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POINTS OF SINGLE-VALUEDNESS OF MULTIVALUED
MONOTONE MAPPINGS IN FINITE DIMENSIONAL SPACES

PETAR S. KENDEROV

The multivalued mapping T: E£-— E’ from the Banach space FE to its conjugate E’ is
said to be monotone if (x;,—x,, y;—y,) -0 whenever y;€7(x;) x;€E i=1,2. As usual
(x, y) denotes the value of the continuous lincar functional y€E’ at the point x€E.

The main a‘m of this note is to show that for the majority of po'nts x€E the sct
T(x) contains not more than one point. This was the subject of another author’s paper [5]
where it was proved that for a large class of Banach spaces the set A=|x€E :T(x) has
more than onc point} is of first category in E. This means that the set A is “topological-
ly small”. When E is finite-dimensional (E=R") we can ask whether tie Lebesgue mca-
sure of the same set A is also small. It turned out (theorem 3) that A is a nullset. Thus
every multivalued monotone mapping 7: R"—R" is single-valued almost everywhere.

As an ilustration one special multivalued mapping is considered. The so-called metric
projection P, : R"—M which is defined by a closed subset McR" and the formula

Pyx)={yeM:||x—y| :mia‘ x—2z'l}. This mapping is monotone (proposition 2) and
€/

therefore single-valued almost everywhere. The classical result of Reidemeistcr [8]

that every convex function k:R" — R is differentiable almost cverywhere is also a con-

sequence of our theorem.

We will need some definitions and results.

The monotone mapping T:E -E' is called maximal if there does not
exist a monotone mapping T ,:E >E whose graph G(T)) [(x,y)¢E
<E:y¢T (x)} properly contains the graph of T. According to the
Zorn's lemma, for any monotone mapping T:E L' there exists a maximal
monotone one 1 :E ~E' such that T(x)c T(x) whenever x ¢ E. For our pur-
poses it is therefore sufficient to consider only maximal monotone mappings.

By dom 7 we will denote the set {x¢E:T7T(x) &/

Theorem 1. (T. Kato [4], R. Rockatellar [9]). Every maximal
monotone mapping T:R" >R* with dom T R" is locally bounded. That
is, for x,¢ R* a neighbourhood V of x, exists such tha' the set T(V)
= Uv T(x) is bounded.

vE

In the sequel we will always assume that dom 7=R".

Theorem 2 (F. Browder [3]). Let T:R" >R be a maximal mono-
tone mapping. Then the graph ((T)-=|(x,y)¢R" < R*":y¢ T(x)} is closed
and the set T(x) is convex and compact for every x¢R".

Corollary 1. Every maximal monotone mapping T:R" —R" is upper
semi-continuous (that is, for any open U > T(x,) a neighbourhood V of x,
exists such that T(x)yc U whenever x¢ V).

Proof. Assuming that 7" is not upper semi-continuous at x, we find
an open U and two sequences {x;~ , |y}~ for which UDT(x,), x, »x,
and y, ¢ T(x)N(R*N\U). By Theorem 1 {y;~ is a bounded sequence and
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we can choose a convergent subsequence. Suppose that y;,—y,. Then the
closed set G(T) contains (x; y;)— (X0, ¥,). Thus (x,, y,) belongs to G(T).
Therefore y,€ 7(x,). On the other hand, y, is in R*\ U since the last set
is closed and contains the sequence y;—y,. Then y,¢ 7T(xo)N(R"\U)—- D
which is impossible. The proof is completed.

We need several notions from the convex analysis. Let K be a convex
compact subset of R*. Its support function /g (e) is defined by the formula
[2]: Ax(e) mz;\x/e,z» Here (e, z) is the usual scalar product of the vectors

2¢K and ecS {ecR*: e —1}. It can be easily shown that
1) h(e) is continuous on S,
2) Kyc K, (both compact and convex) if and only if /x (€)= /hx/(e) for
every e¢ S, and
3) hx(€)+e where >0 is the support function of the set B, (K)
:{xeR":miz x—y | =&
yE

There is one simple criterion for the set K to be a singleton. Denote
by » the usual measure on S.

Proposition 1. Let KcR" be compact and convex. Then the fol-
lowing three conditions are equivalent:

a) K is a one-point set,

b) fh,((e) v(de)—0,
S

&) [ (hxie)+ hic(—epw(de) 0.
S

Proof. First of all we note that for every summable function f(e)

!f(e) V(de)=ff(—e)v(de). In particular

2 x[hK(E)V(de) J(hx(e)+hx(—e))v(de) Hence b) and c¢) are equiva-

lent. Having in view that the function #Ax(e) Fhx(—e) is contin-
uous and non-negative (ix (e)-+hx(—e) max(e z\~m12/e, Z)= 0) we get

that c) is equivalent to /ix (e)+hK(—e)_0 1 e ma’z( (e, z\——mm’e

for all e from S. This is just the case when K is a single pomt set. So a)
is equivalent to c). The proof is finished.
Remark. The meaning of b) is qutte clear in case of n -2 because

the Euclidean perimeter of the set K is just Jhk(e) v(de).

Returning to the maximal monotone mapping 7:R"-—R" we define a
function on R* S putting u(x, €)= hrue). (According to Theorem 2 the
set 7(x) is compact and convex.)

Lemma 1. For any real number r the set {(x,e)¢ R* XS:u(x, e)<r}

is open.
Proofi. Let u(xy €,)= hru,(e,)<<r. Since hr., is a continuous function

at the point e, we have /hy,(e) -e<r for some £>0 and for all e from a
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certain S-neighbourhood V;3je, By the upper semicontinuity of 7 at x,
there exists an R"-neighbourhood V, of Xx, such that 7(x)c B, (7(x,)) for
all x¢V,. Equivalently, by means of support functions, the same can be
expressed as follows: Zruy(€)=/r(,)(e)+e for all e from S and x from V.
In particular, for any (x, e)¢€ Vo x V,, u(x, €)=hrx(e)=hr,)(e)+e<r.

Lemma 2. For any fixed e from S the set N={x¢R":u(x,e)
—+—u(x,R—e):‘:0} is a nullset with respect to the usual Lebesgue measure
w on R*.

Proof. It is enough to prove that u(Nn{x¢R": x|--k})=0 for any
integer k. Denote the last set by N,. Due to Lemma 1 it is measurable.
Then the function y(x) which is 1 on N, and 0 outside is measurable and

bounded. Evidently «(N;) .fw(x);‘(dx). Let / be the one-dimensional sub-
space of R" with e as unit vector and let /. be the orthocomplement of /. Then
the n-dimensional measure u of R is a product of the 1-dimensional mea-
sure u, of / and the n—1-dimensional measure wu, oOf L. By Fubini’s

theorem w(NV,) l/[fw(x) du,J dptn_. So our aim will be reached if we
/

show that the intersection of N, with any line -parallel to / is a one-dimen-
sional nullset. We shall prove that such an intersection is a countable set.
This will complete the proof of Lemma 2. To do this we consider a line
I{x+te: —co<t< oo} (x being fixed) and define two functions on it : f(£)
~max {e, y) and g(¢£)=min (e, y). Obviously, f(f) g(¢) for all £ For y; from
Y ET(x+te) yE€T(x+Lte) .

7(x;) where x;—x+£fe i— 1,2 we have (e, y,) (e, yg="e,y,— Vo ({;—1y) !
(x,— X, ¥1— Vo). Hence (e, y, =(e, y,) provided ¢, <f,. In this case we have
the inequalities g(¢,)< f(¢,)=g(t,)=/(t,). Therefore f(¢) and g(#) are non-decreas-
ing functions of f¢(—oo, oo) and have the same set C of points of con-
tinuity. For £¢C evidently f(f)—g(f). Hence u(x-+fe, e)+-u(x+te, —e)
—max (e, y)+max(—e, y)— f(t)—g(f)=0. Thus, on the line /., the function
yE€T(x+te) y €T (x+te)

u(-, e)+u(-, —e) may differ from 0 only outside C. Since the set(— oo, )\ C
is countable the lemma is proved.

Theorem 3. Let T:R"—R" be a multivalued monotone maoping-
with non-empty images (dom T=R"). Then T is single-valued almost every-
where.

Proof. In view of Proposition 1 it is enough to show that )(u(x. e)
S

+u(x, —e))v(de)= f(hr(,,(e)-{»hn,,(—e))w(de):O for almost all x from R".
)

Let B be a compact subset of R". Consider the set - B> S with measure
y—uxv. By lemma | the non-negative function u(x, e)+u(x, —e€) is y-mea-
surable. It is also bounded from above because the open sets Wi {(x,e)
€ R* < S:u(x, e)+u(x, —e)<<i} i=1,2,3, ... form an increasing sequence
that covers the compact set D. Hence Dc W, for some i,. Thus our func-

tion is y-summable and we can apply Fubini’s theorem:j(!/ (u(x, e)
o
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3
equality is due to lemma 2. On the other hand, the function u(x, e)

+( u,.\',—-r))r(de)) n(dx) [ ( [ (u(x, e)+u(x, —e)) /;(dx)) »(de)=0. The last
5 B

+u(x, —e) is non-negative and so is [u(x, e)+u(x, —e)v(de). All these facts
3
imply that f(u(x, e)+u(x, —e))r(de)=0 for almost all x¢ B. As B was an
S

arbitrary compact subset of R* our theorem is proved.
Our point further is to give some applications to the theorem just
proved.
Let M be a closed subset of R*. Put Pylx)={yeR*': x—y!
min x—2z }. In this way we get a multivalued mapping Py:R* > M

zZEM
which is called a metric projection of R* onto M. It assigns to each point
X ¢ R* the set Py(x).

Proposition 2. Every metric projection Py:R"— M is a mono-
tone mapping.

Proof. For y:€Pu(x;) i=1,2 | x;—y, =l x;—y1| and | x;—y,!
!l xg—y, |. The first inequality is equivalent to O0=| x;—y,|?>—| x,—y; 2
=2(—Xx1, Ya—V1)—{ V1, Vi)+{(Va V. The second one is equivalent to
0=2{—Xxq, ¥1—Va2)—{( Vo Y2)+{ ¥y, ¥1,- Adding these two inequalities we get
0~ (Xy— X9 ¥, Vo) ; _

Corollary 2. Every metric projection Py:R*— M is single-valued
almost everywhere.

As second application we shall give another proof of the well-known
theorem of Reidemeister [8] that every convex function #: R" — R is diffe-
rentiable almost everywhere. Indeed, for any x,¢R" there exists [10] a com-
pact and convex set d(x,)c R" (which is called subdifferential of 4 at the
point x,) such that A(x)—h(x,) (x—x, y) whenever x¢R" and y¢d(x,).
The multivalued mapping 0:R"-— R" that takes every x from R" to the set
Jd(x) is easily seen to be monotone. According to theorem 3 the set
A~ {x¢ R":0(x) has more than one element} is a nullset. On the other hand

for any fixed x¢ R” and e¢S lim wn-:max(e,y) (B.Pshenic¢nii
> +0 Y €0(x)

o
[7] and J. Moreau [6]). Hence k:R" — Ris differentiable at x if and only
if d(x) is a singletone. It is therefore shown that
Theorem 4 (K. Reidemeister [8]). Every convex function h:R"
R is differentiable almost everywhere.
The above mentioned result of Psheni¢nii and Moreau together with
Proposition 1 enables us to state
Proposition 3. The convex function h:R"— R is differentiable at

the point x¢ R* if and only if limof Mxd "t’_"(“r(de):o,
- +

It should be pointed out that Corollary 2 can be deduced from Theo-
rem 4. Improving slightly the proof of Proposition 2 one can see that
Py: R > M is cyclically monotone (for the definitions and results see the
paper by Rockafellar[11]). According to[l11] the cyclical monotonicity
of P, is a necessary and sufficient condition for the existence of a convex
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function 2:R" — R having Ppy(x) as a subset of d(x) whenever x¢ R*. It
remains to apply Theorem 4.

That Py satisfies the inequality Py(x)cd(x) for all x from R” where
0 is a subdifferential of a certain convex function one could also derive
from E. Asplund’s paper [1].
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