish to help the reader to find references to a formula, theorem, or chapter–
section–subsection, by providing apage numberto most of these references.

• The namesplineis associated with smoothness, or smoothly joining pieces of analytic
entity. This will be our point of view for the generalization which we plan to do. For
that reason it is clear that we have to employ the notions of multivariate smoothness
as Sobolev and Ḧolder spaces. This makes things a lot more complicated than the
one-dimensional case but it could not be otherwise if one wants to obtain a genuine
multivariate spline theory.

• Many of the books or papers cited here have Russian, French, or other versions. For
that reason we quote the number of the theorem, proposition, lemma, section etc.,
which is independent of the translation.

1.4 Acknowledgements

Many results in the present book were obtained by the author during his stay as a
Humboldt Research Fellow at the University of Duisburg in 1992–1994, and later by a



Introduction 9

grant from the VW-Foundation in 1996–1999. The author wishes to express his gratitude
to the Department of Mathematics, University of Duisburg, and especially to Professor
Werner Haussmann, for the scientific collaboration and hospitality. The author has lec-
tured over parts of the book as a Visiting Professor at the University of Hamburg in
1997 and 1999, for which he is very grateful to Professor Wolf Hoffmann. The Working
Group on Elliptic Boundary Value Problems (formerly at the Max Planck Society) of
Professor Bert-Wolfgang Schulze at the University of Potsdam has often played host to
the author since 1992, and many solutions and new ideas for the future have taken shape
near Sanssouci.

• Special thanks are due to Dr. Hermann Render (Department of Mathematics, Uni-
versity of Duisburg), for many useful remarks on the whole text. Also some basic
Lemmata in the Chapter on interpolation cardinal polysplines are due to him, as well
as proofs of missing argumentation at several places in Part III on wavelet analysis.
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ciency, I got a good encouragement from Professor Erik Grafarend (Institute of
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1.5 The polyharmonic paradigm

The polysplines of the present book are a result of the application of the so-called
polyharmonic paradigm to spline analysis.

Until recently thepolynomial paradigmhas been a dominant concept in the multi-
variate constructive theory of functions. The polynomial paradigm comprizes all theories
which rely upon multivariate polynomials or “tensor product” constructs.

Let us briefly explain what will be understood by the termpolyharmonic paradigm. Its
aim is to distinguish the polyharmonic functions as a proper multivariate generalization
of theone-dimensional polynomials.The main thesis is that the polyharmonic functions
have to be used as a main building block in the multivariate constructive theory of
functions. The polyharmonic paradigm has to be understood as an alternative to the
polynomial paradigm.

The polyharmonic paradigm consists ofoperator, objectanddata conceptswhich
are related, and which we briefly describe below.

1.5.1 The operator, object and data concepts of the
polyharmonic paradigm

Theoperator conceptconsists of replacing the operatord/dt and its powers in one dimen-
sion through the Laplace operator1 and its powers (called polyharmonic operators), or
symbolically written

d

dt
−→ 1, (1.1)

dp

dtp
−→ 1p.

Theobjects conceptconsists of replacing the one-dimensional polynomials which
are solutions to the equation

dp

dtp
f (t) = 0

with the solution of the polyharmonic equation

1pf (x) = 0.

The functiontp−1
+ defined by

t
p−1
+ :=

{
tp−1 for t ≥ 0,

0 for t ≤ 0,

satisfies
dp

dtp
t
p−1
+ = δ(t)

whereδ is theDirac delta function inR. We will replace it with the functionRp (x)
which satisfies

1pRp(x) = δ(x)
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whereδ is the Dirac delta function inRn. One look at the explicit formulas forRp
(see [3], or the solutions to the operatorLp

(0) in Proposition 10.32, p. 168) shows how

similar they are to the functionstp−1
+ .

Thedata conceptconsists of replacing the discrete set of data points{t1, t2, . . . , tN }
in the one-dimensional case with surfaces{01, 02, . . . , 0N } of dimensionn− 1 inRn,
or

tj −→ 0j .

In view of the polyharmonicity paradigmone may reconsider the basic notions
of mathematical analysis in several dimensions, likefinite (or divided) differences,
multivariate Taylor formulaetc.

We will illustrate the richness of the above formal side of the polyharmonic paradigm
by considering the multivariate analogs of the Taylor formula.

1.5.2 The Taylor formula

In the case of the one-dimensional Taylor formula

f (t) = f (t0)+ t − t01!
f ′ (t0)+ (

t − t0)2
2!

f ′′ (t0)+ ...+ (
t − t0)p−1

(p − 1)!
f (p−1) (t0)

+ 1

(p − 1)!

∫ t

t0

f (p) (τ ) (t − τ)p−1
+ dτ

we find that theAlmansi, PizzettiandGreenformulas are alsogenuine analogsto it.

The Almansi formula

Let f (x) be a polyharmonic function in the ballB = B (0;R) . Then the Almansi
formula reads as

f (x) = f0(x)+ |x|2f1(x)+ |x|4f2(x)+ · · · + |x|2p−2fp−1(x) for x ∈ Rn,

wherefk(x) are harmonic functions in the ballB. Compared with the Taylor formula,
it is obtained by the scheme

d

dt
−→ 1,

dp

dtp
−→ 1p,

and since the constantsf (k)(t0) are solutions of

d

dt

(
f (k)(t0)

) = 0,

they are replaced by solutions of the Laplace equation,

1fk(x) = 0.
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The Pizzetti formula

This reads as∫
S(x0;R)

f dσ (y) = f (x0)+ an1 |x − x0|21f (x0)+ an2 |x − x0|412f (x0)+ ...

for all x ∈ S (x0;R) , whereanj are some coefficients depending only on the dimension
of the spacen. Due to|x − x0| = R the replacement scheme is

data pointt0 −→ data surfaceS(x0;R)

point value att0 −→
∫

S(x0;R)
f dσ(y),

value
dk

dtk
f (t0) −→ 1kf (x0).

The Green formula

Let f (x) be a polyharmonic function of orderp in the domainD having sufficiently
smooth boundary. Assume thatf belongs toC2p (D) . Then the Green formula reads as

f (x) = �n
p−1∑
j=0

∫
∂D

{
1jf (z)

∂Rj+1(z− x)
∂νz

− ∂1
jf (z)

∂νz
Rj+1(z− x)

}
dσ(z),

seeAronszajn–Creese–Lipkin[3, p. 9], or formula (23.6) on p. 479. HereRj is the
properly normalized fundamental solution to the equation1jRj (x) = δ (x) , and�n
is a constant (in (10.3), p. 130); we have denoted by∂∂νz the inward normal derivative.

The above formula is obtained through the rather unusual scheme

data pointt −→ data pointx,

value f(t) −→ valuef(x) ,

data pointt0 −→ data surface∂D,

value
d2j

dt2j
f(t0) −→

∫
∂D

1jf(z)
∂Rj+1 (z− x)

∂νz
dσ (z) ,

value
d2j+1

dt2j+1
f(t0) −→ −

∫
∂D

∂1jf(z)

∂νz
Rj+1 (z− x) dσ (z) .

Note that thek’th term

uk (x) = �n
k∑
j=0

∫
∂D

{
1jf(z)

∂Rj+1 (z− x)
∂νz

− ∂1
jf(z)

∂νz
Rj+1 (z− x)

}
dσ (z)
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satisfies
1k+1uk (x) = 0 inD.

Thus we see that we have different ways to make a multivariate analog to the
Taylor formula. When we generalize univariate results we have to choose a genuine
generalization by finding the proper scheme.


