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Preface

In the present the theory of Partial Differential Equations (PDEs) is so overwhelmed by
the study of Boundary Value Problems that one can hardly believe that from a global
perspective these are no more than a modest part of the properties of the differential
equations. Apparently, the Qualitative theory of PDEs is a lot more difficult. This may
be understood by using an analogy with the one-dimensional case: the boundary value
problems on a compact interval are hardly a topic to discuss for the algebraic polynomials
when we consider the last as solutions of ordinary differential equations. Topics of interest
are theDescartes’ rule of signs or theBudan-Fouriertheorem for the number of sign
changes (or zeros) in a compact interval, and other lot deeper properties1. On the other
hand we are quite far from proving analogs of the Descartes’ rule and the Budan-Fourier
theorem for polyharmonic functions; even the formulation of the proper analogs is a
problem. Similar questions for arbitrary higher-order elliptic equations or for nonlinear
equations seem to be rather advanced.

The main message of the present book is that the solutions of higher-order elliptic
equations, in particular, the polyharmonic functions, may be used as building blocks
of multivariate splines – which we callpolysplines– in much the same way as the
one-dimensional polynomials are used to build the one-dimensional splines. We study
cardinal polysplinesandpolyharmonic waveletsin a complete analogy with the one-
dimensional polynomialcardinal splinesandcardinal spline wavelets. All these results
may be considered as a step in the direction of qualitative theory of elliptic PDEs.

The reader should not be scared by the big volume of the present book. It has become
bigger for reasons of readability. Another reason for the increase of the volume is that
the book is intended for readers with varied backgrounds. Theprimary purposewas
to provide readers having a modest (or no) background in PDEs, and more interests in
CAGD, spline and wavelet analysis, with an exposition of the theory of polysplines at
least in special domains. Thus the biggest Part I has appeared. Once such reader has
overcome the initial Chapters of Part I he/she might be willing to see the new devel-
opments incardinal polysplinesandpolyharmonic wavelet analysisin Part II and Part
III. The secondary purposewas to provide readers having more considerable back-
ground in PDEs with a proper introduction to the basics of the one-dimensional spline
theory and wavelet analysis and the smooth transition to the theory of polysplines in
Part IV.

In the present volume we were able to cover only some part of the topics of Numerical
Analysis: interpolation by polysplines, cardinal interpolation for special break-surfaces,

1 Consult the first part of the famous book of problems in analysis of Polya and Szegö, or [50, p. 89] (this
reference is found at the end of Part I.
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xiv Preface

convergence of the polyspline interpolation in special cases. The polyharmonic wavelet
analysis has outweighed the very interesting topics as

• “Polyharmonic” Euler-Maclaurin formulas and Bernoulli polysplines,

• Optimal recovery and polysplines,

• Peano kernels and mean-value properties for polyharmonic functions, and

• Approximation and interpolation theory by polyharmonic functions and polysplines.

They are left for a next volume.

Sofia – May, 2000 Ognyan I. Kounchev
Madison – March, 2001


