Multivariate Polysplines

Dedicated to the memory of Tseni

Multivariate Polysplines: Applications to Numerical and Wavelet Analysis

Ognyan Kounchev

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria

San Diego San Francisco New York Boston London Sydney Tokyo This book is printed on acid-free paper.

Copyright © 2001 by ACADEMIC PRESS

All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without the prior permission in writing from the publisher.

> Academic Press A Harcourt Science and Technology Company Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK http://www.academicpress.com

Academic Press A Harcourt Science and Technology Company 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.academicpress.com

ISBN 0-12-422490-3

Library of Congress Catalog Number: 2001089852

A catalogue record of this book is available from the British Library

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain by MPG Books Ltd, Bodmin.

01 02 03 04 05 06 MP 9 8 7 6 5 4 3 2 1

Contents

Preface

1	Intro	duction	1		
_	1.1	Organization of material	3		
		1.1.1 Part I: Introduction of polysplines	3		
		1.1.2 Part II: Cardinal polysplines	4		
		1.1.3 Part III: Wavelet analysis using polysplines	5		
		1.1.4 Part IV: Polysplines on general interfaces	6		
	1.2 Audience				
	1.3	1.3 Statements			
	1.4	Acknowledgements	8		
	1.5				
		1.5.1 The operator, object and data concepts of the			
		polyharmonic paradigm	10		
		1.5.2 The Taylor formula	11		
2	One -2.1 2.2 2.3 2.4 2.5	dimensional linear and cubic splines Cubic splines Linear splines Variational (Holladay) property of the odd-degree splines Existence and uniqueness of odd-degree splines The Holladay theorem	19 19 21 s 23 26 27		
•			20		
3		two-dimensional case: data and smoothness concepts	29		
	3.1	The data concept in two dimensions according to the	20		
		polyharmonic paradigm 3.1.1 "Parallel lines" or "strips"	29 32		
		3.1.1 "Parallel lines" or "strips"3.1.2 "Concentric circles" or "annuli"	32 33		
	3.2		55		
	3.2	The smoothness concept according to the	34		
		polyharmonic paradigm 3.2.1 The "strips"	34 34		
		L	34 36		
		3.2.2 The "annuli"	30		

XV

vi Contents

4		The objects concept: harmonic and polyharmonic functions in rectangular domains in \mathbb{R}^2 39				
				39		
	4.1		onic functions in strips or rectangles	40		
	4.2		netrization" of the space of periodic			
			onic functions in the strip: the Dirichlet problem	43		
	4.3		netrization" of the space of periodic			
		polyha	armonic functions in the strip: the Dirichlet problem	46		
		4.3.1	The biharmonic case	46		
		4.3.2	The polyharmonic case	49		
	4.4	Nonpe	priodicity in y	52		
5	Polys	plines or	n strips in \mathbb{R}^2	57		
-	5.1		ic harmonic polysplines on strips, $p = 1$	59		
	5.2		ic biharmonic polysplines on strips, $p = 2$	60		
	5.2	5.2.1	The smoothness scale of the polysplines	60		
	5.3		uting the biharmonic polysplines on strips	61		
	5.4		eness of the interpolation polysplines	64		
	5.4	Onique	elless of the interpolation polyspinies	04		
6	Appl		f polysplines to magnetism and CAGD	67		
	6.1		hing airborne magnetic field data	67		
	6.2	Applic	cations to computer-aided geometric design	71		
		6.2.1	Parallel data lines Γ_i	71		
		6.2.2	Nonparallel data curves Γ_i	74		
	6.3	Conclu		75		
7	The c	obiects co	oncept: harmonic and polyharmonic functions in			
		li in \mathbb{R}^2		77		
	7.1	Harmo	onic functions in spherical (circular) domains	77		
		7.1.1	Harmonic functions in the annulus	79		
		7.1.2	"Parametrization" of the space of harmonic			
			functions in the annulus and the ball:			
			the Dirichlet problem	82		
		7.1.3	The Dirichlet problem in the ball	85		
		7.1.4	An important change of the variable, $v = \log r$	86		
	7.2		nonic and polyharmonic functions	86		
		7.2.1	Polyharmonic functions in annulus and circle	87		
		7.2.2	The set of solutions of $L^p_{(k)}u(r) = 0$	89		
		7.2.3	The operators $L^p_{(k)}(d/dr)$ generate an Extended			
		1.2.5	Complete Chebyshev system	90		
	7.3	"Paran	netrization" of the space of polyharmonic functions			
	110		annulus and ball: the Dirichlet problem	92		
		7.3.1	The one-dimensional case	92		
		7.3.2	The biharmonic case	92 92		
		7.3.3	The polyharmonic case	92 95		
		7.3.4	Another approach to "parametrization": the	75		
		1.3.4	Allouner approach to parametrization , the Almansi representation	96		
			Annansi representation	90		

				Contents	vii
		7.3.5 7.3.6	Radially symmetric polyharmonic functions Another proof of the representation of radially		97
			symmetric polyharmonic functions		98
8	Polysp		annuli in \mathbb{R}^2		101
	8.1		armonic polysplines, $p = 2$		103
	8.2		y symmetric interpolation polysplines		104
		8.2.1	Applying the change of variable $v = \log r$		107
	8.3	8.2.2 Compu	The radially symmetric biharmonic polysplines ting the polysplines for general		108
		(nonco	nstant) data		109
	8.4	The uni	queness of interpolation polysplines on annuli		110
	8.5	The cha	ange $v = \log r$ and the operators $M_{k,p}$		111
	8.6	The fur	idamental set of solutions for		
		the open	rator $M_{k,p}(d/dv)$		113
9	Polysp	olines on	strips and annuli in \mathbb{R}^n		117
	9.1		ines on strips in \mathbb{R}^n		118
		9.1.1	Polysplines on strips with data periodic in y		119
		9.1.2	Polysplines on strips with compact data		121
		9.1.3	The case $p = 2$		122
	9.2	Polyspl	ines on annuli in \mathbb{R}^n		122
		9.2.1	Biharmonic polysplines in \mathbb{R}^3 and \mathbb{R}^4		127
		9.2.2	An "elementary" proof of the existence of		
			interpolation polysplines		128
10	Comp	endium	on spherical harmonics and		
	polyh	armonic	functions		129
	10.1	Introdu	ction		129
	10.2	Notatio	ns		130
	10.3	Spheric	al coordinates and the Laplace operator		131
	10.4	Fourier	series and basic properties		134
	10.5	Finding	the point of view		136
		10.5.1	, ,		
			harmonic for $k \ge 0$		136
		10.5.2	The functions $r^k \cos k\varphi$ and $r^k \sin k\varphi$ are		
			polynomials		136
		10.5.3	The functions $r^k \cos k\varphi$ and $r^k \sin k\varphi$ are		
			homogeneous of degree $k \ge 0$		137
		10.5.4	The functions $r^k \cos k\varphi$ and $r^k \sin k\varphi$ are		
			a basis of the homogeneous harmonic polynomials		105
		10 5 5	of degree k		137
	10 6	10.5.5	The multidimensional Ansatz		138
	10.6		eneous polynomials in \mathbb{R}^n		138
	107	10.6.1	Examples of homogeneous polynomials		139
	10.7		epresentation of homogeneous polynomials		139
		10.7.1	Gauss representation in \mathbb{R}^2		140
		10.7.2	Gauss representation in \mathbb{R}^n		141

viii Contents

		the polyharmonic paradigm 10.8.1 The Almansi representation	145 146
	10.9	The sets \mathcal{H}_k are eigenspaces for the operator Δ_{θ}	146 147
		Completeness of the spherical harmonics in $L_2(\mathbb{S}^{n-1})$	147
	10.10	Solutions of $\Delta w(x) = 0$ with separated variables	149
	10.11	Solutions of $\Delta w(x) = 0$ with separated variables Zonal harmonias $Z^{(k)}(\theta)$: the functional approach	152
	10.12	Zonal harmonics $Z_{\theta'}^{(k)}(\theta)$: the functional approach 10.12.1. Estimates of the derivatives of $Y_{\theta}(\theta)$:	155
		10.12.1 Estimates of the derivatives of $Y_k(\theta)$:	159
	10.13	Markov–Bernstein-type inequality The classical approach to zonal harmonics	159
	10.13	The representation of polyharmonic functions using	139
	10.14	spherical harmonics	164
		10.14.1 Representation of harmonic functions using	104
		spherical harmonics	166
		10.14.2 Solutions of the spherical operator $L_{a}^{p} f(r) = 0$	168
		10.14.2 Solutions of the spherical operator $L_{(k)}^{p} f(r) = 0$ 10.14.3 Operator with constant coefficients equivalent to	100
		the spherical operator $L^p_{(k)}$	168
		10.14.4 Representation of polyharmonic functions in	
		annulus and ball	173
	10.15	The operator $r^{n-1}L^p_{(k)}$ is formally self-adjoint	177
	10.16	The Almansi theorem	179
	10.17	Bibliographical notes	185
11	Annon	dix on Chebyshev splines	187
11	11.1	Differential operators and Extended Complete	107
	11.1	Chebyshev systems	187
	11.2		107
		Divided differences for Extended Complete	
	11.2	Divided differences for Extended Complete Chebyshey systems	191
	11.2	Chebyshev systems	191 191
	11.2	Chebyshev systems 11.2.1 The classical polynomial case	191 191
	11.2	Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for	
	11.2	Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems	191
	11.2	Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems	191
	11.2	Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for	191 194
		Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems	191 194 196
		Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system	191 194 196 197
	11.3	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 TB-splines, or the Chebyshev B-splines as a 	191 194 196 197 198 199
	11.3	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 	191 194 196 197 198
	11.3	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 11.4.2 Dual basis and Riesz basis property for the 	191 194 196 197 198 199 201
	11.3 11.4	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 11.4.2 Dual basis and Riesz basis property for the <i>TB</i>-splines 	191 194 196 197 198 199 201 203
	11.3	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 11.4.2 Dual basis and Riesz basis property for the 	191 194 196 197 198 199 201
12	11.3 11.4 11.5	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 11.4.2 Dual basis and Riesz basis property for the <i>TB</i>-splines 	191 194 196 197 198 199 201 203
12	11.3 11.4 11.5	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 11.4.2 Dual basis and Riesz basis property for the <i>TB</i>-splines Natural Chebyshev splines 	 191 194 196 197 198 199 201 203 204
	 11.3 11.4 11.5 Apper 12.1 	 Chebyshev systems 11.2.1 The classical polynomial case 11.2.2 Divided difference operators for Chebyshev systems 11.2.3 Lagrange–Hermite interpolation formula for Chebyshev systems Dual operator and ECT-system 11.3.1 Green's function and Taylor formula Chebyshev splines and one-sided basis 11.4.1 <i>TB</i>-splines, or the Chebyshev <i>B</i>-splines as a Peano kernel for the divided difference 11.4.2 Dual basis and Riesz basis property for the <i>TB</i>-splines Natural Chebyshev splines 	 191 194 196 197 198 199 201 203 204 209

Contents ix

Par	t II Ca	rdinal polysplines in \mathbb{R}^n	217
13	Cardi	nal L-splines according to Micchelli	221
	13.1	Cardinal <i>L</i> -splines and the interpolation problem	221
	13.2	Differential operators and their solution sets U_{Z+1}	226
	13.3	Variation of the set $U_{Z+1}[\Lambda]$ with Λ and other properties	228
	13.4	The Green function $\phi_{Z}^{+}(x)$ of the operator \mathcal{L}_{Z+1}	229
	13.5	The dictionary: L-polynomial case	232
	13.6	The generalized Euler polynomials $A_Z(x; \lambda)$	232
	13.7	Generalized divided difference operator	236
	13.8	Zeros of the Euler–Frobenius polynomial	
		$\Pi_Z(\lambda)$	237
	13.9	The cardinal interpolation problem for L-splines	238
	13.10	The cardinal compactly supported L-splines Q_{Z+1}	239
	13.11	Laplace and Fourier transform of the cardinal	
		TB -spline Q_{Z+1}	241
	13.12	Convolution formula for cardinal TB-splines	243
	13.13		244
	13.14	Hermite–Gennocchi-type formula	245
	13.15	Recurrence relation for the <i>TB</i> -spline	246
	13.16	The adjoint operator \mathcal{L}_{Z+1}^* and the <i>TB</i> -spline $Q_{Z+1}^*(x)$	248
	13.17	The Euler polynomial $A_Z(x; \lambda)$ and the	
		TB-spline $Q_{Z+1}(x)$	250
	13.18	The leading coefficient of the Euler-Frobenius polynomial	
		$\Pi_Z(\lambda)$	253
	13.19	Schoenberg's "exponential" Euler <i>L</i> -spline $\Phi_Z(x; \lambda)$	
		and $A_Z(x; \lambda)$	254
	13.20	Marsden's identity for cardinal L-splines	257
	13.21	Peano kernel and the divided difference operator in	
		the cardinal case	257
	13.22	Two-scale relation (refinement equation) for the	
		TB-splines $Q_{Z+1}[\Lambda; h]$	259
	13.23	Symmetry of the zeros of the Euler–Frobenius polynomial	
		$\Pi_Z(\lambda)$	261
	13.24		264
14	Riesz	bounds for the cardinal L-splines Q_{Z+1}	267
	14.1	Summary of necessary results for cardinal L-splines	270
	14.2	Riesz bounds	271
	14.3	The asymptotic of $A_Z(0; \lambda)$ in k	278
	14.4	Asymptotic of the Riesz bounds A, B	281
		14.4.1 Asymptotic for <i>TB</i> -splines Q_{Z+1} on the mesh $h\mathbb{Z}$	282
	14.5	Synthesis of compactly supported polysplines on annuli	283

x Contents

15	Cardi	nal interpolation polysplines on annuli	287
	15.1	Introduction	287
	15.2	Formulation of the cardinal interpolation problem	
		for polysplines	288
	15.3	$\alpha = 0$ is good for all <i>L</i> -splines with $L = M_{k,p}$	290
	15.4	Explaining the problem	293
	15.5	Schoenberg's results on the fundamental spline $L(X)$	
		in the polynomial case	294
	15.6	Asymptotic of the zeros of $\Pi_Z(\lambda; 0)$	298
	15.7	The fundamental spline function $L(X)$ for the	
		spherical operators $M_{k,p}$	300
		15.7.1 Estimate of the fundamental spline $L(x)$	303
		15.7.2 Estimate of the cardinal spline $S(x)$	304
	15.8	Synthesis of the interpolation cardinal polyspline	305
	15.9	Bibliographical notes	306
Bib	liograp	hy to Part II	307
n			200
Par	t III	Wavelet analysis	309
16	Chui's	s cardinal spline wavelet analysis	313
	16.1	Cardinal splines and the sets V_i	313
	16.2	The wavelet spaces W_i	315
	16.3	The mother wavelet ψ	317
	16.4	The dual mother wavelet $\widetilde{\psi}$	318
	16.5	The dual scaling function $\overleftarrow{\phi}$	319
	16.6	Decomposition relations	319
	16.7	Decomposition and reconstruction algorithms	321
	16.8	Zero moments	322
	16.9	Symmetry and asymmetry	323
17	Cordi	nol L galino wovolot onolygig	325
1/	17.1	nal L-spline wavelet analysis Introduction: the spaces V_i and W_i	325
	17.1	Multiresolution analysis using <i>L</i> -splines	329
	17.2	The two-scale relation for the <i>TB</i> -splines $Q_{Z+1}(x)$	331
	17.3	Construction of the mother wavelet ψ_h	333
	17.4	Some algebra of Laurent polynomials and the	555
	17.5	mother wavelet ψ_h	337
	17.6	Some algebraic identities	339
	17.7	The function ψ_h generates a Riesz basis of W_0	343
	17.8	Riesz basis from all wavelet functions $\psi_{2^{-j}h}(x)$	345
	17.8	The decomposition relations for the scaling function Q_{Z+1}	343
	17.9	The dual scaling function ϕ and the dual wavelet ψ	356
	17.10	Decomposition and reconstruction by	550
	1/.11	<i>L</i> -spline wavelets and MRA	362
	17.12	Discussion of the standard scheme of MRA	
	1/.12	Discussion of the standard schenne of MIKA	368

|--|

18	Poly	harmonic wavelet analysis: scaling and rotationally	
	-	riant spaces	371
	18.1	The refinement equation for the normed TB-spline \widetilde{Q}_{Z+1}	372
	18.2	Finding the way: some heuristics	373
	18.3	The sets PV_j and isomorphisms	375
	18.4	Spherical Riesz basis and father wavelet	377
	18.5	•	379
	18.6	Decomposition and reconstruction for polyharmonic	
		wavelets and the mother wavelet	384
	18.7	Zero moments of polyharmonic wavelets	391
	18.8	Bibliographical notes	393
Bib	liogra	phy to Part III	395
Par	t IV	Polysplines for general interfaces	397
19	Неш	ristic arguments	399
	19.1	Introduction	399
	19.2	The setting of the variational problem	401
	19.3	Polysplines of arbitrary order p	403
	19.4	• • •	404
	19.5	Main results and techniques	405
	19.6	Open problems	406
20	Defii	nition of polysplines and uniqueness for general interfaces	409
	20.1	Introduction	409
	20.2	Definition of polysplines	411
	20.3	Basic identity for polysplines of even order $p = 2q$	415
		20.3.1 Identity for $L = \Delta^{2q}$	416
		20.3.2 Identity for the operator $L = L_1^2$	417
	20.4	Uniqueness of interpolation polysplines and	
		extremal Holladay-type property	421
		20.4.1 Holladay property	425
21	A pri	ori estimates and Fredholm operators	429
	21.1	Basic proposition for interface on the real line	429
	21.2	A priori estimates in a bounded domain with interfaces	432
	21.3	Fredholm operator in the space $H^{2p+r}(D \setminus ST)$ for $r \ge 0$	436
		21.3.1 The space Λ_1 for $L = \Delta^p$	437
		21.3.2 The case $L = \Delta^2$	442
		21.3.3 The set Λ_1 for general elliptic operator <i>L</i>	442
22	Exis	tence and convergence of polysplines	445
	22.1	Polysplines of order 2q for operator $L = L_1^2$	445
	22.2	The case of a general operator L	447

	22.3	Existen	ce of polysplines on strips with compact data	450
	22.4	Classica	al smoothness of the interpolation data g_i	451
	22.5	Sobolev	v embedding in $C^{k,\alpha}$	452
	22.6	Existen	ce for an interface which is not C^{∞}	453
	22.7	Converg	gence properties of the polysplines	454
	22.8	Bibliog	raphical notes and remarks	459
23	Appen	dix on e	lliptic boundary value problems in	
	Sobole	v and H	ölder spaces	461
	23.1	Sobolev	v and Hölder spaces	461
		23.1.1	Sobolev spaces on manifolds without boundary	461
		23.1.2		463
		23.1.3	Sobolev spaces on the sphere \mathbb{S}^{n-1}	464
		23.1.4	Hölder spaces	465
		23.1.5	Sobolev spaces on manifolds with boundary	466
		23.1.6	Uniform C^m -regularity of $\partial \Omega$	467
		23.1.7	Trace theorem	468
		23.1.8	The general Sobolev-type embedding theorems	469
		23.1.9	Smoothness across interfaces	470
	23.2	Regular	elliptic boundary value problems	472
		23.2.1	Regular elliptic boundary value problems in \mathbb{R}^n_+	474
	23.3	Bounda	ry operators, adjoint problem and Green formula	475
		23.3.1	Boundary operators in neighboring domains	477
		23.3.2	The Green formula for the operator $L = \Delta^p$	479
	23.4		boundary value problems	479
		23.4.1	A priori estimates in Sobolev spaces	480
		23.4.2	Fredholm operator	480
		23.4.3	Elliptic boundary value problems in Hölder spaces	482
		23.4.4	Schauder's continuous parameter method	483
	23.5	Bibliog	raphical notes	484
24	Afterw	vord		485
Bib	Bibliography to Part IV 4			487
Ind	Index 49			

Preface

In the present the theory of Partial Differential Equations (PDEs) is so overwhelmed by the study of Boundary Value Problems that one can hardly believe that from a global perspective these are no more than a modest part of the properties of the differential equations. Apparently, the Qualitative theory of PDEs is a lot more difficult. This may be understood by using an analogy with the one-dimensional case: the boundary value problems on a compact interval are hardly a topic to discuss for the algebraic polynomials when we consider the last as solutions of ordinary differential equations. Topics of interest are the *Descartes*' rule of signs or the *Budan-Fourier* theorem for the number of sign changes (or zeros) in a compact interval, and other lot deeper properties¹. On the other hand we are quite far from proving analogs of the Descartes' rule and the Budan-Fourier theorem for polyharmonic functions; even the formulation of the proper analogs is a problem. Similar questions for arbitrary higher-order elliptic equations or for nonlinear equations seem to be rather advanced.

The main message of the present book is that the solutions of higher-order elliptic equations, in particular, the polyharmonic functions, may be used as building blocks of multivariate splines – which we call *polysplines* – in much the same way as the one-dimensional polynomials are used to build the one-dimensional splines. We study *cardinal polysplines* and *polyharmonic wavelets* in a complete analogy with the one-dimensional polynomial *cardinal splines* and *cardinal spline wavelets*. All these results may be considered as a step in the direction of qualitative theory of elliptic PDEs.

The reader should not be scared by the big volume of the present book. It has become bigger for reasons of readability. Another reason for the increase of the volume is that the book is intended for readers with varied backgrounds. The *primary purpose* was to provide readers having a modest (or no) background in PDEs, and more interests in CAGD, spline and wavelet analysis, with an exposition of the theory of polysplines at least in special domains. Thus the biggest Part I has appeared. Once such reader has overcome the initial Chapters of Part I he/she might be willing to see the new developments in *cardinal polysplines* and *polyharmonic wavelet analysis* in Part II and Part III. The *secondary purpose* was to provide readers having more considerable background in PDEs with a proper introduction to the basics of the one-dimensional spline theory and wavelet analysis and the smooth transition to the theory of polysplines in Part IV.

In the present volume we were able to cover only some part of the topics of Numerical Analysis: interpolation by polysplines, cardinal interpolation for special break-surfaces,

¹ Consult the first part of the famous book of problems in analysis of Polya and Szegö, or [50, p. 89] (this reference is found at the end of Part I.

xiv Preface

convergence of the polyspline interpolation in special cases. The polyharmonic wavelet analysis has outweighed the very interesting topics as

- "Polyharmonic" Euler-Maclaurin formulas and Bernoulli polysplines,
- Optimal recovery and polysplines,
- Peano kernels and mean-value properties for polyharmonic functions, and
- Approximation and interpolation theory by polyharmonic functions and polysplines.

They are left for a next volume.

Sofia – May, 2000 Madison – March, 2001 Ognyan I. Kounchev