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INTEGRABILITY THEOREMS FOR FOURIER SERIES
OF POSITIVE FUNCTIONS

S. M. MAZHAR, R. S. KHAN

1. Concerning the Fourier coefficients of positive functions, Askey
and Boas|[1] in 1967 proved the following theorems:

Theorem A. Let G(x)|0 on (0,n), G bounded below and _fxd(i(x)
v

finite, so that dG has generalized sine coefficients
bn— 2 [sin nxdG(x).
)
14
If 1<p<co and 1/p<<r<1-+1/pthen{n "b, IV iff t" " 27 [xdU(x)¢ L?.
0
Theorem B. Let F(x)| on (0,7), F bounded below and ]’x?dF(x)
0
finite. Let a,—= (2’n)f (1 cosnx)dF(x) be the generalized cosine coefficient
0

t
of dF. If 1 <p<co and | /p<r<<2-+1/p, then {n "a,jclrifft~ * *7 [n*dF(u)cI?.
0

Theorem C. /f /p<<r<1/p and {n Ta,}¢l’, where a, are the
Fourier coefficients of dF with F monotone, then t~ 27 (Ft) F0))¢L”
Theorem D. If - 1/p’<r<1/p, a, are the Fourier cosine coefficients

t
of f and tr—2r [x|df(x) €L?, then (n "a, ¢l
0

The object of this paper is to obtain certain generalizations of these
theorems.

Theorem 1. Let G(x) satisfy the hypotheses of Theorem A. If
1<p< and ix) is a positive function such thal

(i) x'*9i(x) | for some small 60,

(ii) x» 4 24(x)] + for some small 50 as x— -, then {J(n)""Pb,} 1" iff

4
(1.1) Mo/ B)Vet 27 [ xdU(x) e L7
v
Theorem 2. Let F(x) satisfy ihe hypotheses of Theorem B. If
1<p< and i(x) is a positive function such that
(iy x''2A(x) | for some small 50,
(ity x? 'V 95(x) | oo for some small 50, as x oo, then {(AVr(nya,) ¢ 1r

4
iff 2ty T [ x2dF(x) € L.
0 .
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INTEGRABILITY OF FOURIER SERIES 139

Theorem 3. If a, are the Fourier coefficients of dF with F mono-
tonic and u(x) is a positive function such that

(@) x''9 7u(x)| 0 for some small >0, x oo,

(b) x' Pu(x)] oo for some small 5>0, x >oo and {rP(n)a,} €17, then
w/p(a/tt-2e (F(t)  FO))e L.

Theorem 4. If a, are the Fourier coefficients of f and if '?(at)

t
st [x|df(x) €Lr, then {u'?(n)a,}cl”, where u(x) satisfies the same
0

conditions as in Theorem 3.

Taking i(x)=x 77, 1/p<<r<<1-+41/p in Theorem 1 we derive Theorem A.
Similarly all other theorems of Askey and Boas can be deduced from
our theorems.

2. The following lemmas are neceded for the proof of our theorems.

lLemma 1. [4] Let i(n) be a positive monotonic decreasing sequernce

such that Si, Onin)), nco.Let Sy=>a, a, 0 and >i(n)(na) <o,
k=n k=1 n=1
p=>1, then Ao‘ol(n)Sg< - and Xi(n)S? -K S‘o).(n)(rza,,)ﬂ, where K is a posi-
n=1 n=1 n=1

tive constant.
Lemma 2[1). /f G(x)|, [ x dG(x)|< - and b, are the generalized
0

sine coefficients of dG, then X'b, Kn'-’_?’”.\‘!d(j(x) , where in X' the last
k=1 v

term is multiplied by 1/2.

Lemma 3. Suppose y(x) is a positive function such that

(i) [x'Hy(x)] ! is an increasing function when x increases from zero
to - for sufficiently small 6>>0.

(ii) there exists a number k>1 for which [x*y(x)|"' is a decreasing

function. Let F(x) f:f(f(t) dt,f(t) 0. Then j’qv(x)F(x)l’dx “Ku.} y(x)(xf(x))Pdx

where 1-- p<co.
This is a particular case of a Lemma of Chen [2]

Lemma 4. Let x' p(x) be a positive increasing function for some
small 6>0. Let U(x)- fg(t)dt, g(t) 0 where g(t) is integrable in 0<e -t —=,

then _fq(x)(il'(x)dx K fqv(x)(xg(x))"dx, 1 -p<Z
0 0
This is a generalization of a lemma of Hardy [3], [2]
Proof of lemma4. Putting R(x) [¢(f{)dt, one has _fq'(x)(i"(x)d.\'
0 &

CIR(x) GHx)) + pf RGP {(x)g(x)dx RGP+ p [ R(X)E(x)G7 (x)dx.
Further R(x) ft‘ Sp(B)t* 'dt ~xo(x)'d and for 1==1
0
t"txo(x)Gr Y(x) " max (G7(x), (Exg(x))?) —t 'GP(x) -+ 1P (xg(x))P.

Hence p j."lx’(.\')g(.\')(l"" (x)dx (p 'S)f.\-g(.\‘)q(.\‘)(i(x)l‘ ldx
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(/) [ ) Gxydx+(ptr 8) [ x)(xg(x)) dx.
Thus (1 p/t0)[@(x)@P(x)dx—  R(e)GH(e)+(ptr /8 [ alx)xg(x)Vdx.
Now R(e)G(e)? - Keg(e)G(e) and {[g{x)dx}? :]'q(x)(xg(x)/'dx

e {fx - P'(r(x)—p'/!’dx}p p’ [KE—-I "(I(E)l}q (x)(xg(x)!' dx

&

so that G7(e)R(e) -K ,I::)'(x)(xg(.x:))" dx.

Thus (1 p/’tﬁ)]'qv(x)Gl’(x)dx \Kj-"q(x)(xg(x))f'd,\-.

Choosing ¢ large enough one has the inequality

Jox)Go(x)dx — [(x)xg(x)rdx,
and for ¢ -0,
JoGxydx = [o(xNxg(x))dx.
This proves Lemma 4.
Lemma 5. If ¢(x) increases and is bounded with o(-+0)- 0, then
'fw(u)(pﬂ(u)du<oo iff ftp(u)uw'(fx*quxx))ﬂdu<m, where s>0, p>1 and
v} 0 u

(i) x1—2+spy(x) is a positive increasing function for some small 6>0.

(if) (x'"*oyp(x))~! is increasing for some small 5>0 and tends to zero
as x—0.

This generalizes a lemma of Askey and Boas [1].

Proof. Suppose that j'q'(u)q;l’\u)du< co. Then
0

(fy-(u) u’l'(_ﬁ"'x“‘dq;(.\'))"du K fyr(u)u"l’du K fl/'(u)tp"(ll)du
u v [

+K .l"'w(u)u“"‘(f'x S lg(x)dxydu K+ K f s P(u— gplu))’du- K,
0 u ()

-

by virtue of Lemma 4 and the hypotheses of LLemma 5.

Now suppose that fq'(ll)u"”(_r’.\‘ ‘dp(x))du< . Put X(y) I' X dg(x),
0 " y

then ¢(u) ,"I:*"d/\’(x)= X X(x) 4 SfI:\"""".\’(.'c)d.\‘, provided lim,_x* X(.x)
[} 0
exists.
1 y
Since [y(u)u? Xr(u)du < we find that | y(w)u'” X(u)’du is bounded.
v yr2

But ,fu(u)u”’x\’"(u)du X”(y)fyu‘”wu)du KX7(y) y vty ).

yi2 yiz
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Thus y*7+1y( y)X?(y) is bounded as y—0 and hence y*X(y)—0 as y—9 so
that o(u)= - w'X(u)+s[x* 'X(x)dx and therefore

[y(w)p(u)ydu = K f p(u)ur Xr(u)du

o"‘c

+K fqv(u)( Ofx‘_‘X(x)de’du ~K+K fw(u)(u‘{\’(u))"du< co,
0 0

by virtue of the hypotheses and Lemma 3. This proves Lemma 5.
3. Proof of Theorem 1.
Necessity. We have by Lemma< l and 2

FrGwyar 2 (Fx dGeey o 3T izjar=(x dGx) ydu

n= l 1(1:1-1)

K "n"l{n)( I x ldG(x)|) - K Zl(n)rz*"( bk )7 - KZ b, |PA(n)<<co.

n=1 n=1

Sufficiency. Setting | a, = (Z a,”)'? one has

n=I1

Wnyb, K IAP(n) [ Sin nxdG(x)+ 2 #(n) [ sin nxdG(x)
0 1/n

~~‘Ku1”ﬁ(n>n}"3c,d0(x> FK @ am dG() |

oo T II

—K{X ll('r ‘Ht P—’('rd(’(x))l'dt}lpl_K{ 1(,,)( f §_ f)"}"+K

n=2 =in n=2 a/(n—

KMty _rx dG(x)) dt}'r + K {z a(r'z) f ldGxy e
J .

F K2 [ d G ye + K.

n= af(n—1

Since n(n Ot fxd(;(x))l'dt z :"f M)t [ xdG(x)ydt

x/(n—1

[(n 2) -’t]" f t *(n U(lxldG(x) )yrdt —~ K vl('l)'l”( J xdG(X)l)”

x/ 'l— n=3

we have in view of the hypothesis

ave(n)b, K+ K{= /.(n)( f d(,(\))/'}lp

n=2 1'l~

K KIS T i aGeoydey s K+ Ki /e[ Gy do's.
¢

n=2 a/n

t
Now putting in Lemma 5 o(f) _I'x dU(x), s 1, p(t) i=/t)t—r—2, we find

that the condition (1.1) is equlvalent to the convergence of the above inte-
gral. Thus  2'#(n)b, |< co. This completes the proof of Theorem 1.

4. Proof of Theorem 2. It is similar to that of Theorem 1 and can
be omitted.
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5. Proof of Theorem 3. Since {u'?(n)a,j¢l” we have in view of
condition (b)
>nYa, —(Su(n)a, "YWA(S =P P (mn-—"r"He' <.
n=1 n=1 n—=1
Hence Ja,sinnx/n is the Fourier series of a function F so that Za, cos nx
is the Fourier-Stieitjes series of dF. Suppose that F is an increasing func-
tion. Now

sin (n+1/2)xdi(x)

a, (9]
k (2 )/ 2 sin{x/2)

2

- (]/.r)fsin nx cot (x/2)dF +(1/x) fcos nxdF(x) L, + M, say.
U 0

But ._.,u(ll)n P L+ M, P Zglt(ll)n /'( 3‘,a,‘,g)” K- K... wn)a,”+ K< oo,

n=1 n=1
by virtue of condition (a) and Lemma 1. Since M,=0(1) it follows that
x> w(nyn "M, ’<<~ and therefore ‘.u(n)n rL,"<oo. Writing dU(x)

n=I1 n=1

~cot(x/2)dF(x) we have L,= (1/a) ‘l:'sin,\‘d(i(x). Applying Theorem 1 we
0

t t 4
have u'‘HP n/t)(—27 [xdG(x)¢ Lr. Since Ft) - F0) - fdF(x) K [xdG(x),
0 0 0
0 t—-n/4 we have u'?(x/t)t 27(F(t) F(0))¢eLr. This proves Theorem 3.
t
6. Proof of Theorem 4. We arc given that »'?(x o)t 27([xldf(x)) ¢ L”
0

and na, (2 n)? sin ntdf(t).
0
t
Since the sufficiency part of Theorem 1 is true even when [xdG(x) is
0

t
replaced by [xdG(x) with G(x) not necessarily monotonic, we apply Theo-

0
rem 1 to conclude that {«'”(n)a,}¢(”. This proves Theorem 4.
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