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SIMPLE LIE ALGEBRAS SATISFYING A NONTRIVIAL IDENTITY
JURI A. BAHTURIN

The main result of the paper is: any locally finite simple Lie algebra over some
field of zero characteristic satisfies a nontrivial identity iff it is finite-dimensional over its
centroid.

1. Introduction. The following problem is probably well-known in the
theory of Lie algebras: whether or not there exists an infinite-dimensional
over its centroid simple Lie algebra which satisfies a nontrivial identical re-
lation?* The definition of centroid see in the book [1]. Ibidem (chapter X,
theorenis 2, 3) it is proved that if L is a simple algebra over some commu-
tative field 2, P is a centroid of L, then L is a central simple Lie algebra
over Pj; if further K is some extension of P then Ly=L(X)pK is a central
simple algebra over K. These remarks enable us to reduce the problem to
the case of an algebraically closed field.

Let now L be a finitc-dimensional simple Lie algebra over some field
K, this latter being infinite-dimensional over some subfield 4. Then L is an
infinite-dimensional simple Lie algebra over & satisfying a nontrivial identity

(1) bz o | [X, Vo) Vo(2)s + = Yotn+1] =0,
JE
n+1

where n=dimgL, S, is a full symmetrical group on the symbols 1, 2,...,
n+1 and o|=1 (—1) if o is even (odd), so that the coefficients of (1) lie
in k& [2]. This shows that the condition on the dimension of a Lie algebra
over its centroid is necessary.

In this paper following the group-theoretical lectures of O. Kegel [3]
(see also [9]) we show that in the case of locally finite Lie algebras the
above-mentioned problem can be reduced to the problem of identical rela-
tions in some aggregates of finite-dimensional simple Lie algebras. As the
main corollary one gets

Theorem 2. Let L be a locally finite simple Lie algebra over some
field k of characteristic zero satisfying a nontrivial identity; then L is
finite-dimensional over its centroid.

For the group-theoretical parallels of the results of this paper see (7]
and [8].

[2.]Some notations and preliminaries. The reader is recalled that a
lLie algebra L over some field k& is called a locally finite Lie al-

* | have been recently informed that an example of such an algebra was constructed
in Novosibirsk by Sumenkov, who proved that the generalized Witt algebra {W—,, W,
Wy, W, . [[W, W) ]=( —j)\l'f".*j} over any field of characteristic zero is infinite dimensi-
onal over its centroid and satisfies a nontrivial identity. (Remark made when reading
proofs.)
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gebra if any finite subset of L lies in some finite-dimensional subalgebra
of L. A system Il of subalgebras of a Lie algebra L is called a local
system if (i) L= UpenP and (ii) for any P, P,¢ll there exists P¢ll such
that PCP, UPs.

From this definition one readily sees that a Lie algebra L is locally finite
iff L possesses a local system whose members are all finite-dimensional.

The theorem 1 below gives a criterion for the simplicity of a Lie al-
gebra in terms of an arbitrary of its local systems. This theorem imitates
theorem 3.1 from the already mentioned lecture course [3].

Theorem 1. A Lie algebra L is simple iff L possesses a local sys-
tem 11 such that for any subalgebra P¢ll and any of its nontrivial ideals
Q, there exists a Pyl such that Py CP, and if Q, is a nontrivial ideal
of Py, then Q,N P,=Q,.

Conversely, given any simple Lie algebra L with some local system
11, this latter satisfies the above mentioned conditions.

Proof. Let the conditions of the theorems be satisfied but L be non-
simple, that is, it possesses a nontrivial proper ideal 7. Then there exists in
Il a subalgebra P, such that 0+P,N7T-Q, +M, But in this case, given
any subalgebra P,CP,, one easily sees that 7NA, is an ideal of P, and
that (TN P,)NP,= TN P,=Q, contradicting the assumptions about I

Conversely, let L be a simple Lie algebra and Il be a local system of
L. Let further P¢Il and Q, be nontrivial ideal of P,. Either there exists
P,¢ll such that P,CP,, and for any ideal Q, of P, one has QN P==Q,
(what was to be proved) or for any P¢Il with P,CP there exists some
ideal of P whose intersection with P, gives Q,. In the latter case consider
a local system II' whose members are all members of II containing P, as
a subalgebra. For any F¢Il’ put .

I(P)— N{Q:Q an ideal of P with PN Q= Q}.

Then /(P) is the least ideal of P coniaining Q, and it P*Il and PC P,
then /(P)ZI/(P*). Put then R=Upe/(P). Then R is a subalgebra of
L whose local system is the set 1II”={/(P): P¢ll'’}. But since /(P) is an
ideal in 2 for each PclIl’, the same is true for R in L, that is R is an ideal
in L. Now RDOQ, +{0} so that R is nontrivial. On the other hand, one rea-
dily sees that RN P,==P,, and thus R is a proper ideal of L. This contra-
diction completes the proof of the Theorem.

Two simple consequences of the theorem are as follows.

Corollary 1. Let L be a simple Lie algebra with some local sys-
tem 1. Then if some subalgebra P¢ll has only finite number of ideals,
there exists in 1l such a subalgebra P* that P*2P and any ideal of P*
intersects P trivially, that is either in P or in {0}.

Proof. For any nontrivial ideal Q of P by the theorem there exists
a subalgebra P, in 1l with 7o,N P+ Q for any ideal 7, of Py Let P be a
member of Il such that PP, for all ideals Q of P. Given any ideal T of
P and any nontrivial ideal Q of P, one has 7N P TN(PenP)y=(TN PN
P+£Q, since TN P, is an ideal of Py Since T'nPis still an ideal of B, it
follows that either 77N P {0}, or that TnP P.

Corollary 2. Given any simple Lie algebra L with some local sys-
tem 11 whose members are algebras with a finite numbers of ideals, L
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possesses a local system whose members are simple Lie algebras equal to
countable unions of subalgebras from 1I.

In particular, if L is a simple locally finite Lie algebra over some
finite ring k, then L has a local system of countable simple algebras.

Proof. P=P, being any member of II, choose an increasing chain of
subalgebras P;, i=0,1, 2,..., determined by the rule: if P,cP,C ... CF;
are already chosen then P;., is any element of Il such that P;c P:.; and
for any ideal Q¢P:;; the intersection QN P; is trivial (see corollary 1 above).
Put then Cp-— U, Pi; P, i=0,1,2,... being a local system of Cp satisfy-
ing the conditions of the theorem 1. Thus C, is a simple Lie subalgebra of
L equal to a union of a countable chain of subalgebras from II, and to
complete the proof of the corollary one must only show that the system
I'={Cp:Pcll and Cp— Uy P, for any chain P;, i=0, 1, 2,...} is local in L.

Indeed, the fact that L ucpen,Cp is trivial. Let now Cp, C<I'. Find

Cg such that Cx>CprUCy The chain Kj i-0,1,2,... can be constructed
in the following manner. Let K=K, be any subalgebra from Il containing
P,uU T, The chain K,cK,c ... cK; being already constructed, take U, €Il
with U;.12DKi, Pivv and T7,., and let K;. €Il be such a subalgebra that
U;+1ZK;+ and for any ideal / of K;., the intersection /NU;.1 is trivial.
Obviously Cy constructed from K; i=0, 1, 2,...1is such that C, DC,uUCy,
thus proving our corollary 2.

This corollary enables us to reduce in some sense the study of locally
finite simple Lie algebras over a finite ring to the countable case.

3. Zero characteristic case. Let now L be a locally finite simple Lie
algebra over some algebraically closed field 2 of zero characteristic. Denote
by II the system of all finite-dimensional subalgebras of L.

Proposition 1. Let S be semisimple subalgebra from 1l. Then
there exists an algebra M in 11 with maximal ideal N such that M con-
tains S but NN S=0.

Proof. Indeed, denote by SX the least ideal of the algebra X contain-
ing S. Here X is some algebra from II. Let II; be the system of all &%
X¢ll. Then 11, is a local system of L. For |J ‘\ensx is an ideal of L con-

taining S and hence equal to L. Besides, if z¢II is such that z2DXuUY then
SZ2OS8Xy S*. Apply to 1I; the corollary 1 from theorem 1, S having only a
finite number of (simple) ideals.

Further let W¢Il be such that any ideal of the algebra SW either con-
tains S or intersects S in {0}. Let further 7 be the ideal of W, which is
maximal among those ideals of W which lie in SV and for which 7nS={0}.
By the definition of SW and 7 the factor S¥/7 is a main factor of W.

Since a solvable radical of a finite-dimensional algebra is invariant un-
der all derivations, either S¥/T is semisimple or SW/7 is solvable. In the
latter case SW/7 is even abelian since the members of the derived series
are also invariant under all derivations. In both cases thus S¥/7T is a di-
rect product of its simple ideals.

Let now M be a minimal ideal of S% containing S and 7 and R be a
maximal ideal of SV containing 7 and such that RN S-={0}. By the choice
of W the factor M+ R/R is chief and isomorphic to a chief factor of S"’/T
Therefore M+R/R=M/RNM is a simple algebra, and N-MNR is the
desired maximal ideal of M. The proposition is thus proved.
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Corollary. Let L be a locally finite simple Lie algebra over some
algebraically closed field k of zero characteristic satisfying a nontrivial
identity. Then the dimensions of the finite-dimensional sen.isimple subal-
gebras of L are bounded by a finite number.

Proof. Were this not the case, the dimensions of simple finite-dimen-
sional factors of L would not be bounded. But a simple calculation shows
(this can be also seen in [4]) that no infinite aggregate of nonisomorphic
finite-dimensional Lie algebras over some algebraically closed field of zero
characteristic can satisiy a nontrivial identity. The obtained contradiction
proves the corollary.

We now begin the proof of theorem 2.

Lemma 1. Under the same conditions as in the previous corollary
L possesses a finite-dimensional semisimple subalgebra S such that the
set of all finite-dimensional subalgebras whose Levy factor equals S forms
a local system of L.

Proof. By the corollary the dimensions of all Levy ifactors (that is
maximal semisimple subalgebras) are bounded. Fix some semisimple subal-
gebra S of maximal dimension. Let x be an arbitrary element of L. The
subalgebra M generated by S and x is finite-dimensional and one of its
Levy factors must contain S, therefore coincide with S. Thus we checked
up the first condition from the definition of a local system. Similarly one
can verity the second one which proves the lemma.

Lemma 2. Let M,, M, be finite-dimensional subalgebras of L whose
Levy factors equal S and R,, R, be solvable radicals of M,, My If
M, CM, then RCR,.

Proof. Let the contrary be true. Consider the natural projection
7: M, — S whose kernel coincides with R,. By the congitions of the lemma
7 is an epimorphism of M, onto S. But then a(R,) is a nontrivial solvable
ideal of S which is impossible. The lemma is proved.

The proof of the following corollary is left to the reader.

Corollary. Denote by R(M) the radical of a finite-dimensional al-
gebra M, and let 11 be a local system of subalgebras of L containing
some fixed semisimple subalgebra S of maximal dimension, 1" be a sys-
tem of R(M), M¢ll. Then 1 is a local system of the subalgebra
R~ U menRM).

Now we continue the proof of the theorem 2 for the case when & is
algebraically closed. The subalgebra R from the preceding corollary is in
fact an ideal of L, so that either R={0}, or R—L. In the first case L=S is
finite-dimensional. In the second case R —L and L is locally solvable. Con-
sider then a system I1” of subalgebras R?, R:II. Clearly, this is a local sys-
tem for N= U gep R% Since R* is locally nilpotent for a finite-dimensional
solvable R, we see that N is a locally nilpotent ideal of L. If N={0} then
L is abelian and thus dim L=1.

Proposition 2. A simple locally nilpotent algebra is abelian.

Proof. Let x, ycL be such that [x, y] 0. Let P be an ideal of L con-
taining x, y; clearly P L. Hence there exist u;L and a, fickR such that

n
(2) X ax, y|+ 2 Blx, Y Wiy gy - oo Wis, |-
I=l
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Let Q be finite-dimensional nilpotent subalgebra containing all elements in-
volved in (2). Repeated application of (2) easily gives x =0 since all enough
long commutators in Q equal zero. The obtained contradiction proves the
proposition.

This (probably well-known) proposition proves the theorem 2 in case
of algebraically closed k.

__Let now k be an arbitrary field of zero characteristic, K be the cen-
troid of L, K* be its algebraic closure. As it is mentioned in the introduc-
tion, L is a central simple algebra over K and Lg«=L(X) K* is a simple lo-
cally finite algebra over K*, dimg.Lg-—dimgL. If L possesses a nontrivial
identity over &, so does Lg- over K* and our argument above is appli-
cable. Now the proof of the theorem 2 is completed.

4, Further remarks. (i) In the case when & has a positive characteris-
tic the main obstacle for the proof of the theorem similar to theorem 2 is,
in particular, the lack of knowledge of all simple finite-dimensional algebras
over k. However, when % is finite the following argument works.

According to corollary 2 of theorem 1 the algebra L possesses a local
system of countable simple subalgebras, each of them being equal to a
union of a countable chain of finite subalgebras. One readily checks that
in the case under consideration proposition 1 is valid for any finite subal-
gebra S. Therefore one may consider only the case when L is the union of
the chain M,cM,c ... cM,cM,.,C ... of its finite subalgebras, M, .
possessing a maximal ideal R,., such that M,NR,;1={0}. The family
M,/R, n>1 is then a set of simple algebras of strictly increasing dimen-
sions. If all these algebras are classical simple algebras (char £#=5) then
using the results of [4] one can obtain that this family and hence L cannot
satisfy a nontrivial identity. We sum up this modest result as

Proposition 3. Let k be finite field of characteristic -5, L be lo-
cally finite simple Lie algebra over k all (but a finite number, up to iso-
morphism) of whose finite simple factors are classical simple algebras,
satisfying a nontrivial identity. Then dim L<co.

(ii) Note also that if A is an associative central simple P/-algebra over
some field %, then its antiisomorphic image A* is central, simple and PI. By
Regev’s theorem [5] B~ AX)eA* is a Pl-algebra. On the other hand B is
dense in the algebra of all linear transformations of A over % [6, theorem
V. 9.2]. Therefore A must be finite-dimensional over 2 and we have proved
the following

Proposition 4. A simple associative algebra over some field is a
Pl-algebra iff it is finite-dimensional over its centroid.
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