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APPROXIMATION OF CONVEX FUNCTIONS BY ALGEBRAIC
POLYNOMIALS IN HAUSDORFF METRIC

VASIL A. POPOV

Let E,( /), be the best approximation of the function f by means of algebraic polynomials
of degree n with respect to the Hausdorff metric in the interval [0, 1]. and let K be the

set of all convex functions in the interval [0, 1] for which sup  flx) - M. It is proved
x€10, 1)
that

sup 1:-/1( /)’. ¢

rln(t+M)
€Ky n

where ¢ is an absolute constant. For arbitrary functions the order of E,(f), is Inn/n, as
it has been shown by Bl. Sendov (1969).

In this paper we consider the order of approximation of convex func-
tions by means of algebraic polynomials with respect to Hausdorff distance.
In the theory of approximation of functions the Hausdorff distance was
introduced by Bl. Sendov [1, 2] ’

We shall denote by r(f, g) the Hausdorff distance between the func-
tions f and g bounded in the interval [a, b]. Let /7, denote the set of all
algebraic polynomials of degree n.

Consider the best approximation E,(f), of the function f bounded in
the interval [a, b] by algebraic polynomials of degree n with respect to the
Hausdorff distance

E.()= inf r(f, P).
PeH,

In [1] (see also[2]) Bl. Sendov obtains the following basis result:
For every function [ bounded in the interval |a, b|

EdNesc 22
is valid, where ¢ is a constant depending only on the interval |a, b) and
M sup  f(x)|.

¥ €la b
The order Inn/n is exact in the class of all bounded functions [1).
On the other hand, it is known [3] that from

EL))y On'), >0,

it follows that we have the same order for the best uniform approximation
E.(f):

Es(f) ol sup | flx)—P(x) = O(n'"+)

re Mn ¥€la b
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APPROXIMATION OF CONVEX FUNCTIONS 387

In this connection the question can be asked oi finding the classes of
functions for which the Hausdorff approximation is essentially better than
the uniform approximation and is also better than Inn/n.

Bl. Sendov [4)] states the hypothesis that one such class is the class
of functions convex in the interval [a, #]. He supposed that for this class
the order of Hausdorii’s best approximation is O(1/z). In this paper we
prove this statement. Myre exactly we prove the following

Theorem 1. Let K, denote the class of a'l functions f convex in the
interval (0, 1] for which

sup fix) - M.

x€10.1]

Then

sup Elf)— ¢ i
rEK "

where ¢ is an absolute constant.

The proof of Theorem 1 is cumbersome and we shall need some lem-
mas and definitions.

1. We shall use the one-sided Hausdorif distance from the function g
to the continuous function f

h(g,f) sup inf max{f{—x,  f(f)—g(x) }.
x€la. b) 1€la.b)

We have
(1) r(f, &) ~max{k (f,g). k(g /)

Denote if needed in A(f, g) and r( f,g) also the interval [a, b]:for ex-
ample i(f, g; |a, b)), r(f,&; |a, b]). The next lemma follows from the defini-
tion of A(f, g; |a, b)) and r(f, g: [a, b)):

Lemma 1. Let f and g be continuous functions in the intervals |a, c|
and (c, b). Then

h(f, &; |a b)<=max {k(f, g: |a,c]) &(f &: |c 6D}

n(f, &: la, b))=max{r(f, g: la,c]), r(f.&; le. b]}.

Lemma 2. Let f and g be continuous fanctions in the interval |a, b)
and g be monotone in |a, b). Then

h(g f: |a, b):. max{ b—a|; min max{a—y, |g@a)—Ay) };

yé€la. 8]

min max{ b—y, gAYy }

yé€la b
Proof. We can suppose that g is monotone increasing in [a, 6] Let
min max{ a—yl, 'g@)—Ay) }=qa

yéla b

min max{ b—y, gb&)—AYy) }-8

yéla b
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min f(y)=fly) A; max fly)=f(y) B
. b yEla. b|

v€la
We have
(2) g(a) A—a, gib) B+3.

Let x¢[a, 6] be arbitrary. In view of (2) g(x)¢[A—a, B—8]. Ii
&(x) € [A, B], since f is continuous furnction in ([a, b], there exists a point y,
such that g(x) f( y.). In this case

(3) y:xllj‘n“ max{ x—y, gx)—fly)} x—y. -lb—a.
If g(x)e[A—a, A, then

(4) _min max{ x -y, gx)—/y)) max{a—y),a

and if g(x)¢[B, B+ 3|, then

(5) yr‘nlir'lbl max{ x—y, gx)—f(y) ) max{b—y, B

From (3)—(5) follows Lemma 2.
Lemma 3. Let f and g be continuous functions in the interval |a,b)

and f be monotone in |a, b). Then
H(f, &) -max {h(g. f). min max{a -y, fa)—g($) )

min max{ by, f(b)—gly) |
yé€la, b)

Proof. We can suppose that / is monotone increasing in [a, & Let
a=h(g, f). If a - b—a, then Lemma 3 follows from Lemma 2. Let a<
b a and at+a x b a Let us suppose that

B min max{ x -y, f(x)—&y) !} >a
yé€la, b)
There are two cases:
a) g(y)>>f(x) tor y¢|x—a, x +a:

b) g y)<f(x) tor y¢|x —a, x+al.
Since f is monotone increasing, in the first case we have

min max{ x—a—y!, |glx-—a)—f(y) |} A>a,

yé€la o)
in the second
min max{ x+a—y, gx+a)-fiy)l}=B ra

yéla b
which contradicts a  A(g, /).
Hence
(6) max min  max{/x—yl, Ax)—gY) ) a

LR S ) yéla b
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In particular
min max{ a+a—y, flata)—g(y)l}=a,

vEla b

min max{ b—a—y, f(b—a)—g(y) }—a

y€la b)

If we apply Lemma 1 twice we obtain
h(f, g; |a, b])< max {h(f, g; |a, a+al),

(1, &: la+a, b—a]), A(f.&; |b—a, b))

From Lemma 2 and (7) it follows

(8)

k(f,g: |a, a+a])=maxla, a, minl max{ a—y, fla)—g(y)}}

(9) yEja b
H(f.&: 16 —a,b) max{a, a min max{ b—y| |f(b)—-g(y) ]}
From (6), (8) and (9) follows Lemma 3.
Lemma 4. Let f,, i=1,..., m, be monotone increasing continuous
functions in the interval |a, b and g;, i=1,.... m, are functions such that
k(g f)=d;, i=1,..., m. If w0, i=1,..., m, then

h( Sugn S wifi ) -max {: b, max r»}-

== fu=1 fu=l ¢
Proof. Denote o- max 4. Let x ¢ [a, b). First we shall suppose that

Xx¢la+d, b -0). From the monotony of f; and the definition of 4 (.,.) follow
the inequalities

Jhx—8,)-.8dx)+ &,
fAdx+ ) - gdx)—4,.

(10)

From (10) we obtain

Nufhx—a)= I ufhx—d)s S ugdx)+ 3w,
() o . i ¥

Sudfhx+8) - Y ufdx+0)= D ugdx)— X wd
—1 =1

=1 =1

If the point x is such that x+4>6é (or x—d<a), we obtain similarly

(12) © Suddb) X ugdx)— D ud,
=1 [ ] =1
bnd Sudfda) = X ughx) + S ued.

fol =] 1
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Since the function f— Emﬁ is monotone increasing, the lemma fol-

i=1
lows from (11), (12) and the definition of A(g, f).
The absolute constants in what follows will be denoted by ¢
i=1, 2,.... Denote

0F D NMx—x) (1 —x0) i Xy 1.

Lemma 5. Let n 1be an integer positive number and let x,=0.
There exists an algebraic polynomial p of degree n such that

h(p, vx,; X); [—1, 1])=c, 2eFM)

n

Proof. We shall suppose that x,~ 1—1/n If x, -1 -1/n the polyno-
mial Q(x) — 0 satisfies 2(Q.r) -1 n.
Let us set x=cosu and let

2r

x/ sinm—5
GmAl) - u J’(~ —,2) 1(Xy; cos(u+-t))dt.

m sin 2

It m and r are natural numbers, g, (arc cos x) is algebraic polynomia
of degree (m—1)r. The constant u is defined by the condition

2r

x t
c [ sin m5-
(13) ) ( ‘3) dt 1.

n m sin 2
From (13) we obtain
“sinm N - inm '

T 2 madelll 22 [ 2\
,ul-)]( ,)d: 2f (--———) dt- 2 (2)

- msin 2 0 m sin 2

or
m n \or

Let us set

n
r

(15) r=[In((e4+M)X1—=x,) %, m ~| l, b e;.. P(X) = Qm.,(arc cos x).

We shall assume in what follows that - a/8. This inequality is satis-
fied if n 50r. There exists an algebraic polynomial of degree zero such
that A(Q, r(x, x))- 1 (it is sufficient to set Q -0). Since Osx, .1 —1/n,
then if n-.50r we have n<50r 50[In(e+ M) 2Inn] and there exists c,
such that in this case
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Therefore we assume that 50r=n. The algebraic polynomial p(x) is of
degree at most n. We shall estimate i(p, 7). Let 6>0 be such that x,—6=
cos (g +0), Xo=COSuy, Uy € [0, /2] In order to obtain an estimation for
h(p, r) we shall consider two cases:

a) x<x,—H0. In this case x—cosu, u u,+o, ucl0, 7] and =(x,; cos (u+
£))—=0 for £ - 0.

Since
- $ t 2r
SInMT

(16) p(x)—rt(xy; X) ,uj(———-——t—) [r(x,; cos (u-+-£))

0 m sin 2

— 2t(xq, cosu)+1(xy; cos(u—*&)))de

we have
(17) yegr_niln” max{ x—y, px)—t(x,; y) }=|p(x)—(xqe; x)|

= X _(_ 2r
m ( E 3 ) [r(xq: cOs (u+£))— 21(xy; cos u)+ (x,; cos (u—1)dt = @su).

s . msin 2

b) x -x, 6. For every function f and every x we have for u¢[—9, 9]
(18) 2’lpiII‘J (f(t)—f(x))—fx+u)—2f(x)

Hfix—u)=2 max (fit)—f(x)
From (18) follows that for every @ we have
(19) min (r(x,; cosq) -r(x,; cosu))

| a—@ |54

2

sin m 3 i
Su (-———‘— [r(xy; cos (u+¢))—2r(x,; cOsu)

0 m sin )
~r(x,; cos(u—1f))d= maf‘(r(x.,; cos ¢)—1(X,; cOSu)).

Using the continuity of r we obtain from (19) that there exists a point
&. such that

(20) fl_u‘:—?ov
il t ¥
’ sin m ]
(21) 1(Xy: cO8 &) —r(Xy; cosu) ;af( 7 ) [r(xy: cos(u-+£))
0 m sin
2

—2u(Xo: €OS )+ v(xy; cos(u —f)))dt.
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Using (16) and (21) we obtain
(22) min - max{ x—y , | p(x)—u(x,; ¥)}

yEI—1,1]

—=max{ cosu—cos &, , p(x)—t(x,; cosu)+1(xy; cosu)—u(xycos &)}
. t 2r
sinm 45—
<max{ cosu—cos & |, wu (——t) [#{x,; cos(u+1t)
3 msin —5—

2
—21(xy ; cosu)+r(x,; cos(u—*¢))|dt}—max {| cos u—cos &, |, @s(u)).

Let us estimate cosu—cosg,| in this case. Since x> x,—0, 0=u
—uy,+4o we have

(23) cosu—cosé, =0 sinz, ,
where 0—z,—u,+ 26.

We shall consider again two cases:
bl) x,<cos=z/4. In this case

In ((e+M)1—x,) *) = ln(e+M)r

|cosu—cos g, | =d=en/2m=c, = =c, =

b2) x,~cosn/4. Since we can assume that 6—x/8, we have u,+ 20
=arc cos X,+25=—=/2 and

| sin z, | =| sin (o + 28) <sin uy--sin 28- \1—x24-20.

From (23) we obtain

(24) | cos u—cos &, | = o1 —x2+26)

—2y \2
TR In (et MY — o) g, (M ™D )

0 2n n

As before, we can consider only these n, for which 13(",;'")—

Xo==1--1/n we obtain

(25) ( In ((e+M)(1—xo)?) ){;% In (e+ M)

n n

= 1. Since

Furthermore we have (and this is the crucial point in the proof)

——s 1 MY(1—x4) 2 1 M
(26) os?pu \/l—xg n ((e+ )’(' Xg) );‘,7 nr(e_:-*)“

From (24)—(26) we obtain

| COS U—COS &4 | Cq ,'E,_(int'_" )
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Consequently in the two cases bl) and b2) we have

In(e+M
COSU--COS & =Cqy n(”"' ),
Therefore in the case b) we have

In (e+M)

(27) min - max{ x—y, | p(x)—(xy; y)|}=max{c, s @a()}.

ye[—1.1]
Let us estimate now @s(u) in the two cases. Since
tM

‘ : M
lt(xo; cos(u-+1))—1(x,; cosu) = . | cos (u~Lt)— cosu | =

1—x,
using (14) and (15) we obtain
_om (=N [ a ruM
(28) no@=5-( ) f (e ) oy
3
_a (A M3 (1—xg)In((e+M)1—x0) %) _  In(e+M)
éT(EﬁEa—) T—xx2r—=C10—— n ol gty—

The estimations (17), (27) and (28) give us for every x¢[—1,1]:

J'?[“—nl ”max{ X=y 1 pxX)—r(xe; )|} = 1'l’n£iM)

Hence
(29) h(p,t)- ¢y

and the lemma is proved.
Remark. Let us mention that from (29) and the definition of A(.,.) it

follows that in the interval [—1, x, —¢, In (-P+M)] we have

ln(e+M) S In (e+ M)
1 n

"In(e-t-M)
——

p(x) ¢

The following lemma can be obtained easily from Lemma 2 in [4], but
we shall give the full proof.

Lemma 6. Let M>0 be given. For every natural number n>0 there
exists an algebraic polynomial s,(x) of n-th degree such that

1) su(x) ~1/n for 0~ x- 1 ‘2(

2) sa(x) 1/n for x €0, 1),
3) su(1)- M.
Proof. Let

Tux) = AV 1) (x— (1))
be the Chebyshev polynomial of degree n,

s M
n— ’
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Let us consider the algebraic polynomial

Sa() = :T T, ('ﬁx)' . ( In 2n(e+ M) )a_

l—a n

Obviously s.(x) 1/n for 0 x (l-—a)/(l-+a), or, since (1—a)/(l+a)
1 —2a, we have |s,(x)/- 1/n for 0- x 1 2a
In the interval [(1 —a)/(l1 +a), 1] the function s,(x) is monotone increas-
ing. We have

st (P YT ) = o (B2

1 ‘Zm'u 1 « !
on € o exp(In2n(e+M)) M.

This proves the lemma.
2. Lemma 7. Let f be a monotone convex function in the interval

[0, 1],0= f(x) M for x ¢ |0, 1], f(x)=0 for x ¢ |0, 2c,l"": A'!—], where ¢, is
the constant from Lemma 5. Then

N In(e+ M
ENf) €13 nrn )-

Proof. For every ¢>0 there exists a linear combination ¢(x)
‘z'a,r(x,; x) with a, 0
=1 =1

before the Lemma 5, such that

(30) max  @(x)—f(x) <e.

C€10. 1)

From Lemma 5 it follows that there exist algebraic polynomials p.(x),
i 1,..., m, of degree n such that

X ‘};a, 1, where rf(x,; x)is the function defined

K p, Wxi; X3 [0, 1) ¢, m+M,
Using Lemma 4 we obtain that
(31) Mlz‘?a:ph @: [0, 1= ¢, et
From (30) and (31) we have
h(‘-\:‘“' P f) M,-g‘“w:. o)+ g, f)-e o 4,

Since ¢ >0 is arbitrary, we obtain that there exists an algebraic poly-
nomial Q of degree n such that

(32) mQ, f)- e ln_(o:M).
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1f we have, moreover,

(33) min max{ x—y |, f(x)—Q(y) }- cll_nge:,M) for x=0 and x=1,
yEo. 1)

using Lemma 3 we obtain from (32) and (33) A(/, Q)--¢, In(e+M)/n and
consequently r(f, Q)— max {A(f, Q), #(Q,f)}- ¢, In (e4+M)/n and the lemma
is proved.

Since f(x)=0 for x¢ [0, 2¢, In(e+ M)/n], from (32) it follows that (33)
holds for x—0.

Let us mention now that for every function f, bounded in the interval
|0, 1], we have

EALf),- 1.

Inieed let us set

m-— inf flx), M= sup f(x).
x€[0, 1] x€l0. 1)
In this case the linear function g(x)=m-+ (M -m)x satisfies r(f, g)- 1-
Consequently we can consider only the case In (e+M)-—n(or c,5ln(e+M)
n). In this case there exists ¢,y such that

(34) o 2ot M) o, M,

If (33) does not hold true for x 1, it follows that

max Q(y)<f(1)—¢, ek}
y€10. 1)

In this case we add to Q the polynomial as, where s, is the polyno-
mial from Lemma 6 and a, 0- a 1, is chosen so that

(35) max : ‘Q(J’)’f‘“‘n(,v)}=f(l)»-c, ln(0n+M_)

vE[l—cy,In (e - Myn, 1

(¢y2 is the constant from (34)).
We can do this since s.(1) M and Q(x) — ¢, In(e+M)/n for x(ll(')), lt
Let us estimate in this case A(Q--as,, f). For x¢[0,1—¢yylIn(e+M)/n
using Lemma 6, (32) and the choice of a, we obtain

(36) max | x—-y, Q(x)+asdx)—nx) ]

yé€lo 1)

In (e+M) 1

max {|X—yh  QX)—AY) )} +o=6 D

y€lo. 1] s

If x¢[1-—¢,, In(e+M)/n, 1}, then Q(x)—1/n_ Q(x)+asx)-.A1). From
(32) it follows that there exists a point y, such that

J.‘—y. . ¢'| ln(l.#_M)' qx)—,‘yj)l; (‘ M".w-
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Consequently, there exists y, such that

In(e+M)
Y |5 O

o Ay —e M Que) - asax) (1),
Since f is a continuous function there exists a point y  for which
(38) x oy =e '“""*M,’_L‘-m ln(e: M)
and
(39) Q(x)+asux)—f(¥) |, 22X | 1
From (37)—(39) it follows that we have
(40) yr‘lxl&nll max{ x—y/|, Qx)+as.(x)- f(y)} (¢, +¢€1a) n “:M)+ ,l, :
The inequalities (36) and (40) give
(41) MQ+asu f)= (e, +er) "My 1
From (33) for x=0 and LLemma 6 we obtain i
(42) ,n‘nfgnmax{y:. f(0) - QAy)—-asdy) } cl-'"—‘f,;+-‘m + ,'.

The inequalities (35), (41), (42) and Lemma 3 give
O

The lemma is proved.
Let us now prove Theorem 1. Let f be convex function in the inter-
val [0, 1]. We suppose that min f(x)=0, max f(x)=M.

€€10. 1] €€[0, 1]
Let x, be such that f(x,) 0. We may assume that x, . 1/2.
Let us set
€ max{cyy, 2¢,), "u“""‘%tﬁ) O

As in the proof of Lemma 7 we can consider only these n for which
ay= 1/8.
We consider the continuous convex function f, defined in the follow-
ing way:
f(x) for X%
0 for Xy Xi. X+ 2an,
JdX)=) fx—ay) tor Xo+2a,- x=1-1/n,
/(1) for x=],
continuous and linear in the interval [1—1/n, 1)
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Obviously
(43) r(f' fn)g 2a,+1/n.
We set
Bp =X+ ap,
_| fAx) for x_.b,
&%) 1 0 for x=6,,

an{X) = ful X) — & al X).

The functions g,., i=1, 2, are monotone convex functions, 0- gi.(x)
M for x¢[0, 1}, g, is monotone decreasing and g,, is monotone increasing
in the interval [0, 1].
Furthermore

In(e4+ M) ”'

&i(x) -0 for x¢[0,—a, 1]211—2¢6,—

(44)
Zan(X) 0 for x¢€[0, H,+a,] D0, 2¢, "“,.*ml-

Therefore for the functions g,, and g,, we can apply Lemma 7 and we
obtain that there exist algebraic polynomials p,, and p,, such that

(45) o B EE. =1, X

n

From (43) and (44) and the definition of the Hausdorfi distance it
follows that

(46) Pra(X) -~ an for x¢lb, 1},
Pan(X) - a, for x¢|0, 6]

From (44) -(46) and Lemma 1 it follows
A frr PratPan) - MAX{r( [ PratPons [0, Ba),
(S Pint-Pani [P 1]} max {7(€in Pras [0, Ba))
+ @y M(Zom Pani [0 1])+aa}= 2a..

The inequalities (43) and (47) give

r(f, PratPa)=r( S, [ ([ PratPan)=c,

Theorem 1 is proved.
Problem We state the following problem :
Find the functions [ from K, such that

sup  Ed o= EdNn

(47)

In(e+M)
et
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in other words the functions from K, with worst approximation by al-
gebraic polynomials in Hausdorff’s distance in the interval [0, 1].

We have the hypothesis that the function f(x)=2'x —'’, is the unique
function from K, with this property.
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