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HAUSDORFF DERIAVTIVES IN F,

BLAGOVEST H. SENDOV, BOYAN I. PENKOV, VASIL A. POPOV,
SVETOSLAV M. MARKOV

A transformation in the class £, of point sets in R?, called Hausdorff differentiation
is introduced and studied. In particular F | includes complete graphs of bounded functions.

For such graphs the transformation is in some sense similar to thc common operation of
differentiation. The inverse transformation is also defined and some of its properties are
discussed.

1. Denote by F, the class of all point subsets of the real plane R?
which are bounded, closed and convex with respect to the y-axis and whose
projections on the x-axis coincide with the interval 1 on the x-axis.

For FcF, denote F(a) the intersection of F with the line x--a and
Ix)~inf {y (x, EF(x)}, Se(x) sup{y (x, y)eF(x)}, so that Flx)—{(x, y)
_}Ile[I,(x),SSF(x)l}, i. e. each F¢Fy can be defined by the pair of functions
r and Sg.

Let f be a bounded function with graph f and let f be its complete
graph, defined by f—={np:pcF,, pof}. Then [(x) and S(x) coincide
with the Baire functions for f given by /[(x)=liminf .. f(f), S,(x)
lim sup;,« ().

Definition. Let 2#>0. The H-derivative F of the set FcF, is defin-
ed by the pair /r.(x), Sr(x), where

‘ X X yn_—vl_ y'r_)'lﬁ —1

= lmint o T )
(1 (¥t ¥ (17, Y1) € F

Sk(x) lim su V=V (g =Y

£ oy R x"'—x ( o el Wi

!, 1), (7, y1)EF

Let us first restrict our considerations to graphs of differentiable func-
tions. If f is the graph of a differentiable function f, then from (1)it fol-
lows that (x, y)¢f implies y-f'/(1+hk f'), what can also be stated in the
form

(2) S@)=f[(1+hf)  [(x)
Let
d(A, F) min{o A, B) BF)
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is the distance between the point A and the set F¢/,, where the distance
between the points A(x, y,) and B(xg, yp) in R? is

(3) on(A, By=max (/x,—xg [k, yi—-vg [H).

Consider then the function f=g defined for any two continuous func-
tions f and g by

(4) f(x)=g(x) = sign (f(x) — g(x)) max (dn( f(x), &), du(&(x), ), x&1

and called F-difference between f and g. As it is shown later (Prop. 2) the
H-diiference is closely related to the Hausdorff metric [1].
Proposition. 1. If f is differentiable in |, for x| holds

f'(x)

: flx+42)=+f(x) )
(5) lim —— EAS f(x) TFRlFoT

—0 ¥

Proof. Denote f(x+1) fJ{x). One has then f,(x)=<f(x)- sign(f(x)
f(x) max (du( £1x), ), du( fux), 1) =sign (fu(x) f(x))ymax( B'P"|, B'P"))(see
Fig. 1). We have used the notations O~ f(x), O*  fi(x), O fux+71), O"=

Sf(x+1), B f.x), B" —~ f(x"). , .
a) suppose |B'P'| - B”"P”. In this case f.(x) : f(x)=sign[f.(x) -

f(x] B'/P" P B where P'B’ denotes the algebraic value of the segment
P'B’ with respect to the y-axis. Denote i—-PB/O'P  (f(x) - f(x)/ (x -
(x—1)=(f(x"+1)—f(x)))(x'+¢ x). The convergence of r to zero implies
X'+t - x and hence i — f/(x). From i=P'B/O'P PB/(x h P'B|) we

13
o P e
r—— (0]
|
| |
| [
I l
1 ! l
| I
| |
X—1 XX x" X4
Fig. 1

have 2B it/(1 +h i) and lim, .| f(x +0)f(x)]: /« lim, ,. FP'B f(x)/
(1 + k| f(x)]).

b) suppose now B'P | < B"P” . Similarly f(v)-=f(x)-B"P". Denote i
B"P'P'O" =[f(x +7) f(x"))(x+* x"). When ¢ tends to zero we have
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again 1 — f'(x). From A=B"P"|P"O"=B"P"/(x—h P'B"” f{ollows B'P' =
it/(1+h| 4 ) and hence lim, .| fix+1)+Ax)=f(x)(1+h 'f'(x)!), which
proves the proposition.
The Hausdorif distance r,(f, g) between two continuous functions ge-
nerated by (3) can be expressed easily by means of the H-difference (4).
Proposition 2. For every two continuous functions f and g holds

ru( f, )~ max.es | f(x)=g(x)|.

Proof. ri(f, @) rif, & max{max.c @u(f(x), ), maxcesdn(f,&(x))}=
max, ¢ , {max [dj (f(X), &), du(f, X))} =maXee | fx)gx).

By means of (2) the following relations for the /H-derivative can be
obtained. In what follows f and g are assumed continuous and ¢ is a
constant :

i) (cfy —ef [(A+h(Cec 1) f)

- A  frg-—Meglf+ifle)
i) S+ =i inFre—1F 1~ g ) +h( 1&g |- le=Fle)

. feg+fg—hrg(f+8
iii) (/8) 1+ h(fe+fe—F—g)+hfe(l—f—g).

iv) (fgy=(8fg afg)/|aBg®+h(Afg —afg)], wherein
a-=1 h]f ‘.v B 1 hig.v
v) (fog (fo@g/ll h(foll hg)+h(fog)g}, where fog

denotes the composition of f and g,

(vi) ¢ 0,

(vii) [exx/(1=h c]) +e] =y

viii) ( h'x h2In|1—hx)=x,
ix) [ =f implies fexp( kf)—expx.

Let us now obtain the //-derivatives of the graphs of some nondiffe-
rentiable functions. Consider the consecutive /f-derivatives of the graph m
of m(x) x|, xt 1, Oc L

i) From (1) we get /,.(x) 1(1+h) for x 0, In(x)- 1/(1+h) for
x 0 and Sp(x) 1 (1+h) for x<0, Sm(x) 1/(1+h) for x -0, i. e. m’
is the complete graph of the function (1+A) 'o(x), where a(x) 1 for
x 0, o(x) 1 for x>0.

ii) For the H-derivative of the graph o of ¢ by means of (1) we get
1,(x) 0 and S,(x) O for x+0, S;(x) A~ for x<0, i e @ is the comp-
lete graph of the function /£-'3(x) where &(x)—-0 for x--0, Hx)—1 for
x=0.

iii) The F-derivative of 4 is the set x & consisting of the points of
the interval .1 plus the points of the segment A A, where A,=(0, (- 1)2~").
There is no function for which x is its complete graph.
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These examples show that the //-derivative can be considered as an
extension of the concept of derivative over a larger class of functions.
Hence some theorems like those belonging to Fermat, Rolle etc. can be ge-
neralized. We give a generalization of the Lagrange mean value theorem
as an example.

Proposition 3. Let f be a bounded function in the inferval 1-
|a, b). There exists then a x¢. | such that

— | —f(a) '\ ~
1,(%)=q(a, b) - ﬂ’;’_afm—(l +h i’l’% A )_) “Sp(%)

—a

Proof. Denote by (x, 2) such a point from the complete graph f of
f which has the greatest possible distance to the segment [/ with ends
(a, f(a)) and (b, f(b)). In particular (x, 2) might lie on /, in which case =/
and Prop. 3 is obviously true. If x'<x<x" and (x’,y’), (x”, y"¢i denote
tg s [f(0)-f@)(b a) tgp=(z ¥)(x x) and tgp” (¥’ 2)(x" x).
We have either g”-——p=p" or p’'=p=p". Consider the case p”"--g '
(the other case is handled similarly), then (y” 2)/(x” x) -[f(b) f(a)]
(b a) (z ¥)/(x - x'). Hence
" [y —z \—1 z—y [z—y" |\
y'—z (]+h,.{”37f) <g(a, b)-;p_ﬁ, (14‘/,:.“ CA ) .

X" —x - X
This implies

. . I- S '»; ,Il l
lim inf 'V, 'V,,<1—{—h—¥,- )7 )
X, xM"sx X '

X,y (x", v e S

“g(a, b)- lim sup : T (1 +h ‘V_,M‘V,, ) l,
(0 PN I €S
what was to be proved.

2. Looking for physical applications of the //-derivative we might note
that the //-derivative can be interpreted as some sort of velocity. It might
be interesting to point out that for smooth functions the //-derivative re-
lates to the usual derivative in the same way as the so-called apparent ve-
locity [2, p.178], [3, p. 135] relates to the wusual velocity. Indeed between
the apparent velocity v, f° and the standard velocity v [’ the relation
(2) holds, where 1/4 should be interpreted as the velocity of light (1/2 «¢).

3. Here we give an application of the FK-derivative in the theory of
approximation. The following theorem for linear positive operators is well-
known [4, p. 21}

Theorem (Korovkin). Let {L,} be a sequence of linear positive
operators such that the so-called Korovkin conditions lim, . max ¢, La(t',
X |—x' 0, i=0, 1, 2 hold. Then for every function f continuous in the inter-
val | one has lim, ,.max ¢4 | La(f, xX) flx) =0.

For example the Bernstein polynomials B,(f; x) - .{_' (: (k/ n)x*(1  x)
k-0

in the interval [0, 1] are linear positive operators. For these polyno-
mials we have [5, p. 251 lim, ,.. max .¢p0,1) B,(f; X) [f'(x) =0 if f iscon-
tinuous. Let us also mention that B/ (f; x) B, a(a( f({ +1/n) f(1); x).
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Let {L,(f, x)} be a sequence of linear positive operators which satisfy
the Korovkin conditions and

(6) Li(f 35 h)=Laa(Fy3 x),

wherein F,(x) |[fla,x | 8,)  fl@ax)/8, with a, — 1, 8, — 0,
for example

Fax)—n(f(x+ ) f(x) or  Fao)=nl f xt ) fOE X))

n

Such operators are for example the Bernstein operators and the gene-
ralized operators of Baskakov
‘ B)( )k
. - vy (X)X ,
B, 2( Dy — flk/n),
k-0 .
where ¢¥(x) satisfy certain conditions.
We prove the following
Proposition 4. [If under the forementioned conditions for the
function f holds

(7) limn—oacrh(Ln(f), f) —_ 0’
then
(X) lim,,..ru(L,( f), F)=0.

Lemma. Let {L, f)}; be a sequence of linear positive operators that
satisfy the Korovkin conditions. Then for every £>0 and 6>0, Xofla, b]
there exists a n, such that by n>n, (n, depends only on max|f| but not
on f) we have my(x) e Lu(f;X) My(xp)+e; Xo 8/2-=x<x,+0/2 where,
My(x,) max . ., 5 f(X); Ma(Xp) ~min v, 1< | f(X) -

The lemma follows from the theorem of Korovkin.

We prove now that (7) implies (8) by the assumptions (6) for {L.}.

Let (v, y)¢f. We have to show that for arbitrary small ¢£>0 and suf-
ficiently large n there exist points (x, y.)¢L,(f) such that [x x, <e,
'y y, <e The definition of j implies that there exist points (x’, y")
(x” y")f such that

vy Yoy a8
() Y= waa th| o) T<V:I“ X

From (7) it follows that there exist sequences of points (x,, y,)La(f)
and (x, y)La(f), such that x, X', x> x", y, — V., ¥y, — y’ Then (9)
implies that for sufficiently large n

Yo—Yn YV T
(10) Y= 1+ 7)) <3
=Xy Xn—=X,

Proposition 3 asserts that there exist points (x, va.)L,(f) such that
X, x, x" or x;=x, x,and

n
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v -1
y" yll y"
(11 Yn—— eO— h]‘-—T)

n

From (10) and (11) follows the wanted | x x,/<<¢, ¥y y. <e.

Now we shall show inversely that for sufficiently large »n all points
from L, are e-close to f. Assume that this is not true. Then there exist
points (x,, y.)¢L, and a point (x, y,) such that x, — X, ¥. — ¥, and in
the square with centre (x,, y,) and side ¢ there are no points from I. We
may suppose that y,>0. It is then obvious that y, 1/A. As I is convex
with respect to the yax1s we might assume that for x, e=x=x,1¢
(x, y)¢f holds y<Cy, e The definition of H-diiference implies then that
there exists a neighbourhood (xo 0, xo,+0) of the point x, such that for x

and x from the interval [x,—d, x,+ 48] we have

(12) (f(x) f(x) ) (1 +h f(x)"f(r) )'\lyo'45/2-

~ =

X — x X—X

From the conditions (6) we have that
(13) L(f5x)=Lor(Fns x)1+h Lna(Fa; x)7!
where F(x)  (flapx+8,) fla,X)/Bn, an-— 1, B — 0.

From (12) it follows

AR —Ax)
X—x

provided ¢ is such that 1 - A(y—e/2)=-0.

The lemma implies that for sufficiently large n we have L,_(F,; x)
(Vo €/2))(1 — h(yo €/2)), | X0 Xx|=—min{e/2, 6/2}.

Takmg into account this inequality and the monotonicity of x/(1+#| x/)
as a function of x>0, we get from (13)

o Yo—¢l2 ,
1 —h(yo—¢/2)

. (vo—e/2)1—h(yo—¢[2)) B
D L 0= (a2 — i yo—e/2) 1 W ye—eia] Yo /2

for x, x|-—-min(e/2, §/2).

But (14) obviously contradicts to the assumption that (x,, y,) is a
boundary point of L . Hence for sequences L,, which satisfy (6), (7) imp-
lies (8). Thus proposition 4 is proved.

Let us note that if instead of (3) we use for defining e, the rela-
tion ox(A, B)—=| x, xB /h+ y,—vygl, then (5) obtains the form lim, of(f,:
)zl {f(x) it f/~=h="; R~ if >k Also if we set g)(A, B)=[(x, Xxz)?+
(Vi Ya )’]‘” then formula (5) obtains the form lim, o[(f: : 7)/z]- f'(x)/(1+

13

4. Consider now the inverse transformation. Denote by S the class of
all bounded Riemann integrable functions in .1 with sup,¢, f(x) A& .

Definition. If f¢S call the function /(%, f) defined at x¢.I by

. S Ofty
(15) I(h, f; x) .Uf, ) dt

the Riemann — F/-integral of / (if the integral exists).
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The following properties of this operator are obvious:

i) the H-integral of a step function f is a polygonal line ; moreover if f
has a finite number of jumps then I(4, f) -

ii) If f(x) O then /(A f, x) O.

iii) If f ¢ for xZ 1, then also /(4 f;x)=c. (Here obviously /'(%, f; x) deno-
tes the section of /(% f) at x.)

Proposition 5. The equality I'(h,f)—fi(x) holds if and only if

I, =S,
! Proof Suppose I, f S, holds. Let the step functions ¢, and vy, ap-
proximate f so that vy, f—-@u ru(ya @.)<<1/r, where r, is the Hausdorif
distance. Property iii) implies that 1, I(h f)=q.. Hence ru(f, I'(h,
fN—=Ll/n i e I'(h, f)—

Assume now that l, -S;, i. e. there exists a point (x,, y,) say from S,
and £>0 such that in the square with centre (x,, y,) and side ¢ there is
no point from I,. From definition (15) it follows then that for a dense set
in the interval (x, ¢ X,+¢) we have f(x)<<y, ¢). Consider the function f,
defined by

If(x) for x€ (X, & Xo-+¢)
fe(x) fl(x) for x€ (xo & X,+¢), AX)<Vo—s¢,
Vo—¢ for x¢ (xﬂ & x0+8)’ f(X) Vo &
Obviously f and f. coincide almost everywhere in [g, b] and hence by de-
finition (15) we have (4, f., x)=1(h, f, x). Because of f. -y, ¢ in (x,—¢,
Xo+¢) and property iii) we have 1°(4, f,, x)- I'(h, f; x)=y, ¢ in the interval

(Xo & xo+¢) and hence [I'(k f,x) I is not possible. This proves the
theorem.
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