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ON A THEOREM OF BOURGIN — YANG
GENCO S. SKORDEV

The mappings (single and multi-valued) of an n-cohomological sphere with involution in
the k-dimensional Euclidean space are considered. The estimates of the dimension of the set
of points which belong to the same orbit of the involution and are identified with respect
to the mapp'ng are obtained.

Introduction. In [1] K. Borsuk has proved that for a single-valued
continuous mapping f:8% sR: of an n-dimensional sphere in the k-dimen-
sional Euclidean space R* (k- n) the set A(f)={x¢S"|f(x)=f(—x)} is
not empty.

The question of how big the set A(f) is has been raised in (2, 3]. In
these papers it has been proved that dim A(f) n—k, i. e. the covering
dimension of the set A(f), is not less than n—k. Especially, the following
theorem has been established in [2, 3]:

Let 7:X—X be a free involution of a compact n-homological sphere
X, ¢ : X—>R* a single-valued continuous mapping. Then

dim{x ¢ X ¢(x) @(Tx)}==n—=k.

In order to prove this Theorem D. Bourgin and G. Yang used in
[2, 3] Smith’s index and an inductive procedure.

In [4] a multi-valued acyclic mapping &:X—-R* of a compact space
n-homological sphere X with a free involution 7" has been investigated, and
the following results has been obtained: the set {x¢ X| @ (x)N@(7Tx)+ D}
is not empty.

In the present paper with the aid of a sheaf-theoretic treatment of
Smith’s theory the result of Bourgin—Yang of [2, 3] is generalized. Also the
answer of the question how big is the set {x¢ X |y(x)Ny(7x)=+=(D} is given.
Here y: X—R* is a multi-valued acyclic mapping of an n-cohomological
sphere X into the k-dimensional Euclidean space and 6:X—X is a multi-
valued acyclic involution. The following inequality is established

dim{x¢ X yp'x)Ny (bx)+ D}=n—k—dim86,

where dim0=max{dimf(x) x¢ X}. Therefore, in the case of single-valued
involution 7= we obtain the following result

dim{x¢ X |y x)=y(Tx)}>=n—k.

The mappings (single-valued and multi-valued acyclic) of a locally com-
pact n-cohomological sphere X into the k-dimensional Euclidean space R*
are considered.
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It is well-known that for a locally compact Hausdorff n-cohomological
sphere and an involution 7: X—JX, the fixed point set F={x¢ X | Tx -x} is
an r-cohomological sphere, for some —-1=r=-n. Suppose that 0 r=n—1.
The following theorem is proved:

If f: X >R+ is a single-valued mapping and k<n—r—1, then

dimz, {x ¢ X\ F | f(xX)=ATx)} n- k.

For multi-valued acyclic mappings y: X—R* of the locally compact
Hausdorif n-cohomological sphere X with an involution 7" and a fixed point
set F, which is an r-cohomological sphere,0 —r--n—1, the dimension with Z,
coefficients of the set {x¢ X w(x)Ny(7x) ' D} is not less than n—=k, under
the conditions 2 n—r—1, and the mapping /F:F— R* is a single-
valued one.

1. Z,-spaces. As usually, by Z, we shall denote the cyclic group (1, 7)
of order 2.

Definition 1. The Hausdorff topological space X is called a Z,-
space if the group Z, acts on X, i.e., a homeomorphism T : XX is given,
such that T2x- x for every x¢X.

By F T) we shall denote the fixed point set of the action of Z, on the space
X, i. e, F(T) {x¢X Tx x}. This set is a closed subset of .X.

Definition 2. The Z,-space X is called a free Z,-space if F(T)=,
i. e., Tx tx for every x¢X. R

Given a Z,-space X, by X we shall denote the orbit space of the action

of the group Z, on the space X. The space X is the identification space of
the space X with respect to the following relation: x is equal to y if and

only if 7x —y for x, y¢ X. The topology of the space X' is the identitica-
tion topology and the projection z: XX is an open and closed mapping.

The restriction of the mapping = on the set /(7)) is a homeomorphism.
We shall often consider the set F(7°) as a subset of the space X, having in
mind this homeomorphism.

2. Cohomology. We shall use the cohomology with the coefficients in
sheafs of Abelian groups ([5], Ch. 2). For a given sheaf £ of Abelian groups
over the space Y and open set U in Y by [I'(U,£) we shall denote the
group of all continuous sections of the sheaf £ on the set U ([5], Ch. 1,§1).
_ Suppose that B is a closed subset of the space Y. There is only one
sheaf £, such that its restriction cn the set B coincides with the sheaf £ and
is zero on Y _B. There exists also an epimorphism j:£ &5,

By C#(Y, £) we shall denote the canonical resolution of the sheaf £,
and by /H*(Y, 8) the cohomology of the space Y with coefficients in £ (|5],
Ch. 2). Hereafter we shall use the family of all closed sets as supports for
the cohomology.

By Z, we shall denote the constant sheaf over the spase VY, i. e,
Z, Y <Z,and by H*(Y) the cohomology of the space Y with coefficients Z,.

LLet us consider the mapping 7: X >AX, givenin 1. The following lemma
follows from Theorem 11.1, Ch. 2, § 11 in [5]:

lLemma 1. The induced homomorphism

n*: HY(X, 7,2Z,) — HY(X)
is an isomorphism.
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The homomorphism =* is defined as follows. The continuous mapping
7: XX induces a m-cohomomorphism =z:A=n,Zy—Z, ([5, Ch. 1,§4]. The
a-cohomomorphism z induces a a-cohomomorphism 7, : C*(X, A)—C.(X, Z,)
The last z-cohomomorphism =* gives us the homomorphism 2

3. Z,-structure of the sheaf A=zx,Z, and the Smith theory. Suppose
that X is a Z,-space. The action of Z, on the space X induces an action
of the group Z, on the sheaf A:

Lemma 2 ([6], Ch. 3, §1). The sheaf A—=n.Zy is a module over the
sheaf Zo=XXZ,.

The action of the group Z, on A is defined as follows. The sheai A
is induced by the presheaf A:A(U)=I(a"'(U), Z,) for everyopen subset U
of the space X (the restriction operators are the restrictions of the sections).
Let s¢ I'(z Y(U), Z,), the section s is a continuous mapping of the set Uin
Z,. We define Ts¢ I'(U, A) by Ts(x)=s(Tx) for every point x¢a '(U).
Now we have homomorphisms 7°: A(U)—A(U) compatible with restrictions
operators. These homomorphisms induce a Zy-structure in the sheaf A.

Let us consider the action of the group Z, on the slalks of the sheaf
A. For a given point z¢ X the stalk A, of the sheaf A over the point 2
coincides with Z,® Z, it 2§ F(T) and with Z, if z¢ F(T). Then T (I, 1,)

(Is, 1) for (I, 1) € Z,® Zy and T(l)—1 for l¢ Z,, respectively.

The element 1+ 7’=¢ of the group ring of the group Z, acts on A
and let oA is the image of the homomorphism o: A—A.

The following lemma is obvious.

Lemma 3. The sheaf ¢A is isomorphic to the sheaf Z:3 rr)-

The following lemma is basic for the Smith’s theory of Z,-spaces.

Lemma 4 ([6], Ch. 3, § 4). The sequence

i o B/
(1) 0 >06A — A—cA® Arr)—0
is exact.
Here the homomorphism j is the standard epimorphism of the sheaf A
on the sheaf Agz), and the homomorphism i is the identity inclusion.

Corollary 1. For every free Zyspace the following sequence
is exact

(2) 0—0A S5 ASsA 0.
Corollary 2. For every Zo-space X the following sequence is exact
(3) - — HI(X, 6 A) > HI(X)— H! (X, 0A)® H!(F( T™H S HH(X, 6A)— - - -
Under the condition that the space X is a free Z,-space (i.e., F(T)— @),
it follows from (2) that the sequence
(4) coe s H(X) s HI(X) - HI(X) %, Hi+ (X)—---
is exact. R
The homomorphism /{(X) » H{(X) in (4) is the transfer homomorphism.

Corollary 3. For every locally compact Hausdorff Z,-space X the
sequence
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(5) o . > HYXN\F(T)) — H{X) — HA(X\FT))® HAF(T))

SHPUXSNE(T)— - -
[s exact.

Here H.(Y) are the cohomologies of the space ¥ with compact supports.

The sequences (3), (4), (5), are Smith’s exact sequences of the space
with the involution.

We put Hi(X) instead of )X, A) in the corollaries 2 and 3 having
in mind Lemma 1.

4. Smith’s homomorphism. Let X be a free Z,-space.

Definition 3 (Smith). The Smiths homomorphism of the free Zy
space is the homomorphism s X): H{(X) > H"*X) given by s;sX)
—¢i kv 0P The homomorphisms o' are the same as J° in the exact
sequence (4).

If i 0, we shall abreviate our notations and shall write s,(.X) instead
of s,xX). Sometimes we shall omit X and shall write s, or s;, instead of
se(X) or s, x(X), respectively (if this does not lead to a confusion).

Lemma 5. Let X, and X, be free Z,-spaces and f: X, — X, an equi-
variant mapping, i. e., fT Tf. The followiug diagram is commutative
ik

~  Siw(X,) =
H'(Xy) = FTACAL)
_fi | f’i bk

. ‘~ sie(X)) . ~,
Hi(X,) 0 HitH(R).

Here X, arc the orbit spaces of X, i=1,2. The mapping f:X; - X, is an
equivariant one, therefore this mapping induces a mapping f: X, .X,ofthe
orbit spaces. By f® we denote the homomorphism of the cohomology
induced by f.

Lemmna 5 follows immediately from the following

LLemma 6. The Smith’s exact sequence of Zyspace is canonical,i. e.
if X, and X, are Z,-spaces and f:X, ~X, is an equivariant mapping,
then the following diagram is commutative

HI(X,) > HI(Xy) — HI(XR) > HIH1(X)
7 1 GFLe P
~ 3 . i 01 ‘ <
> H‘(/\’l) < HI(A') D l«ll(/\ l) > H( I(z\ l)

Lemma 6 follows directly from the definition of Smith’s exact sequence
of a free Z,space.

Corollary 4. Let X, i 1,2 be free Zyspaces, f: X\~ X, an equi-
variant mapping. :

a) if (X)) 10, then s,(X,y)1-0; ‘

b) if f* ks a monomorphism and s,(X,)+ 0, then sxX;) 0.

Suppose that Y is a locally compact Hausdorff Zj-space. By F(T) we
denote, as above, the fixed point set of the involution /.
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Definition 4 (Smith). Smith’s homomorphism of the Z,space X
six (X): HAF(T) — He "(X\F(T)) is the homomorphism se(X)=0:"1. ..
05710l where 0, — 0 HYF(T)): H(F(T))— H. (X F(T)) and

05 =05 H{(XN\F(T)): H(X\ FT))— H*(X\FAT)).

Lemma 7. Let the locally compact Hausdorff spaces X, and X, be Z,-
spaces, F{T)— the fixed point set of X;, i=1, 2. If the mapping f: X, — X,
is a proper and equivariant one and f'FyT)—~F(T), then the following
diagram is comnutative

Sy, (X))
HYFAT)) 525 HEYU)
It Vi

s r(X) P —
HYF(TY) S HE YD),

This diagram needs some clarifications. From the assumptions of Lemma
7 the sets U;=X,\Fi(T) are free Z,-spaces and f(U,)c U, By U; we
denote the orbit space of the Z,-space U; ard by fy=f v,: U — U, The
mapping f,, is an equivariant one, hence this mapping induces a mapping
fo: Ul—*lj‘_,. By f» we denote the mapping f-- f F,(T). The homomorphisms
fr and f. are induced by fr and f, respectively.

Lemma 7 follows from

Lemma 8. Under the assumptions of Lemma 7, the following dia-
gram is commutative

 HY(Ta) — H(Xy) — HAU) ® HiFAT) > HE Uy —

fi i fo@fe fu'
L L . i

(D) — HE(Xy) — HE(O) @ HAF(TY) & H (0 —

From Lemma 7 we obtain

Corollary 5. From the assumptions of Lemma 7 it follows that

a) if fr is an isomorphism and $ix(Xy) +0, then s x(X5)+0;

b) if fi;'' is an monomorphism and s x(X,)+0, then s.(X,)+0.

5. Another way to obtain the exact sequence (4). In this section we
shall assume that the space X is a free Z,-space.

Lemma 9. The sheaf C* X, Z,) is a Zy-sheaf and the differentials
are Zy-homomorphisms.

To prove this Lemma one can use an induction with respect to the
dimension i for C{(X, Z,).

First of all it follows directly that the sheaf Z, XX Z, is a Z,-sheaf.
The action of 7, T:Zy +Zyrny is the identical isomorphism of Z,
on Z, (here Z,, is the stalk of the sheaf Z, over the point y¢X).
The sheaf C°(X, Z,) is generated by the presheaf U/ >Map (U, Z,), here
Map (&, Z,) is the set of all mappings of the set U in Z, For
f¢ Map (U, Zy) we detine (7f)(x) f(7x) for every x¢U. Thisin an action
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of Z, in the set Map (U, Z,) which is compatible with the restriction ope-

rators. This Z,-structure of the set Map (U, Z,) induces the Z,-structure of

the sheaf C°(X, Z,). Therefore the sheaf RY(X, Z,)— CX, Z,)/ Z, is a

Zy-sheaf and the projection C(X, Z,)— R(X, Z,) is a Z,-mapping. To con-

clude the proof of Lemma 9 it is sufficient to remind that C(X, Z,)
C°(X, R{(X, Z,)) and R X, Z,)=Ci X, Z,)/(RYKX, Zy).

Corollary 6. I'"(X, Zy)=1'(X, C*X, Zy)) is a differential Z,-group,
i.e., I'X,2Zy) I'(X, CUX, Z,)) is a vector space over Z, and differen-
tials in I'“(X, Z,) are Zylinear mappings.

To check the assertion of Corollary 6 it is sufficient to remind that
I'(X, C*(X, Zy) consists of all continuous sections of the sheaf C*(X, Z,)
over the space X. If f¢ I'(X, C*(X, Z,)), then (Tf)(x)= Tf(x) for every x ¢ X.

Lemma 10 ([5], Ch. 2, § 11). The differential sheaf n.C* X, Z,) is a
flabby resolution of the sheaf A==,Z,. Every sheaf n,CUX, Zy) is Z»-
sheaf and the differentials in n,C*(X, Zy) are Z,-homomorphisms.

The Z,-structure of the sheafs =, C*#(X, Z,) is inherited by the Z,-
structure of C*(X, Z,). Here and later we shall consider X" as a Z,-space in
which Z, acts trivially, i. e, 7z=2z for every z¢ X.

Now we need some definitions.

Let ¥ and Z be Z,spaces and f:Y > Z be an equivariant mapping.
Suppose also that L and M are sheafs over Y and Z respectively.

Definition 5. The Z, f-cohomomorphism k: M L is a collection
of Zy,-homomorphisms ky: 1'(U, M) I'(f~Y(U), L) for every open U in Z,
compatible with restrictions.

The standard f-cohomomorphism ([5], Ch. 2, § 4) f,:f. L~ L is an Z,,
f-cohomomorphism (the Z,-structure of the sheaf f.L is inherited by the
Zystructure of the sheaf L).

For each Z,, f-cohomomorphism £k: M-+~ L there corresponds unique
Z,-homomorphism /% : M-~ f*L such that & f, 4.

By 7: A . Z, we shall denote now the standard Z,, z-cohomomorphism
([5], Ch. 2, § 8). This cohomomorphism induces a Z,, z-cohomomorphism
C“"(.-z):C""(:A) »CH.X, Z,). The above representation of Z,, z-cohomomor-
phism C*(x) gives us a Z, -homomorphism z*: C*A) — 7,C*(X, Z,).

Lemma 11. The Z,homomorphism =* is an isomorphism.

The sheaf A is a subsheaf of the Z,-sheaf C°%A). Let us apply the
functor direct image =n,. to the sequence of sheafs 02, ~C* X, Z,). We
obtain the exact sequence 0--A ->x,C%X, Z,), because the functor 7, IS
left exact. So A is a subsheaf of the Zy-sheaf ,C%X, Z,).It follows straight-
forward that +°A maps A into A identical. Let us consider 2°: C°(A)
1:,,=C”( /\’, Z_.) -

For a given open set U in the space X we consider the Z,-homomorph-
ism  a%U): 1'(U, C(A) -1'(U, 2, X, Z,). It is sufficient to check that
a%(U) is an isomorphism.

According to the definition of CY%A), 1'(U, A) IIA, ¢ (here A, is
he stalk of the sheaf A over the point y¢ U). The mapping x is closed
and 7 '(y) consists only of two points, hence A,=Map (= (), Z,), i.e., it
coincides with the set of mappings of # '(y) into Z,. Therefore 1'(U, CoA))

IIMap (2 (), Z,), ye U.
For the group /I'(U, n,C%X, Z,)) we have
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I'(U, 7, CUX, Zy))=1'(n '(U), CAX, Zy))=Map(a (U), Z,).

If s¢ I'(U, C°A)), then s—{s,}, ye U. where s,¢Map(a (y), £5). Ac-
cording to the definition of the homomorphism 2%U ), 2%(U NS )X)= Sy (x)
for every x¢= '(U). It is obvious that the homomorphism ;10(U) is a mono-
morphism. Let us prove that z%(U) is an epimorphism. Given £ ¢ Map (= !(U),
Z,), let sy € I'('(y), Z;) be s,(x)=£(x), where y-—a(x). Now if s— {sy}, y<U,
then =%U)(s)=¢, 1. e, 2% ) is an epimorphism. It is proved that =° is a
Zs-isomorphism.

Let us consider the diagram

0—-A—C(A) — RAA)—-0

AT F A 1 | -
(6) :r"l 70 | i ”(1)
v v

0 —>A—a, CUX, Zy)—7.RUX, Z;)—0.

The Z,-homomorphism =Y is induced by the Z,-homomorphism =°. The
sheaf RO(X, Z,) is the sheai C%X, Z,)/ Zs.

It follows from lemma “five” that the homomorphism =\ isanisomorph-
jsm. Lemma 11 follows by induction.

Definition 6. Let 8 be a Z,-sheaf over the space X. By £° we
shall denote the subsheaf of all Z,invariant elements of the sheaf £,
ie, & —{l¢e8 TI-1}.

The inclusion i:6A—A induces an inclusion C*(i): C*cA) —-C*A)
(here oA is the image of homomorphism s=147:A SA).

Lemma 12. The image of the homomorphism C*i) is C*(A)" .

The Z,-structure of the sheaf CO(A)~i5 given by the Z,-structure of
1'(U, C°(A)) for every open set in U in X. Let us remind how the group
Z, acts on the set 7 (U, C°(A)). We know that 7I'(U, C%A)) - II Map (a Y( y),
Z,). For every y¢U the setx () is a Z,-set, because 7~'( y) coincides with
some orbit of the action of Z, on the space X, = !'(y)-{x, Tx}. Therefore
the set Map(x}(y), Z,) is a Z,-set, indeed if s,¢ Map(zx '(y), Z,), then
(Ts,)(x)=s,(Tx) for x¢x (y). The group I'(U, C°%A)) is a product of
Z,-sets Map (= Y y), Z,) and inherited its Z,-structure from the Z,-structure
of the sets Map (= (), Zo).1f I'(U, C(A)) ={s¢c I'(U, C(A)) Ts=s}, then
s={s,}e (U, C*A)) if and only if sy(x)=s,(7Tx) for every x¢ca '(y)
and y¢U.

The group of continuous sections over the set U of the sheaf
CsA) coincides with I'(U, C%X, Z,)) because oA is isomorphic to the
sheaf Z,— X < Z, i we denote by I'(U, C°%(A))y the set of all Z,-invariant
sections in 1 (U, C%A)y, then I'(U, CAX, Zy)=I(U, C(A))y .

The sheai C'(A) isdefined by the presheai U-—171'(U, C°(A)), there-
fore the image of the homomorphism C°%/) is C(A)".

We have the following commutative diagram

0 50A —C%0A) —+RYsA)—0
(7) i ) | Clo)
0—A — CYA)—RY(A)—-0.
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The homomorphisms / and C°(/) are monomorphisms. The Z,-structure
of the sheafs C°0A) and C°A) induces the Z,-structure of the sheais
R%0A) and R%A), respectively, and the homomorphism C)(i) is a Z,-homo-
morphism.

From the diagram (7) we obtain that the image of the homomorphism
Ci) coincides with the sheaf R9(A), and that the homomorphism Ci)
is a monomorphism. By induction with respect to the dimension / we prove
that the image of the homomorphism C/(f): C'(sA)—~C/(A)is the sheat C/(A)- .

The following corollary follows from Lemma 11 :

Corollary 7. The image of the sheaf C*(A)" with respect to the
homomorphism =* coincides with the sheaf (n,C*( X, Z,)) .

Let us denote by /'%(L) the group /'(X, C%L)). If a:L—M is a homo-
morphism of the sheaf L in the sheat M then by /'*(a): /(M) ~I*(M) we
shall denote the homomorphism induced by the homomorphism «.

Corollary 8. The homomorphism I'*(x) is a Zyisomorphism.

This Corollary follows from Lemma 11.

It follows from Lemma 12 the following

Corollary 9. The homomorphism ['*(a)!*(i): I"*(cA)—1*(A) is an
isomorphism.

The group /™(X, Z,)=/'(X, C*X, Z,)) inherited a structure of Z,-
module from the Z,-sheaf C*(X, Z,). Let I™(X, Z,) be the set of all Z,-
invariant elements of 7™*(X, Z,).

Corollary 10. The following diagram is commutative

C—I™X, Zoy — I'™M(X, Z3) —= I'(X, Z,)* —0
t t t

0->1*%eA) —— [I'MA) -+ [*cA)-0.

The homomorphism /™(A) -/™(X,Z,) is induced by the standard
a-cohomomorphism z: A »Zy ([5), Ch. 2,§ 11). The other vertical arrows are
the homomorphisms defined above.

Corollary 11. The cohomology exact sequence induced by the
exact sequence

0—I™X, Zgy — I'(X, Zg) =+ "X, Zg)r —0
coincides with (4).
Remark. If X is a locally compact Hausdorff space, then the exact
sequence (5) is induced by the exact sequence

0 17X, Zg)” - — I'(KX, Zg) —— I'M(X, Zg)* 0.

Here 1'%(X, Zy)=1'(X, CYX, Z;)) and /. is the functor of sections
with compact supports.

6. Yang’s homomorphism of a iree Z,-space. In this section the space
X shall be a free Z,-space.

Suppose that F is a closed subset of a space X._ wi_th the following
property FU T(F) X. By B we shall denote the set /N 7(F). Let
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ry:Zs—>Zap ry: Zs— Zsrry
s, Zap—Zap St Zarwk) —2Zap

are the standard epimorphisms.
Lemma 13 ([5], Ch. 2, § 13). The following sequence is exact

(8) 0 ‘*ZQ l’ Zg F@ Z‘.Z (F) i’Z2B _’O.

Here a=(ry, 1), B=58,+ So.
From the sequence (8) we obtain the exact sequence

0—I*(X, Zg)—2+ I'™F, ZJPI'(T(F), Zy) £+ I'(B, Z3)—0.

The homomorphism 7:/7%(X, Z,)—1"(X, Z,) induces an isomorphism
T:I'(F, Zy)—-I'(T(F), Zy).

Lemma 14. If c¢ [ X, Z,) and : v ~T: g, then € 1'(X, Zy) .

This Lemma is proved by an induction with respect to the dimension i.

Now we are in a positlon to define Yang’s homomorphism.

The space B FnN T(F) is a free Z,-space. Therefore we can apply the
results from the sections 1—4 for the space B.

Let {&}¢ H{(B) and &¢ I'(B, Z,) be a representative element of the
cohomology class {g}. From Corollary 10 it follows: there is an element
n€ I'(B, Zy) such that on=¢. Let us consider (nz Tnrr) ), this is an ele-
ment ot I"(F, Z)®I'(T(F), Z,). The image of (y r, Tn 1)) With respect to
the homomorphism g coincides with & The element 5 — the differential of
the element 1, n—(3n g 6Ty rr ) belongs to the image of I™(X, Z,) with
respect to the homomorphism «, because &is a cycle: - 0(np+ Ty ) =00y

0&—0. Let ~¢ I'"t(X, Z,) be such an element that af=n, i.e, =01 f
Cre - Tdn 1w . By Lemma 14, ¢ I"H(X, Z,). The cohomology class of
the element - we shall denote by

r({s) (F{ED € H (X)),

The element A‘({s}) depends only on the cohomology class {¢]. Therefore
we have the homomorphism : H(B)—-H"'(X) — this is Yang’s homomorph-
ism.

Lemma 15. The following diagram is commutative

_ Six(X -
Hi{(X) ME) e 2
k\'i’ t li—{—k 1
v
- Sia— (B ) -
H(B) S0, i yB),

Here k:B X is the inclusion, and k£:B -X is induced by the equivariant
mapping k. )
It is sufficient to prove that the following diagram is commutative
F\)

"N\ -—
1 -

- I
4“ =

W@
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The homomorphism ¢/(X") is from Smith’s exact sequence oi the Z,-space X.
Let {h} ¢ (X) and be 1" (X, Z,)° be a representative element of the
cohomology class {#}. The representative element of the cohomological class
ECN(0Y) is Wge I \(B, Zy)r . Let XeIYT(X, Z;) and oZ—f and -3,
If n (O YWg T 'yrr ) and af=n, then ;-6 '3 By the construction
of the homomorphism 4* ! follows A4° '({})--{z}. By the definition of the
homomorphism 0'(X) we obtain 9/ (X){b} {or 2} {z].

Lemma 16. /f s,(X)+0, then s,_(B) +0.

Indeed, by Lemma 15, we have s,(X)— 17 's, (B)k°.

Lemma 17. [et X be a free Z,-space and s,(X)=0. If f: X—>R" is
a single-valued continuous mapping of the space X in the k-dimensional
Euclidean space R% k—n, and C—{x¢X f(x) f(Tx)}, then C is a free
Z,-space and s, x(C) 0.

We follow Yang [3]. Let f—(f,:.., fr), where f;: X— R (R is the real
line), and X,=X, X,={x¢X|fi(x) f,\T(x)), = oo N X =G

{x € X;_, | fAx)s= f,(lx)} then F; is a closed subset of the space X; 4,
FuT(F)—X ,, and F;,NnT(F)=X, It follows from Lemma 16 that
s, {(X;) +0, hence s,_ k(C)xO

7. Single-valued continuous mappings of a free Z,-space in R*—
Yang’s theorem. We need the definition and some basic properties of the
cohomological dimension ([8], ch. 2, §§ 2,3).

Definition 7. Let X be a paracompact space, £ a sheaf of Abelian
groups over the space X. We shall say that dim o X=n if H" (X, £v)=0 for
every open set U in the space X.

By dim X" we shall denote the covering dimension of the space X ([7],
Ch. 1,'§ 1.4).

Theorem 1 ([11]). Let X be paracompact space. If Z is the group
of integers and Z is the constant sheaf with the stalk Z, ihen
dimz X' dim X

Theorem 2 (|8]). Let X be a paracompact space and F a closed
subset of X. If £ is a sheaf of Abelian groups over the space X, then
dimg £ dim g X.

Theorem 3 ([8]). /f Xisaparacompact space, then (imz; X dimz X.
Suppose that a paracompact space X is a free Zy,-space. The mapping
7:X >X is a closed one, hence the space X is also a paracompact space
[‘)] Suppose also that the space .X' is a n-cohomological sphere over Z,,
H*S", Zy,) H*X), and dimz, X<<o~c. Here &” is the n-dimensional
Fucll<iean sphere
It follows from the Smith exact sequence of the space X that s,(X") : 0
If f:X >R is a single-valued continuous mapping of the space .\ in
the k-dimznsional Euclidean space R*, then s, (C) ! 0, where C={x¢ X| f(x)
f(Tx)} (Lemma 6). Therefore /{**(C)+4:0, where C is the orbit space of
the Z,-space C. By\the definition of the cohomological~ dimension dimz, C
n k. The spice C is a closed subset of the space X, hence C is a para-
compact space. .
Let us consider the mapping =, ~a C:C—>C. This mapping is a local
homeomorphism. Having in mind that C and .C are paracompact spaces, we
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obtain dimz,C=dimz.C, hence we have dimz,C—n—k. But dim C -dimz.C
because C is a paracompact space. Therefore the following theorem is proved.

Theorem 4. Let X be a paracompact n-cohomological sphere and
dimz, X< oo. If X is a free Zy-space and f: X—R* is a continuous single-
valued mapping, then

dim {x ¢ X f(x) = A(T(x)}=n—Fk.

8. Acyclic mappings of a free Z,-space into R* Let X and Y be
Hausdorfi topological spaces and y:X-—Y a multi-valued mapping.

Definition 8 The mapping v is called an acyclic one if a) v is an
upper-semicontinuous multi-valued mapping ([10), ch. 1), b) the set y(x) is
an acyclic compact set with respect to the Cech cohomology with Z, coef-
ficients for every x¢ X.

Definition 9. The compact space K is called acyclic if Kis a con-
nected space and H(K)=0, for i -1.

Denoting by 7(y) the graph of the mapping v, i. e, I'(y)={(x, ) XXY
yey(x)), there are two projections p: /' (y)—X, ¢:I'(y)—Y given by p(x, y)

x, q(x,y) =y for every (x, y)el'(y).

The projection p has the following properties:

a) p is a closed mapping, b) the set p!(x) is an acyclic compact set for
every xeX.

It follows from the Vietoris-Begle theorem ([5], Ch. 2, § 11) that the
homomorphism p*: H*(X ) >H*(I'(y)) is an isomorphism (here p* is the
homomorphism induced by the mapping p).

Definition 10. The multi-valued mapping @ :X—X is said to be an
involution of the space X if the graph of the mapping @, I'(®)={(x, y):X
X yid(x)} is symmetrical with respect to the diagonal of the space
X <X, i e, (x,y)el'(®) if and only if (y, X)I(P).

Definition 11. The multi-valued involution ®: X — X is called a
free involution of the space X if x§ ®(x) for every x¢X.

Definition 12. The multi-valued involution @ :X — X is called an
acyclic involution if the mapping & is an acyclic one.

lLet F: X — R* be an acyclic mapping of the space X in the k-dimen-
sional Euclidean space R*. Letusconsider the mapping F>X F: XX X R* > R*
given by F<F(x, y)=Fx)<F(y) for (x,y)¢ XX X.

l.Lemma 18. The mapping FXF is an acyclic one.

This lemma follows from the Kiineth formula ([5], Ch. 2, §18) and the
definition of an upper-semicontinuous mapping.

Suppose that @:X — X is an acyclic free involution, the graph 1'(®)
is a subset of the space XX, let us put H=FxXF|I'(®). It follows by
Lemma 18 that the mapping b is an acyclic one. Let /(4) be the graph
of the mapping 6, i. e.,

1) {(xX, ¥, 4, v) € XX XXR*XR* | y¢ D(x), uc Fx), veFy).

The space /') is a free Z,-space. Indeed, the mapping T:1°(0)— I'(H)
given by 7(x, ¥, 4, V) (y,x,v,u) is a free involution of the space /'(H).
The space [{(®) is also a free Z,-space — the involution T:1(®)— I'(D) is
given by T(x,¥) (¥, X) for (x, )¢ I'(®).

Let us consider the projection r:/'(8)— 1(®), r (X, ¥, u, v)—(x,y) for
(x, y, u, v) € 1'(h). The mapping r has the following properties : a) r(1°(H))— 1'(P)
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b) r'(x,y) is an acyclic compact set for every (x,¥)€/(®), c)r isa
closed mapping, d) r is an equivariant mapping, i. e, r7 Tr.

It follows from property d) of the mapping r that this mapping induces
the mapping r of the orbit space /(%) in the orbit space 7'(®).

Lemma 19. The mapping r:I1'(b) — I'(P) has the following pro-
perties :

a)r(1'h) 1'(P); b)r isaclosed mapping,c) the space r '(2) is an acyclic
compact space for z¢ I'(P).

The proof of this lemma is straightforward.

Applying the Vietoris-Begle theorem ([5], Ch. 2, §11) to the mapping r
we obtain that the homomorphism r* of the group H*(I?(d))) into the group
H*(1"(h)) is an isomorphism (here r* is the homomorphism induced by the
mapping r).

Lemma 20. /f s,(/ (D)) 0, then s,(I'(H)) : 0.

This lemma follows from Corollary 4, b).

Let us consider the mapping o:I'(Y) ~ R* given by ¢(x,y,u, v) =u
for (x, y,u, v)€ I'(h) and denote by C- {z¢I'\N) @(2)=¢(7z)). The set C is
a Zy,-equivariant subset of [{h). If B-r(C) and £ r.:C - B, then tis an
equivariant mapping.

Lemma 21. /If s,(I(h)) : O, then s, , (B) : 0.

This lemma follows from Lemma 17 and Corollary 4, b).

Corollary 12. If s,(I(®))+0, then {x¢X F(x)nF(P(x))+D}+D.

Lemma 22. If X is an n-cohomological sphere and dimz X< oo then
s,(1(®)) + 0.

We know that p*:FH*(X) - H*(/(®)) is an isomorphism, hence the
space /'(®) is an n-cohomological sphere. It follows from the Hurewitz-
Sklyarenko theorem [12] that

dl'mz;,/‘(‘l)) 2d1m21Y< oo,

It follows from the Smith exact sequence that s,(I(®)) : 0.

Corollary 13. If X is n-cohomological sphere and dimz X< o, then
(x€ X Flx)n F#(x) + @) - D , ,

In the case of compact space X, this has been proved in [4].

Corollary 14. Let X be a paracompact n-cohomological sphere and
dim X<<oco. /f [ max{dimz ®(x) x¢€ X}, then dim {x€ X F(x)n F(®d(x)): @)
=n—k—I.

By Hurewitz-Sklyarenko theorem [12] we obtain

dim {x¢ X|F(x)n F(®(x)) + D} ~dimz, B—L.

As soon as s,(/'(®)) + 0 (Lemma 22), it follows from Lemmas 20, 21
and 22 that s, x(B) ¢ 0, hence dimz, B--n— k.

It follows from Corollary 14 the following theorem.

Theorem 5. Let a paracompact space X be an n-cohomological
sphere and dim X<co. If X is a free Zyspace and F: X - R* an acyclic
mapping, then

dim{x ¢ X| F(x)NATx) i @}zn— k.

9. Single-valued mappings of a Z,-space in the A-dimensional
Euclidean space R*. Let a locally compact Hausdorif space X be a Z,-
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space and F={x¢ X Tx-—x} the fixed point set of X. The space U=X\F
is a locally compact HauscCorif free Z,space. By U we shall denote the
orbit space of U.

Suppose that A is a closed subset of the space X such that Ay 7(4)= X.
The set A contains the set F, also the set 7(A) contains F. The set
B=ANT(A) is closed in the space X, hence it is a locally compact space.

Let us consider the set V=B\F. It is a locally compact free Z,-space.
The identical inclusion j: V- U is proper mapping, i.e., for every compact
set Kc U, the set j~'(K) is a compact one (it follows from j (K)—- BnK).

The mapping j: V- U induces the mappinrg j:V — U of the orbit
space of V in the orbit space of U. As soon as the mapping j is a proper
one, the mapping j is proper too.

Let us consider the set C—=UnNA. This set has the following proper-
ties: a) C is a closed subset of the space 4,b) Cu7(C) U, c) Cn T(C)--V.

It follows from lLemma 7 that the diagram

X -
e S ey

™ |k+l -1

(B =
HL(F) St a-:3) H: (V)

is commutative, i. e., the following lemma is true

Lemma 23. Su., k(/\')=4]k'[ i l51_ kfl(B).

Corollary 15. If s, x(X) =0, then s, x—1(B) 0.

Lemma 24. Let a locally compact Hausdorff space X be a Z,-space
and s, m(X) 0. If f: X~ R is a continuous single-valued mapping of the
space X in the k-dimensional Eucludean space R*, then for k—m—1,
St.m—#(A) +0, where A={x¢X f(x)=f(Tx)}.

Let Xo—X, X;{x¢X fs(x)=fTx), s=1,...,i} and A;={x¢ X;—1 |fi(x)

fATx)). Here f—(fi,..-, fa): X — R~

By the assumptions of Lemma 24, s, »(X) + 0. The set A, is a closed
one and A, U T7(A,)-X. It follows by Corollary 15that s, m 1(X;) +0. By
induction with respect to i we obtain s, m—x(A) 0.

Suppose that a locally compact Hausdorff space X is a free Z,-space
and dimz. X< . Let also X be an n-cohomological sphere, i. e, the coho-
mology /1:(X) is isomorphic to H*(S"). It follows from [6, Ch. 3,§4, Corol-
lary 4.5] that the fixed point set F of X is an r-cohomological sphere for
some —1-=r n. The case F () is considered in 7. Now we shall assume
that F--(, i. e., Fis an r-cohomological sphere and 0- r- n.

It follows from lemma 7 in [13] that s, , /X) 0.

Theorem 6. Let a locally compact Hausdorff space X be a Z,
space and F + () be the fixed point set of X. Let X be an n-cohomolo-
gical sphere and F an r-cohomological sphere. If f:X— R is a conti-
nuous single-valued mapping and k=n —r—1 then

dimz{x ¢ X\ F|f(x)=f(Tx)}=n—k.
We have s, . AA) 0. It follows from Lemma 24 that s, , , (A) 0
where A {x¢ X f(x) f(Tx)}. Therefore kAN F)) +0 (AN F is the orbit
space of the Z,-space ANF). From this we obtain Theorem 6.
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Corollary 16. Let a metrizable locally compact Hausdorff Zy,-space
X be an n-cohomological sphere and the fixed point set F of X be an
r-cohomological sphere, O=r—n. If f: X — R* is a continuous single-valued
mapping, k- n—r—1 and dim X<c<, then
dim{x ¢ X\ F f(x)=f(Tx))=n—~k.
Corollary 16'. Let T be an orthogonal involution of S* with the

fixed point set S’. If f:S8" -~ Rk is a continuous single-valued mapping
and kR~ n—r—1, then

dim{x € S\ S" | f(x)=ATx)}=n—k.
In this case we can apply Yang’s theorem. Let
S"={xe¢R*t| |x|| = 1]} and
ST={x=(X1-++» Xnt1) €S"?| X,y = - -+ =x,=0}. Let us consider
St l={x=(Xy,. - -5 Xnp1) €S| X = - - - =x,.=0).

The involution 7°:8% 7! — §* 7! which is induced by 7 is the antipodal
mapping. For the mapping ¢ —f|S* 7~ ! in the case & n—r—1 we obtain
dim{xe¢S" 7! p(x)=@(—x)} -n—k—r—1.

Corollary 16’ gives a stronger result.

10. Acyclic mappings of a Z,-space in the k-dimensional Euclidean
space R*. In this section the space X shall be a locally compact Hausdorff
Zy-space and F shall be the fixed point set of X. Suppose that &:.X - R*
is an acyclic mapping from the space X in the k-dimensional Euclidean
space R*. The mapping @ is called a simple acyclic mapping if the mapping
& F— R* is a single-valued one.

In what follows @ shall be a single acyclic mapping.

Let v: X - R*<R* be the mapping given by w(x)—®d(x)<d(Tx) for
every x¢ X. The mapping v is an acyclic one and the graph /(y) of yis
a locally compact Hausdorff space,

() ={(x, u, v) € X< R*XR* u¢d(x), ve d(Tx)).

The projection p:/(y) > X (p(x,u,v)=x, for (x,u, v)¢Il'(y)) is a closed
mapping and p !'(x) is an acyclic compact set for every x¢ X.
The space /'(y) is a Z,space: T7T:[1'(y) —>I(y) is given by T7(x,u, v)
(7(x),v,u). Let F| be the fixed point set of /'(y) (F,—{(x, u, v)¢ I'(y) ! x¢€F,
u—v=(x)}). The mapping pr: F, —~ F is a homeomorphism and p (F) F,
(here we use that & is a single-valued mapping).

The sets U XN\ F and V=1(yp)\F, are free Z,spaces. By U and V
we shall denote the orbit spaces of U and V, respectively. The projec-
tion p maps the set {J onto the set V' and if ¢ p/ U:UU -V, then the
mapping ¢ is a closed and proper one. The mappings p and ¢ induce the
mappings p: /(y) X, g:U -~V of the orbit spaces. The last mappings
have the following properties: a) p and ¢ are closed and proper mappings
b) the set p '(2) is an acyclic compact set for every z¢ X, c) the setg '(u)
is an acyclic compact set for every u¢ V.

Applying the Vietoris-Begle theorem to the mappings p and ¢ we ob-
tain that the homomorphisms ¢*: /. (V) » H:(U) and p* i HAX) '//:-(I\'(q'))
are isomorphisms.

’
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Lemma 25. If s; m(X)==0, then s, m (I'(®))==0.

This lemma follows immediately from Corollary 5.

Lemma 26. If A={x¢X | ®d(x)ND(Tx)+=QD} and s, m(X)+0, then
Si, m_k(A)r‘va for k;;m——l.

Let us consider the single-valued continuous mapping ¢:I(y)— R*
given by o(x, u, v)=u for every (x,u,v)¢I(y). The set B={z¢I'(y) (2)

-¢(T2)} coincides with the set {(x, 4, v)¢€ I'(y) u=v}. The projection p maps
the set B onto the set A. It follows from Lemma 25 that s, (/' (y))+0.
The assertion of Lemma 26 follows from Lemma 24.

From Lemma 26 follows the following theorem.

Theorem 7. Let X be a metrizable locally compact Zy-space and
dim X<oco. Let X be an n-cohomological sphere and the fixed point set F
of X is r-cohomological sphere, 0—r=n. If ®:X— R* is a simple acyclic
mapping and R~ n—r—1, then

dim {x ¢ X\F | &(x) N D(Tx)+D}=n—k.

Remarks:

1) We consider in 10. a multi-valued acyclic mapping @: X — R* of
n-cohomological sphere X into the k-dimensional Euclidean space R*. On
the space X acts a free involution 7: X — X.

Theorem 5 is true for admissible multi-valued mappings. The multi-
valued mapping y: X — R* is called admissible if there are n-cohomological
spheres X; and free involutions 7:X;— X; and acyclic mappings v;: X; 4
— X; such that X,=X, X,=R* 0=i—n and y=y,_ ...y,

2) In 10. we consider a single acyclic mapping @:X — R*. The space
X is an n-cohomological sphere and the fixed point set / of X is an r-coho-
mological sphere, O- r=n.

The multi-valued mapping y:X — R* is called a single admissible map-
ping if there are n-cohomological spheres X; with involutions 7:X; — X;
and single acyclic mappings, 0--i=n, y;: X; ; — X; such that:

a) the fixed point set F, of the space X; is an r-cohomological sphere
for every i,0=i=n;

b) Xo=X, Xu R*:

C) Y=vYn_y...Yp;

d) y; F; are acyclic mappings for 0--i=n.

Theorem 7 is true for single admissible mappings @: X — R*.
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