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ON THE INTEGRABILITY OF ENTIRE FUNCTIONS ON A LINE
TATIANA T. ARGIROVA

The following theorcm is proved: If F(z) is an entire function of exponential type
ss, where 0<6<z and s>0 is an integer, then the convergence of the series

> | FPm P, v—=0,1,2,.. s—1, p>0
n=—oo
mplies

+ oo

J | Fx) [P dx<eco.

The results obtained have already been mentioned in [4], but no proof was given there.

Considering entire functions of exponential type under some conditions
about the growth of the functions M. Plancherel and G. Polya (1]
proved theorems, which show the equivalence of the inequalities

3 |F(n) P<oo and [ | F(x)Pdx<co, p>0.
One of these theorems is

Theorem 1. Let f(z) be an entire function of exponential type. If

p>0 and
c—limsupr—'log (| F(—ir)+ F(ir) )<=,

r—oo

then there exists a constant B, depending only on p and c, such that
[ Fx)rdx<B X |Fn)®.

We extend this theorem in a way similar to that in which Korevaar
[2] generalised the classic theorem of M. Cartwright [3], i. e. we will
increase the type of the function, but shall demand covergence not only
of the series | F(n) ?, but also of ¥ F&)(n)l?, » 1,2,...,8 -1, where s -2
is some integer.

Theorem 2. Let F(z) be an entire function satisfying the condition

(1) F(z)|=Ce*”'",

where C=const, s=2 is an integer and 0<o<n. Let p>>0 and the series

(2) > FoXn) P, »—0,1,2,...,5—1

N==—

SERDICA Bulgaricae mathematicae publicationes. Vol. 2, 1976, p. 236—240.



INTEGRABILITY OF ENTIRE FUNCTIONS 237
be convergent. Then

[ F(x)|rdx<A( £ Fnr+ 2 Fn)pr+---+ & Fs=(n) ),
where A is a constant, which depends only on p, o and s.

The proof of this theorem is similar to that of theorem 1. Beforehand,
we will formulate a lemma [1].

Lemma 1. Let p>1 and the series X x,? and B=Xb, b,>0 be
c onvergent. If Vm =Zbm—n Xn|, then Sp Vi P—BPZ,| x, P

Now we are in a position to prove theorem 1. First of all we note
that from the convergence of the series (2) it follows, that the sequences
{f'(”’(n)},;"’:,ﬁx, y—0,1,...,s—1, are bounded. But the latter, together with con-
dition (1), according to a result of J. Korevaar [2], implies the inequality

(1) |F(z) <Ae*”', A-—const, z=x+1iy,

which we shall use later.
Now, let m be an integer and F,=max{ F(x) :m—1/2—-x=m—+1/2}.
Obviously one has

(3) [|Fx)rdx= S F£L,

so we deal further with /.
For simplicity we prove our theorem in the case s=2 first and then
discuss the general case. When s=2, the conditions (1) and (2) have the form

(1) F(z)|=Ce*"”,
(2") S|Fn)r<oc, X F(n)r<oo.

Let (2) be an entire function, that also satisfies an inequality of the
form (1”) with some constant C>0 and some o<w Then, considering the
integral

Jy— PC)de

e »
gj=n+1/2 ({—2) sin®al

which, due to (1”), tends to zero when n— co, we obtain the following
interpolation formula for the function ¢(2):

(4) q-(z)=—“’2 sin’.—:z[ > on . 3 700'('1)”]_

nz—w(n—z)a N=-—o00 zZ—n

We shall treat separately the two cases p -1 and 0<<p<l.

Let first p - 1. Consider the function ¢(2)= F(z+ m)sin®dz/z, where m
is an integer and >0 is such that 20-+438<2x. This function satisfies the
condition | @(2) < C,exp (20,|y ), C,=const, ¢,=0+35/2<a. Therefore we
may apply (4) for it. Noting also that ¢(0)=0, ¢'(0)=0 we obtain the
equality
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F’'(n+m) sin3 dn
: b —
n(z—np +n$0 n(z—n)

Flz+m)=

z sin2 nz { F(n+m)sin3 én
®) a?sin® 8z |, .0

+ 3 38F(n+m) sin? én cos n&_ =~ F (n+m)sin3dn ]

0 n(z—n) nt0 nf(z—n) |

Now let us have F,=|F(m+&,)|, 1/2:-§,—=1/2. Since the expression
xsin? zx/a%sin3®dx is bounded on the interval -1/2- x=1/2, we get from
(5) the inequality

- | F(n+m) | | F'(n+m) |
= E )| << |
©) Fm 'F{m+"’")‘*K(nfoln\(in\—lli’)z ntol nl(n —1/2)
F(n+m) v | F(ntm)|
+,.’£o!nl(lni—l/2)+,,;o nz(]n|—1/2))’
where K is a constant, depending only on 4. Put further
Kk K K
=0, &= = 12p T Al (n [~ 13 T iaE(a—1n" " F R
K
bO:O’ b,,=7li—(m—l_—1/§)—y n :tl, i‘Q, ceo e

With these notations we write (6) in the form

Fo- 5 a,| F(n-+m) + Zm b, F'(n+m)

or
(™) Foe 3 anFO) + 5 by FB)

In the special case when p=1 from this inequality we get
(®) 3 Fn=A 3 |Fn)|+B 5 |F(n)

where A-—-2a, B=2Zb,.
Finally, (3) and (8) imply

[IFx) dx=A X |Fw)|+B 3 |F@®).

Here the constants’A and B depend only on o.
Let now p>1. From (7) again we get

Fr=2°((Za,—m |F») P +(Z b,=m |F() )]
and summing up along m and applying lemma 1 we obtain
3 Fh=2 (A X|Fln)p+ B3| F(n) »)

hence
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[ Fx)rdx=20 (A2 5 F(n)y?+Br 3 |F(n)p),
where A and B are the same constants as above.

Now let 0<p< 1. In this case we apply (4) to the function ¢(z)- F(z+
+m)sin?+26z/2%, where the integer ¢>0 and 6>0 are chosen so that
1<p(g+1) and 20+(9+2)0<2x. Since ¢(0)=0, ¢'(0)=0, we obtain from (4)

29 sin® az (= F(n+m)sin?*2sn ~ F'(n+m)sin?*2 én
a2sin?26z ‘a0 nd(n—zp n=-0 n?(z—n)

Flz+m)=

> (@+2F(n+m)sin?*1oncosdn ~ qF(n+-m) sin?*%sn.

n==0 n?(z—n) h==0 n? Y z—n)

As before, noting that x7sin?zx/#2sin?+28x is bounded on the interval
—1/2—-x--1/2, we get for F,

) Fontm) |F(ntm)|
Fm=l( 2 ain—1pppt 2, Tafga—19)
9 | F(n+m) | | Fln+m)|
mao 17T —=1/2) " 25 0|9 (0 |—1/2)
Putting
B _ L L , L o
%=0, On= g =TioE T A =D T ey TS R
bo=0, bp— vty n=+1,%£2,...,

R (n=1/2)
in (9), we get
Fn= 3 au|Fntm)+ 3 b, F(n+m),

Nn=—00 n=-—oo
or
Fn=XQym| F®)|+Zbym F(») .

Since 0<p<1, in view of Jensen’s inequality, the last result implies
(10) Fr=3az_,|Fo)p+3b0_ | F() .

Since 1<p(g+1), the series C=§af,, D=%‘b{,’ are convergent and
summing up in (10) along m we get
S‘F,’,’._S_C % F(n)?+D zz F'(n)r
and finally
[1F) rdx=C 3 |Fm) »+D 2| ()],

where C and D are constants, which depend only on ¢ and p.
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Thus in the case s=2 the theorem 2 is proved. Consider now the case
s>2. Let the function F(2) satisfy conditions (1) and (2) of theorem 2. If
o(2) is an entire function for which (1’) holds with some constant A and
some o< 7, then by means of the integral

J= f _e@dl L, 1,2,3,...

({—2)sin® 2l

1S|l=n+12
which in view of (1’) tends to zero when n—oo, we obtain an interpolation
formula for @(z), which represents ¢(2) as a finite sum of functions, each
being of the form
Ksinsaz > o),

n=-—oo

where K =const depends only on s and £>0, r>0 are integers, such that
O0=k=s—1; 1 r—s. (Of course K, £ and r are different for separate sum-
mands.) When p=1, we apply this formula to the function

@(2) = Flz+m)sin**16z/2, >0, so-+(s+1)o0<sxn

and in the case 0<Z p<<1 to the function ¢ (2)=F (z+m)sin?=<6z/27, ¢ >0,

30, 1<p(g+1), (s4+¢q)3+so<on.
Then proceeding as in the case s—2 we complete the proof.
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