
Boussinesq equation
Numerical method

Numerical results

Convergence of Finite Difference Schemes for a
Multidimensional Boussinesq Equation

Natalia Kolkovska

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences, Sofia, Bulgaria,

e-mail: natali@math.bas.bg

Seventh International Conference on
Numerical Methods and Applications,

Borovets, 2010

N. Kolkovska Convergence of FDS for a Multidimensional Boussinesq Equation



Boussinesq equation
Numerical method

Numerical results

1 Boussinesq equation
Introduction
Properties to the Boussinesq equation

2 Numerical method
Finite Difference Schemes
Convergence of FDS
Corollaries

3 Numerical results
Preliminaries
Tables
Graphics

N. Kolkovska Convergence of FDS for a Multidimensional Boussinesq Equation



Boussinesq equation
Numerical method

Numerical results

Introduction
Properties to the Boussinesq equation

Introduction

In the present work we study the Cauchy problem for the
Boussinesq type equation (called Boussinesq Paradigm Equation):

∂2u

∂t2
= ∆u + β1∆

∂2u

∂t2
− β2∆2u + α∆f (u), x ∈ Rn, t > 0,

u(x , 0) = u0(x),
∂u

∂t
(x , 0) = u1(x),

on the unbounded region Rn with asymptotic boundary conditions
u(x , t)→ 0, ∆u(x , t)→ 0 as |x | → ∞,

where ∆ is the Laplace operator, α, β1 and β2 are positive
constants.

This is a 4-th order equation in x and t on unbounded region with
non-linearity contained in the term f (u) = u2.
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Referencies

BPE and similar: “good BE”, “damped BE”, “improved BE”, ...:

1D: existence (local and global in time), uniqueness of weak
and strong solutions: Pani& Saranga (1997); Wang&
Chen(2002, 2006);

1D: blow-up : Liu& Xu(2008); Wang&Chen (2002)

1D: numerical solutions – FDS, FEM, spectral and
pseudo-spectral methods: Christov & Velarde (1994); Ortega
& Sanz-Serna (1990); El-Zoheiry:(2002)

multidimensional BE: existence, smoothness and blow-up:
Varlamov (2007); Xu& Liu (2009); Polat&Ertas (2009)

2D BE, numerical investigation: Chertock, Christov&
Kurganov (submitted)
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A Simplified Form

By the scaling transformation x√
β1

= y , t
√
β2

β1
= τ Boussinesq

equation can be rewritten in the form

∂2u

∂t2
= ∆u + ∆

∂2u

∂t2
−∆2u + ∆g(u), x ∈ Rn, t > 0, (1)

u(x , 0) = u0(x),
∂u

∂t
(x , 0) = u1(x), (2)

where g is connected to f by

g(u) =
β1

β2

(
αf (u) + (1− β2

β1
)u

)
.

We assume that the functions u0, u1 and f satisfy some regularity
conditions so that a unique solution for BE exists and is smooth
enough, say u ∈ C 6,4

(
Rd × (0,T )

)
.
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Properties to the Boussinesq equation

Let ‖·‖ denote the standard norm in L2(Rd).
Define the energy functional

E (u(·, t)) =

∥∥∥∥(−∆)−1/2∂u

∂t

∥∥∥∥2

+

∥∥∥∥∂u

∂t

∥∥∥∥2

+‖u‖2+‖∆u‖2+

∫
Rn

G (u)dx

with

G (u) =

∫ u

0
g(s)ds

Theorem (Conservation law)

The solution u to Boussinesq problem satisfies the following energy
identity

E (u(·, t)) = E (u(·, 0)) .

We obtain similar energy identities for the solutions of the FDS
employed in the discretization of problem (1), (2).
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The Simplified form allow us to write BE as

Operator form of the Boussinesq equation

(I −∆)

(
∂2

∂t2
−∆

)
u = ∆g(u)

(I - the identity operator).

Two splittings of BE are possible:

(I −∆)w = ∆g(u),

(
∂2

∂t2
−∆

)
u = w , (3)

(
∂2

∂t2
−∆

)
w̃ = ∆g(u), (I −∆)u = w̃ , (4)

where w , w̃ are auxiliary functions.
In the presentation we exploit splitting (3).
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Notations

Domain Ω = [−L1, L1]× [−L2, L2], L1, L2 – sufficiently large;

a uniform mesh with steps h1, h2 in Ω: xi = ih1, i = −N1,N1;
yj = jh2, j = −N2,N2;

τ - the time step, tk = kτ, k = 0, 1, 2, ...;

mesh points (xi , yj , tk);

vk
(i ,j) denotes the discrete approximation u(xi , yj , tk) ;

notations for some discrete derivatives of mesh functions:
vk
x,(i,j) = (vk

(i+1,j) − vk
(i,j))/h1; vk

x̄,(i,j) = (vk
(i,j) − vk

(i−1,j))/h1;

vk
x̄x,(i,j) =

(
vk

(i+1,j) − 2vk
(i,j) + vk

(i−1,j)

)
/h2

1;

vk
t̄t,(i,j) =

(
vk+1

(i,j) − 2vk
(i,j) + vk−1

(i,j)

)
/τ 2;

∆hv = vx̄x + vȳy – the 5-point discrete Laplacian.
(∆h)2v = vx̄xx̄x + vȳy ȳy + 2vx̄x ȳy – the discrete biLaplacian

Whenever possible the arguments of the mesh functions k
(i ,j) are

omitted.
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Finite Difference Schemes

In the approximations ∆hv and (∆h)2v we use vθ – the symmetric
θ-weighted approximation to vk

(i ,j):

vθ,k(i ,j) = θvk+1
(i ,j) + (1− 2θ)vk

(i ,j) + θvk−1
(i ,j) , θ ∈ R.

We approximate the non-linear term g(u(xi , yj , tk)) by:

either g(vk
(i ,j));

or g1(vk
(i ,j)),

g1(vk) =
G (vk+1)− G (vk−1)

vk+1 − vk−1
, G (u) =

∫ u

0
g(s)ds. (5)

Note that in the classical case of polynomial f the function g(v) is
a polynomial of v , thus the integrals G (v) used in g1 are explicitly
evaluated!
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vk
t̄t −∆hvk

t̄t −∆hvθ,k + (∆h)2vθ,k = ∆hg(vk). (6)

vk
t̄t −∆hvk

t̄t −∆hvθ,k + (∆h)2vθ,k = ∆hg1(vk). (7)

Initial conditions

v 0
(i ,j) = u0(xi , yj), (8)

v 1
(i ,j) = u0(xi , yj) + τu1(xi , yj) (9)

+ 0.5τ2(I −∆h)−1
(
∆hu0 − (∆h)2u0 + ∆hg(u0)

)
(xi , yj).

The equations, boundary and initial conditions form two families of
finite difference schemes.

N. Kolkovska Convergence of FDS for a Multidimensional Boussinesq Equation



Boussinesq equation
Numerical method

Numerical results

Finite Difference Schemes
Convergence of FDS
Corollaries

We factorize the LHS of FDS:(
I −∆h − θτ2∆h + θτ2(∆h)2

)
vt̄t −∆hv + (∆h)2v

= (I −∆h)
((

I − θτ2∆h

)
vt̄t −∆hv

)
.

and split FDS

Non-iterative Method (NM)

(I −∆h)w = ∆hg(v),
(
I − θτ2∆h

)
vt̄t −∆hv = w

Iterative Method (IM)

(I −∆h)w̃ = ∆hg1(v),
(
I − θτ2∆h

)
vt̄t −∆hv = w̃

using auxiliary functions w , w̃ .
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Analysis of the nonlinear schemes

Preliminaries:
the space of mesh functions which vanish on ∂Ω;
the scalar product at time tk with respect to the spatial variables

〈v ,w〉 =
∑
i ,j

h1h2v
(k)
(i ,j)w

(k)
(i ,j);

operators A = −∆h

B = I −∆h + τ2θ(−∆h + (∆h)2);
A and B are self-adjoint positive definite operator.

Operator form of the schemes:

Bvt̄t + Av + A2v = −Ag , (10)

Bvt̄t + Av + A2v = −Ag1. (11)
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The energy functional EL
h (obtained from the linear part of the

equation) at the k-th time level is

EL
h (v (k)) =〈
A−1v

(k)
t , v

(k)
t

〉
+
〈

v
(k)
t , v

(k)
t

〉
+ τ2(θ − 1/4)

〈
(I + A)v

(k)
t , v

(k)
t

〉
+ 1/4

〈
v (k) + v (k+1) + A(v (k) + v (k+1)), v (k) + v (k+1)

〉
Note that if parameter θ satisfies

θ >
1

4
− 1

τ2||A||
, (12)

then functional EL
h (vk) is nonnegative and can be viewed as a

norm. Such combined norms depending on the values of solution
on several layers are typical for three-layer schemes.
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Theorem (Discrete identities for NM )

The solution to the non-iterative scheme (NM) satisfies the
equalities (k=1,2,. . . )

EL
h (v (k)) + (g(vk), vk+1) = EL

h (v (k−1)) + (g(v (k)), v (k−1)).

The full discrete energy functional is (including the non-linearity)

Eh(v (k)) = EL
h (v (k)) +

〈
G (v (k+1)), 1

〉
+
〈

G (v (k)), 1
〉

Theorem (Discrete conservation law )

The solution to the iterative scheme (IM) satisfies the energy
equalities

Eh(v (k)) = Eh(v (0)), k = 1, 2, . . . .

i.e. the discrete energy is conserved in time.
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Consider the following linear FDS with ∆hψ1 as RHS (where ψ1 is
a known function)

vt̄t −∆hvt̄t −∆hvθ + (∆h)2vθ = ∆hψ1. (13)

Theorem (Stability of the linear FDS)

Let γ be a positive real number and θ be such that

θ >
1 + γ

4
− 1

τ2||A||
.

Then the finite difference method (13) is stable with respect to the
initial data and the right-hand side:(

v (k), v (k)
)

+
(

Av (k), v (k)
)
≤ C

1 + γ

γ

[(
Bv (0), v (0)

)
+

(
A−1Bv

(0)
t ,A−1Bv

(0)
t

)
+

k−1∑
k=1

τ
(
ψ

(k)
1 , ψ

(k)
1

)]
.
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Theorem (Convergence of the NM)

Assume g ∈W 1
∞(R), the parameter θ satisfies

θ >
1 + γ

4
− 1

τ2||A||

for some γ > 0 and the solution u to the problem (1) – (2) obey
u ∈ C 6,4

(
R2 × (0,T )

)
. Then the solution v to the finite difference

scheme (10), (8), (9) converges to u as |h|, τ → 0 and the
following estimate holds for the error z = y − u of the scheme:(

z(k), z(k)
)

+
(

Az(k), z(k)
)
≤ 1 + γ

γ
CeMtk

(
|h|2 + τ2

)2
(14)

with a constant M chosen so that max
i ,j ,s≤k

(|u(xi , yj , ts)|, |v (s)
i ,j |) ≤ M.
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Theorem (Convergence of the IM)

Assume g ∈W 2
∞(R) and the parameter θ satisfies (12) with some

γ > 0. Assume that the solution u to (1) – (2) obeys
u ∈ C 6,4

(
R2 × (0,T )

)
and the solution v to the finite difference

scheme (11), (8), (9) is bounded in the maximal norm. Let M be a
constant such that

M ≥ max
i ,j ,s≤k

(
|u(xi , yj , ts)|,

∣∣∣∣∂2u

∂t2
(xi , yj , ts)

∣∣∣∣ , |v (s)
i ,j |
)

and τ be sufficiently small, τ < γ (C2(1 + γ)M)−1. Then v
converges to the exact solution u as |h|, τ → 0 and the following
estimate holds for the error z = y − u:(

z(k), z(k)
)

+
(

Az(k), z(k)
)
≤ 1 + γ

γ
CeMtk

(
|h|2 + τ2

)2
. (15)

N. Kolkovska Convergence of FDS for a Multidimensional Boussinesq Equation



Boussinesq equation
Numerical method

Numerical results

Finite Difference Schemes
Convergence of FDS
Corollaries

The main feature of Theorems 5 and 6 is the established second
order of convergence in discrete W 1

2 norm, which is compatible
with the rate of convergence of the similar linear problem.

Corollary

(i) The convergence of the solution to FDS’s with θ > 0.25 to the
exact solution is of second order when |h| and τ go independently
to zero.
(ii) The convergence of the solution to the explicit FDS’s with
θ = 0 to the exact solution is of second order when |h| and τ go to

0 provided: τ < |h|√
1+γ

for the 1D problem or τ < |h|√
2(1+γ)

for the

2D case.
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Corollary

Under the assumptions of Theorems 5 or 6 the FDS’s admit the
following error estimate in the uniform norm (z = y − u):

max
i
|z(k)

i | < CeMtk

√
1 + γ

γ

(
|h|2 + τ2

)
, 1D;

max
i ,j
|z(k)

i ,j | < CeMtk
√

ln N

√
1 + γ

γ

(
|h|2 + τ2

)
, d = 2.

The above estimates are optimal for the 1D case and almost
optimal (up to a logarithmic factor) for the 2D case.
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The boundedness of the exact solution u to the BE on the
time interval [0,T ] is a main assumption in the convergence
theorems.
BE may have both bounded on the time interval [0,∞)
solutions or blowing up solutions
the L∞ norm of the solution is included in the exponent in the
right-hand sides of the error estimates
if u blows up at a moment T0, T0 > T , then: ‖u‖L∞[0,T ] will

be big ; the term eMT will be big ; the convergence will slow
up!
additional restriction on the time step is

τ < γ (C2(1 + γ)M)−1 , M ≥ ‖u‖L∞[0,T ],

in the convergence theorem for the IM.

In any case the FDS should be applied with very small τ ’s if one
would like to evaluate the solution in a neighborhood of the blow
up moment.
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Movie

Interaction of two solitary waves with different speeds
x ∈ [−120, 120], t ∈ [0, 35], c1 = 2, c2 = −1.5
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Preliminaries

An analytical solution of the 1D equation (one solitary wave):

u(x , t; x0, c) =
3

2

c2 − 1

α
sech2

x − x0 − ct

2

√
c2 − 1

β1c2 − β2

 ,

where x0 is the initial position of the peak of the solitary wave,

Parameters: α = 3, β1 = 1.5, β2 = 0.5, c is the wave speed.

Initial conditions for one solitary wave or two solitary waves:

u(x , 0) = u(x , 0;−40, 2)+u(x , 0; 50,−1.5)

du

dt
(x , 0) = u(x , 0;−40, 2)t+u(x , 0; 50,−1.5)t

Two schemes with θ = 0.5 :

non-iterative and
iterative (inner iterations until relative error < ε, ε = 10−13).
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One solitary wave

Rate of convergence and errors
for x ∈ [−100, 100], t ∈ [0, 20], c = 2

h = τ Rate Rate Error Error with iter./
no iter. with iter. no iter. with iter. no iter.

0.1 – – 0.02559 0.32271 12.60931
0.05 2.02762 1.87037 0.00628 0.08826 14.06140
0.025 2.00675 1.96892 0.00156 0.02255 14.43498
0.0125 2.00142 1.99221 0.00039 0.00567 14.52742

The error is the difference between the calculated and the
exact solution in uniform norm for t = 20.

The calculations confirm the schemes are of order O(h2 + τ2).

For one solitary wave the non-iterative scheme is about 14
times more precise than the iterative scheme.
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Interaction of two solitary waves with different speeds

Rate of convergence and errors
for x ∈ [−150, 150], t ∈ [0, 40], c1 = 2, c2 = −1.5

h = τ Rate Rate Error Error with iter./
no iter. with iter. no iter. with iter. no iter.

0.04 2.09561 1.97465 0.017375 0.102754 5.913796
0.02 1.94485 1.99369 0.017375 0.026027 6.187079
0.01 1.97704 1.99838 0.001084 0.006528 6.021106

For every h the error is calculated by Runge method as
E 2

1 /(E1 − E2) with E1 = ‖u[h] − u[h/2]‖, E2 = ‖u[h/2] − u[h/4]‖,
where u[h] is the calculated solution with step h for t = 40.

The numerical rate of convergence is (log E1 − log E2)/ log 2.

The calculations confirm the schemes are of order O(h2 + τ2).

For two solitary waves the non-iterative scheme is about 6
times more precise than the iterative scheme.
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With respect to the error magnitude the non-iterative method
performs much better than the iterative method!
Justification: Consider the right-hand side of the iterative method.
We expand g1(u(xi , t

k)) in Taylor series about the point (xi , t
k)

and get

g1(u(xi , t
k)) = g(u(xi , t

k)) + τ2R + O(τ3),

R= α
β1

β2

(
1

3

(
∂u

∂t
(xi , t

k)

)2

+ u
∂2u

∂t2
(xi , t

k)

)

+
1

2

(
β1

β2
− 1

)
∂2u

∂t2
(xi , t

k).

Thus, the right-hand sides of the two methods

∆hg1(u(xi , t
k))−∆hg(u(xi , t

k)) = τ2∆hR + O(τ3).

differ by terms of order O(τ2). This has essential impact on the
error, when the solution has large derivatives!
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Error dependence on time step with a fixed space step

One solitary wave with c = 2, non-iterative scheme
h = 0.01, x ∈ [−100, 100] , t ∈ [0, 20]

τ L1 error Rate L2 error Rate L∞ error Rate

0.32 2.781695 - 0.703758 - 0.384748 -
0.16 0.534777 5.20 0.136372 5.16 0.075703 5.08
0.08 0.128292 4.17 0.032492 4.19 0.017982 4.21
0.04 0.031634 4.06 0.007996 4.06 0.004422 4.07
0.02 0.007748 4.08 0.001956 4.09 0.001082 4.09
0.01 0.001793 4.32 0.000450 4.34 0.000249 4.33
0.005 0.000305 5.87 7.439e-5 6.05 4.174e-5 5.98

0.001 0.000171 4.630e-5 2.478e-5

For τ ≥ h/c the error behaves as O(τ2)

For τ < h/(4c) the error does not depend on τ .

The error behavior is similar in every norm.

N. Kolkovska Convergence of FDS for a Multidimensional Boussinesq Equation



Boussinesq equation
Numerical method

Numerical results

Preliminaries
Tables
Graphics

Error dependence on time step with a fixed space step

One solitary wave with c = 2, iterative scheme
h = 0.01, x ∈ [−100, 100] , t ∈ [0, 20]

τ L1 error Rate L2 error Rate L∞ error Rate

0.16 4.961105 - 1.335671 - 0.677222 -
0.08 1.427490 3.48 0.402828 3.32 0.214408 3.16
0.04 0.370195 3.86 0.105644 3.81 0.056685 3.78
0.02 0.093553 3.96 0.026768 3.95 0.014385 3.94
0.01 0.023588 3.97 0.006751 3.97 0.003630 3.96
0.005 0.006044 3.90 0.001727 3.91 0.000929 3.91

0.0025 0.001654 3.65 0.000470 3.67 0.000253 3.67
0.00125 0.000557 2.97 0.000156 3.02 8.3887e-5 3.01

For τ ≥ h/c the error behaves as O(τ2)
For τ ≤ h/(2c) the error does not depend on τ .
The error behavior is similar in every norm.
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Discrete identities errors

The error is maximum for every t ∈ [0, 40]
of the numerical integral for x ∈ [−150, 150],
either for one solitary wave with c1 = 2
or for two solitary waves with c1 = 2, c2 = −1.5.

τ = h 1 soliton 1 soliton 2 solitons 2 soliton
no iter. with iter. no iter. with iter.

0.1 3.1264e-13 2.3152e-13 9.3245e-11 5.6192e-10
0.05 3.9790e-13 4.1866e-13 1.3416e-11 7.3909e-11
0.025 6.2528e-13 5.3321e-13 2.1630e-12 9.3973e-12
0.0125 1.0232e-13 8.9952e-13 1.2921e-12 1.2091e-12

The discrete identities are different for the iterative and for
the non-iterative schemes (conservation law for IM and
discrete identities for NM)
The table shows the numerical solution satisfies the respective
discrete identities.
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Graphics

Interaction of two solitary waves with different speeds
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Thank you
for your attention!
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