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ON THE NUMERICAL SOLUTION OF CAUCHY-TYPE SINGULAR
INTEGRAL EQUATIONS

P. S. THEOCARIS

A Cauchy-type singular integral equation may be numerically solved by reduction to a
system of linear equations in the same way as a Fredholm integral equation. For this re-
duction, numerical integration methods are used for both regular and singular integrals of
the singular integral equation and the points of application of the singular integral equa-
tion are selected in such a way that maximum accuracy in the approximations of integrals
is obtained.

1. Introduction. Several methods for the numerical solution of Cauchy-type
singular integral equations have been up to now developed [1-11]. These
methods generally reduce a singular integral equation to a system of linear
equations, which can be easily solved to give an approximate expression of
the unknown function of the singular integral equation (or the unknown
functions in the case of a system of singular integral equations).

These methods present considerable disadvantages, as it will be seen
later, due either to their complexity or to the small degree of accuracy ob-
tained by their use. Also most of them are subject i#® limitations as regards
the classes of singular integral equations to which they are applicable.

On the other hand, the numerical solution of Fredholm integral equa-
tions by reduction to a system of linear equations is quite easy to be done
by using a proper method of numerical expression of the integrals involv-
ed in it.

It is the aim of this paper to extend by a direct manner this method
of numerical solution of Fredholm integral equations to the case of Cauchy-
type singular integral equations, that is to the case when the kernel of a
Fredholm integral equation presents, except weak singularities at the ends
of the integration interval, Cauchy-type singularities, too.

This is achieved by an extension of the methods of numerical quadra-
ture used up to now for ordinary integrals, so that they can be applied to
singular integrals as well. It was Hunter [12] who, first, extended the
Gauss-Legendre numerical quadrature formula to the evaluation of singular
integrals. Further, Chaw la and Ramakrishnan [13] extended the Gauss-
Chebyshev and the Gauss-Jacobi numerical quadrature formulae for singu-
lar integrals. Here, a general way of extending any known numerical quad-
rature formula for singular integrals will be presented. In this way, the nu-
merical treatment of a singular integral equation can be achieved in a
way similar to that used for Fredholm integral equations.

It must be also remarked that some of the already existing methods
for the numerical solution of singular integral equations may result as spe-
cial cases of the method presented here, which is a general method cover-
ing all the cases which could be met in practical applications.
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NUMERICAL SOLUTION OF SINGULAR INTEGRAL EQUATIONS 253

Moreover, it should be noted that, when speaking about singular in-
tegrals and singular integral equations, we mean Cauchy-type singular in-
tegrals and Cauchy-type singular integral equations and not singular inte-
grals presenting weak power singularities or logarithmic singularities.

Finally we will say that a function defined in an interval is generaliz-
ed Holder-continuous in this interval, if it is Holder-continuous in every
subinterval of this interval not containing the neighbourhoods of the end-
points. Such a function may present singularities of power or logarithmic
type near the end-points of the interval.

2. The Existing Methods of Numerical Solution of Singular Integral
Equations. The problem of numerical solution of a singular integral equa-
tion of the first or the second kind, which can be also considered as a
Fredholm integral equation, but having a kernel with a Cauchy-type singu-
larity, has been an old subject of investigations by several authors, both
applied mathematicians and engineers.

[.V. Kantorovich and V.I. Krylov [1] propose for the numeri-
cal solution of a singular integral equation of the form:

@2.1) #X)— 2 [K(t, xp (0t~ ),

where the kernel K(¢, x) presents a Cauchy-type singularity, the transforma-
tion of it to the following equivalent form:

(22) (x)[1 -*UI{K(L X)dt]—i,FK(f, X)|@(t) — @(x)}dt = f(x).

In this way, the first integral of the leftside can be calculated independ-
ently, and usually in a closed form, while the second integral does not
present any more a singularity and can be approximated by some method
of numerical integration.

Thus, by using a formula of approximate calculation of integrals:

B m
(2.3) Ju(vdt = 3 A(ty),

k=

the following system of linear equations approximating the singular inte-
gral equation (2.2) is obtained:

24) ool —A[K x)dtl~1 2 AK(x Xl (o) —plx)] = (x0),

i—1,2,..., n.

The disadvantages of this method of numerical solution of singular in-
tegral equations are the necessity of calculation of the first integral in (2.2)
and (2.4) by a direct method and of computation of the term in the sum
of (2.4) for i k, when a form 0:0 results. Kantorovich and Krylov propose
that this term be computed by some interpolation formula like linear in-
terpolation :
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S - Xpr1— Xk ,
k%) (K (Xl (X) — @(X)]}i=p== Cpq—Xp g K(xp X H@(Xp1)—@(X)}
Th+1 k—1
i Xp—Xp L K(x c { (x )—o(x ))
Xp i1~ X1 o Xea{P(Xk 1) —(X)§-

Nevertheless, it can be noted that the accuracy of interpolation, even
of higher order. is not enough and that the system (2.4) takes in this way
a rather complicated form.

Although these disadvantages of the above-described method of nume-
rical solution of singular integral equations were known rendering it inferior
to the corresponding method for Fredholm integral equations, this method
has been widely used and remains a standard method of treating singular
integral equations.

On the other hand, during the last twenty years, effective methods for
the numerical solution of singular integral equations, based on the proper-
ties of systems of orthogonal polynomials over the integration interval, have
been developed. In this way, singular integral equations of the form

(2.6] @Kt Dt f),

where functions K(¢, x), @(f) and f(x) are assumed Holder-continuous in
the integration interval, without singularities at the ends +1, and the weight
function w(¢) is of the form:

(2.7) w(t) (1 —="2(1 )72

have been considered at first by V. V. Ivanov [QT and A. I. Kalandiya
[3] and afterwards by F. Erdogan [4], F. Erdogan and G. Gupta [5]
and F. Erdogan, G. Gupta and T. Cook|[6], who gave two methods of
reduction of (2.6) to a system of linear equations. Both these methods are
based on the properties of Chebyshev polynomials and on an expansion of
the unknown function @(f) in a series of such polynomials. The difference
between these methods lies in the fact that the unknown quantities in the
system of linear equations approximating (2.6) may be either the coeffici-
ents in the expansion of the unknown function in a series of Chebyshev
polynomials [4, 6], or the values of the unknown function at the points of
the integration interval [—1, 1] used as abscissae in the Gauss-Chebyshev
numerical integration method [5, 6].

This second method was thought by Erdogan, Gupta and Cook
(6] as a Gaussian integration method for the approximation of singular in-
tegrals because of its similarity to the well-known Gauss-Chebyshev method
for regular integrals. Although this is true, one may note that Erdogan,
Gupta and Cook [5, 6] have developed this method in a quite different
way than that normally used for the development of Gaussian integration for-
mulae for regular integrals and that they proved it to be accurate for in-
tegrals of the form:

X

4 P(t)
(2.8) / jlw(t) =L at
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only when the function ¢(#) is of degree up to (n—1) and the points x are
selected as roots of Chebyshev polynomials.
In the case when:

(2.9) w(t)- (1 —£2)12,

P. Theocaris and N. loakimidis [7] have proved, using the same me-
thod as Erdogan, Gupta and Cook [5, 6], that the above-mentioned
method of approximating the integral (2.8) by a sum and coinciding with
the Gauss-Chebyshev method for ordinary integrals is accurate for functions
@(¢) up to the degree 2n, that is, in some way, more accurate than the cor-
responding method for ordinary integrals, which is accurate for integrands
@(t) polynomials up to the degree 27 —1. In the same paper [7] a second
method for the numerical evaluation of singular integrals of the form (2.8)
was also developed, based on the properties of the Chebyshev polynomials.
This method is equivalent to the Lobatto-Chebyshev method for ordinary
integrals and accurate for functions ¢(f) polynomials up to (2n—2) degree,
while the corresponding method for regular integrals is accurate for func-
tions ¢(f) polynomials up to (27—3) degree.

Analogous methods for the numerical solution of singular integral equa-
tions of the form:

B | dt !
(2.10) Ap(x) + ”A»_flw(t)q(t) — fl'w(t)K(t, X)p(t)dt = f( x),
where the weight function w(#) is of the form
(2.11) w(t) - (1—-)%(1+2),
with constants @ and & determined as
1 A—iB 1 A—iB
(2.12) a - Omi log _AV-FTB‘*_N' b - T omi log ATiB +M, —1<a, b<1,

where N and M are appropriate integer numbers, have also been developed
by using the properties of the Jacobi polynomials instead of the Chebyshev
polynomials considered previously. L. N. Kaprenko (8], Erdogan [4]
and Erdogan, Gupta and Cook [6] reduced the singular integral equa-
tion (2.10) to a system of linear equations for the determination of the
coefficients in the expansion of the unknown function ¢(f) in a series of
Jacobi polynomials corresponding to the weight function (2.11), while
S. Krenk [9] reduced (2.10) to a system of linear equations for the
determination of the values of the unknown function at the points
of the integration interval [—1,1] used as abscissae in the Gauss-Jacobi
numerical integration method after a selection of the points of application
of the singular integral equation as roots of an appropriate Jacobi poly-
nomial.

As in the case of the Gauss-Chebyshev method, the method used by
Krenk [9] for the evaluation of singular integrals is equivalent to the
Gauss-Jacobi method for regular integrals, but it was proved to be accu-
rate for functions ¢(¢£) polynomials only up to the degree n—1, while, as
it can be realized, it is accurate for functions ¢(f) polynomials up to the
degree 2n.
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The case of a singular integral equation of the form (2.10), but of the
first kind (that is with A 0) and without the first two of limitations (2.12),
was considered by Erdogan, Gupta and Cook [6], who reduced it to a
system of linear equations by using directly the Gauss-Jacobi numerical
integration method for regular integrals and choosing the points x of ap-
plication of (2.10)in a rather unjustified way.

Finally S. Majumdar [10, 11] considered a singular integral equation
of the form

(2.13) _{'Ku—x)«p(t)dt ()

with kernel K(f—x) presenting a Cauchy-type singularity without weak sin-
gularities at the points -+ 1. Majumdar reduced this singular integral equa-
tion to a system of linear equations with unknowns the coefficients in the
expansion of the unknown function ¢(¢f) in a series of Chebyshev polyno-
mials after an arbitrary selection of the points x of application of (2.13).
The method of Majumbar is evidently subject to limitations as it is applic-
able to singular integral equations of the first kind only with kernels of
special type and without weight functions.

3. Quadrature Formulae for Cauchy-Type Integrals. Several quadra-
ture formulae exist for the numerical evaluation of integrals of the general
form

(3.1) I fwlt)ftydt,

where [« 8] is the integration interval lying on the realgaxis and being finite or
infinite, w(¢) is the weight function and f(z) is theintegrated function, which
is defined in the interior D of a curve C surrounding the integration inter-
val [a, B]. Function f(z) may have simple poles outside the integration in-
terval but not on the integration interval, as in the case of Cauchy-type
integrals. Except for these poles, f(2) is analytic in the domain D.

General approaches to quadrature formulae for integrals of the form
(3.1) and estimation of their remainders are given by H. Ta kahasi and
M. Mori [14,15] and J. Donaldson and D. Elliott [16]. The case of
an integrated function f(z) having simple poles in the integration interval
[a, 8] was treated by D. Hunter [12], who modified the Gauss-Legendre
numerical integration method for the evaluation of such integrals, and by
M. Chawla and T. Ramakrishnan [13], who modified the Gauss-Che-
byshev and the Gauss-Jacobi methods for the evaluation of such integrals.

The developments of Hunter and Chawla and Ramakrishnan can be extended
to give a general method of approachto guadrature rules for integrals of the
form (3.1) with an integrated function f(z) having m simple poles at points
zx(k 1, 2,..., m) with corresponding residuals ox(k 1, 2,..., m). Points
zx are inside curve C and poles of the function f(z) outside this curve are
not taken into account. Of course, none of the poles z, is permilted to
coincide with the end-points « or g of the integration interval.

We define now the function

(3.2) on(2) =k 11 (2—12),
k1
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where 7, are the abscissae used in the quadrature rule for ordinary integ-
rals which we will modify as to apply to singular integrals, too, and & is
an arbitrary constant.

Now we consider the contour integral

1 V"—* flo)

2ai (tm

(3.3) /, dr,
on curve C surrounding the integration interval [« g|. If this interval is of
infinite length, curve C 1s also of infinite length having one branch above
interval [«, ] and one branch below interval |« ). By applying the Cauchy
residue theorem to integral (3.3) and taking into account the simple poles
z, of the function f(2) inside curve C as well as the roots 7, of polyno-
mial o,(2) in the interval [«, 5|, we find that

f(z - { e g
(3.4) 1, (2 \ H(tp) v Ok

”11(2. k.——l Vuk_ :)":I”k) kj] 7‘:1\' ":)“n‘z/.".

To derive expression (3.4), we have supposed that no pole zx of the
function f(z) coincides with a zero 7, of polynomial 6,(z).

Further, combining Eqgs. (3.3) and (3.4) we find that

- . . l - ll[A/\i__ 1 & Op 1 - flodr) |

(3.5) 1(2) )n(z)lk‘-”z ’tk'n,,,‘{k, " p—1 (2= 2Zplon(zy) 2ai ¢ (t*-Z)ﬂ,,(t)}

This expression for f(z) if applied to the points ¢/ of the interval |a, g}, mul-
tiplied by the weight function @(f) of integral (3.1) and integrated along
the interval |a, ] except of its parts contained in small cycles of radius
¢ — 0 with centres coinciding with those simple poles of f(z) lying on the
integration interval, which is in accordance with the definition of principal
value of Cauchy-tvpe integrals, gives:

I " m R
(3.6) ! - [@Xt) f(dt XA, f(ty)—2 X qu_,éj[*b-m

kol g1 %2R
where

1A
(3.7) 92) = — m{tm,;(n dr,
(.“8) A, ’1 [ Wi)oy(t) dt 2‘]::(?k) s
o, (L) o bty o, (tg)

: - b aa)
39) Eam oy 1 o

This numerical integration formula (3.6) coincides with the correspond”
ing integration formula for regular integrals if the function f(z) does no
have any simple pole in the interval |a, 4] It may be also noted that the
expression (3.9) for the error term £, was obtained after a change of the
order of integration on curve C and interval |a, g]. Further, there is no di-
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stinction as regards the influence of simple poles z, of f(2) lying in the in-

tegration interval [a, 8] or outside it.
Finally, the accuracy of formula (3.6) is exactly the same with the ac-

curacy of the corresponding formula for regular integrals because there is
no difference in the expression (3.9) of the error term. This means that if
the numerical integration formula under consideration is exact for polyno-
mials up to p degree for regular integrals, when it is valid for z — oo:

(3.10) () on(2) = O(z—72),
then it will be exact for functions f(z) of the form considered here:

3.11) f(z)= g(z),'klni =22),
=1

if g(z) is a polynomial up to (p+m) degree. This fact can be easily confirm-
ed if curve C tends to infinity and expression (3.9) is taken into account.
In some way, we can say that a numerical integration formula is more ac-
curate for functions f(z) having simple poles than for functions f(z) not hav-

ing such poles.
One further remark is that (3.7) should be valid for points z inside the

integration interval [a, 8] as well as outside it. If we take into account the
Plemelj formulae, we find from (3.7)

(3.12a) q,7 (L) —q;(t) = alon(ty),
2 w(t)o,(t
(3.12b) 7 (t)+a, ) — [ at,
“ ‘

where £, are the points of the real axis and ¢;(f,) are the boundary va-

lues of function g.(z) as z approaches a point 7, of the real axis, but lies
in the positive or negative half-plane respectively. From formulae (3.7) and
(3.12b) for the points #, of the real axis, on which the interval [a, 8] lies,

we find
“ 1
(3.13) gnlty) = o [4:(t0)+q;('o)]-

In another wording, (3.13) is a definition of function ¢,(z) on the real axis

consistent with the previous development.
Finally, we can apply formula (3.6) to a Cauchy-type integral of the

form

(3.14) r=fuo) L9 dt, xa, Bl x+t, (k=1,2,...,m),

where the function f(z) has no poles inside curve C and point x does no
coincide with some of abscissae f, or points a or g, when we find

X I3

ﬂ n
(3.15) I [ w(t) tﬂ” dt — XAy {f(tur —2f(x) Z”((:,) t En,
@ Rz=a | . il

where
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1 gn(r)  flz)
(3.16) E, 7u'7fc )

T.
o () T—x

4. On the Behaviour of Functions the ¢,(z). Under the generally satisfied
assumptions that:

i) The weight function w(¢) is positive along the integration interval
|a, B], is generalized Holder-continuous in this interval and at the end-points
«a and f either it is bounded, or it presents singularities of power or loga-
rithmic or complex type of the form

(4.1) w(t)~(({t—c) 7clnP—Yt—c), y.<1, t-—>¢, c=apb,
where y. is a constant and p a positive integer, and:
ii) The weights A, (k=1, 2,..., n) are positive numbers, and because

of the fact that functions o,(z), defined by (3.2), are analytic inside the
curve C, we can conclude that functions ¢,(z), defined by (3.7), are section-
ally analytic inside the curve C except onthe interval [a, 8], are genera-
lized Holder-continuous in this interval and at the end-points « and s ei-
ther they are bounded (if w(a)ou(a)=w(B)o.(5)=0), or they present simple
logarithmic singularities (if w(a)ou(a), w@(B)o.(B)+0, but bounded), or they
present singularities of power or logarithmic or complex type of the form
(see F. D. Gakhov [17]):

(4.2) gn(2)~ Sz, o), Zfla, B] z— ¢,

c=a, ﬂv
72 ~ 5 (S*(2, )+ S~(2, 0}, 2€[a, B] z — <,
where the function S(z,¢) deperds on the behaviour (4.1) of the weigh

function w@(f) and has near the end-points « and B of the integration inter-
val [a, §] the behaviour

ol
(4.3) S(z, ¢)~ — ey — In"(z—(,;)’ z—¢ c=a B, z§a, s,
2 siny, a (z—c)e

where the constant y. is equal to y. if the end-point ¢ under considerationt
does not coincide with any of the abscissae ¢, (=1, 2,..., n), roots of
the polynomial o,(2), or equal to (y.—1) if some of the abscissae f, coinc-
ides with the end-point c.

If only the function g,(2) is considered, when the corresponding func-
tion o,(2) reduces to a constant, because 20, the constant y coincides
with y.. As it can be seen from expressions (4.2) and (4.3), the function
Qo(2) presents singularities of the form

(4.4) d(t)~(t—c) cInP(t—c), c-a, B, tela, B),

if the weight function w(f) does not tend to zero when ¢ — ¢, except for
the case when y.—1/2 and p=0, when it does not present any singularity
inside the integration interval [a, ], while it presents a singularity of the
form (4.4) outside it.
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Because of the assumption that the weight function w@(f) is positive
along the integration interval [a, 8], we can conclude from (3.7) that the
function gu(z), it not identical to zero, has one and only one root inside
the integration interval [a, 8]

As regards the roots of the functions ¢.(z), we can investigate the
number and distribution of them inside the integration interval[a, ] as fol-
lows. We apply formula (3.15) for f(£)— -1 2, when E,=0, and we obtain,
taking also into account the definition (3.7) of functions g.(2):

[~ 1* ( Ap . ‘ln([)
(4.5) qoll) o Wt a0 te(a, B).

Because of the facts that the function g¢,(f) is generalized Holder-conti-
nuous inside the interval [«, 8] and it is an increasing function of ¢ and the
assumption that all the weights Ax (=1, 2,..., n) are positive numbers,
it is easy to prove that function ¢,(f) has one and only one root inside
each subinterval (fx fz.1) (kK=1, 2,..., n—1) of the integration interval
|z, ], provided that ¢, <f,< ... <lp 1 <ln If the abscissa #, does not coin-
cide with the end-point @, one more root of the function g,(z) lies inside
the subinterval (a, #,), if the function g.(f) presents a singularity of the form
(4.4) near the point « tending to (—oc), as it can be easily seen. In a si-
milar manner, if the abscissa #, does not coincide with the end-point g, one
more root of the function ¢,(z) lies inside the subinterval (Z,, b), if the
function g,(f) presents a singularity of the form (4.4) near the point g tend-
ing to (+20), as it can be easily seen.

Summarizing, we can say that functions ¢,(z) have (n—1) up to(n--1)
roots inside the integration interval [a, 8] under assgmptions mentioned at
the beginning of this paragraph, the exact number of these roots depend-
ing on the possible coincidence of points #; and f, with the end-points «
and 4 and the behaviour of the weight function wt) near the same end-
points. The number of these roots is of great importance for the numerical
Solution of singular integral equations, as it will be seen below.

5. On the Numerical Solution of Singular Integral Equations of the
First Kind. Let us consider the following system of m singular integral
equations of the first kind:

J==1 ¢

(5] ) —\ J{'u'/(t)l(l/(;t, ’Y)(JYJ([)dt “‘fl(x)) XE(":', ﬁi)v { lv 21 ceey M
1y

The functions /f,(x) are defined in the intervals [ay, B respectively and
are generalized Holder-continuous in these intervals. At the end-points «
and B; they are permitted to present power or logarithmic or even com-
plex singularities of the form

- . R —1
(52)  flx)~(t ) W (t—c), yie<<l, X €y € anby

where y,. are constants and p, positive integers. In the same way, the weight
functions w,(f) are also generalized Hoider-continuous, but they may present
singularities at the corresponding end-points a, f; of the same form as
/(x), subject to conditions (i) of the previous paragraph. Finally, the ker-
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nels K (¢, x) are defined in the domains: a;-—¢-- 8, a;<x<{f; and may be
written under the form
K¢, x)

t-‘x;i‘{“l\r'lj‘z(t:x)y Lj=1,2,..., m,

(5.3) Kiylt, x) - -

where K;j(f, x) =0 for i+ j. The functions K,,.(/,x) are supposed to be€
Hoélder-continuous with respect to both their variables in the intervals where
they are defined and bounded at the end-points of these intervals except
tor the functions Kj;,(f, x) for /- j when both their variables tend at the
same time to the end-points of the corresponding intervals [a; f;] and
|a;, Bi], when they may present singularities as strong as (7 x) ' The ex-
pressions (5.3) for the kernels K7, x) are those occurring in most practical
problems which may be reduced to singular integral equations.

It may be also noted that the singularities of the weight functions
w,(t) at the end-points of the corresponding intervals [a; ;] are not arbit-
rary, but they are taken in such a way that the corresponding functions
@;(f) be bounded at the points «; and g;. Under the above-mentioned assump-
tions, the unknown functions ¢;(#) in the system of singular integral equa-
tions (5.1) are expected to be Holder-continuous in the corresponding inter-
vals [a;, 8;]. The correct behaviour of the functions w(f) near the points «a,
and p; can be found in a way analogous to that used by Erdogan,
Gupta and Cook (6]

The main difficulty in solving a system of singular integral equations
of the form (5.1) has been up to now the non-existence of effective methods
for the numerical expression of the singular integrals involved in it. Now
taking into account the development of paragraph 3, in which a method for
extending the application of any numerical integration rule to the case of
singular integrals was given, and of paragraph 4, in which it was proved
that for a proper choice of point x in a singular integral of the form (3.14),
this integral may be numerically expressed in exactly the same way, as if
it were an ordinary integral, we can approximate the system of singular
integral equations (5.1) by the following system of linear equations-

m n; i

(5.4) b ZIA//.- Kif(tyr Xir)@j(ljn) —fil Xig)y r— 1,2, ..  Fos @ 1,2,...,m.
J=1 k=1

In system (5.4), A;x and #,, are the weights and abscissae respect-

ively of the numerical quadrature rule used in the interval [ay 7;] and x,,

are the roots of the functions g, (f), associated to this quadrature rule, in

accordance with the developments of paragraphs 3 and 4. We can also note
that the expressions (5.3) of the kernels Kj(f, x) were also taken into ac-
count for the development of system (5.4), as, due to the fact that only
the kernels with i—j have Cauchy-type singularities, the points x; of
application of the /-th singular integral equation were selected as the roots
of the functions g, (f) associated with the numerical integration rule used
for the i-th integral in each one of the equations (5.1).

We can further note that the number r, of points x;, of application
of the i-th singular integral equation is equal to (m;—1) or n; or (n;--1),
where n; is the number of points used in the numerical integration of the
i-th integral. Thus, the total number of linear equations of the system (5.4)
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may vary from X7 (n; 1) up to 2, (n;+ 1), while the number of un-
knowns in this system is exactly 2mon. It is also possible that the fun-

ctions y(f) satisfy conditions of the form

m f‘j
(5.5) Zl J wi(O)Konit)@s(t) —Cn, k-1, 2,..., h,,
=1 a

J

where Kuy(£) are Holder-continuous functions in the corresponding intervals
|aj, B;] without any singularities at the end-points of these intervals and C,
are given constants. Conditions (5.5) may be written, after a numerical ap-
proximation of the integrals, under the form

m ny
(5.6) :] kz"A,-,,KO,.,(t,k)q,(t,k), Cn, h=1,2,..., h,,

j= =
in an analogous way to that used for the reduction of the system of sin-
gular integral equations (5.1) to the system of linear equations (5.4).

Moreover, some of the functions ¢;(f) are possible to have known va-

lues at one or both the end-points of the corresponding intervals [aj 8. In
such a case, it is recommended that, for the numerical expression of inte-
grals in these intervals, a numerical quadrature rule including the end-points
where the values of functions ¢;(f) are known be used. In this way there
results a number, let [, of conditions, which reduce the number of unknows

in the system of linear equations (5.4) and (5.6) to 27-n; [l,. In order
that a solution of this system of equations is posséble, the number of
equations must be greater or equal to the number of unknowns. This can
be always achieved, especially when quadrature rules not including the
end-points of the corresponding intervals among their abscissae are used.

In the case that the number of linear equations is greater than the
number of unknowns, some of them should be ignored. Such a case must
be avoided by simply using quadrature formulae containing among their ab-
scissae one or both the end-points of the corresponding integration inter-
vals, instead of quadrature formulae not including them between their abs-
cissae. If this technique is used for some integration intervals [a; 8], it
will be possible to obtain exactly the same number of linear equations and
unknowns. Of course, in no way it is permitted to neglect anyone of con-
ditions (5.5), which generally result from physical considerations and are of
the same importance with the singular integral equations (5.1). On the con-
trary, one may neglect to take into account the values taken by functions
o,(f) at the end-points of the corresponding integration intervals, even if
one does know them, but this method of equalization of the number of li-
near equations to the number of unknowns is not advised, because there is
no approximation in these neglected values.

6. The Gauss, Radau and Lobatto Quadrature Formulae Applied to
Cauchy-Type Singular Integrals and the Corresponding Integral Equa-
tions. For the numerical solution of a system of singular integral equations,
it is recommended to express the integrals using quadrature rules of high
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accuracy, so that the number of abscissae n of the quadrature rule be small
but the accuracy in the approximate expressions of the integrals be satis-
factory. In this way, the number of linear equations we will have to solve
will not be too large. Kantorovich and Krylov [1] proposed that the
Gauss quadrature formula be used in general, as it is accurate in the case
of ordinary integrals for integrands polynomials up to the degree 2n —1.
We may add that, when we want to have among the abscissae used in
some numerical integration formula one of the ends of the corresponding in-
tegration interval, either because we know the value of the unknown func-
tion in the integral we want to approximate at these points, or because we
would like to know it as much accurately as possible at these points, the
use of the Radau quadrature formula is the best possibility, as it is accu-
rate for ordinary integrals for integrands polynomials up to the degree
2n—2. Finally, in the case we want to have among the abscissae used both
ends of the integration interval, the use of the Lobatto quadrature formula
is the best choice, as it is accurate for ordinary integrals for integrands
polynomials up to degree 2n--3.

Taking into account the development of paragraph 3, we can find out
that, for singular integrals of the form (3.14), the above-mentioned Gauss,
Radau and Lobatto quadrature rules are accurate for integrands polynomials
up to the degree (2n), (2n—1) and (2n —-2) respectively.

We can further note that, if p,(2) is the sysiem of orthogonal polyno-
mials associated with some specific form of the above-mentioned quadra-
ture formulae (i. e. related to a specific integration interval and weight
function), then the corresponding polynomials o,(2z) will be given by:

(6.1) 0n(2) = kpn(2)
for the Gauss quadrature formula,

(6.2) 0i2) = KpaD) +Cepni(D)]. ce= SPH0, c=aor 4,

for the Radau quadrature formula, the value of the constant ¢, depending
on the end-point (a or ) of the integration interval included among the
points used in this formula, and :

(6.3a) on(2) = R{pa(2) +cpn—1(2) + dpa—2(2)},
Pr(@)Py_o(B)—Pr(B)P o)

o ;,; ;_?“ )P, _2("”7— .”,,__l(ﬁ’)pn_z(‘;)—‘

Pl @)Pp_1(B)=Pn(B)Pp_1(a)
Pp )P, _oB)—Pp_1(B)P,_o(a)

(6.3b) d=+

for the Lobatto quadrature formula, where & is an arbitrary constant. These
formulae were obtained according to the method proposed by M. Bouzi-
tat [18].

I[:urlther, it is possible to find the corresponding system of functions
g.(2), defined by (3.7) for the Gauss, Radau and Lobatto quadrature formu-
lae. It may be noted that, once the system of these functions is found for
the Gauss quadrature formula (by simply replacing in (3.7) the polynomial
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6.(2) by kp.(z), according to (6.1)), then the systems of these functions for
the Radau and Lobatto quadrature formulae can be found in a direct way,
because of the linearity of (6.2) and (6.3a).

The roots of these functions ¢,(2) are the points of application of those
singular integral equations of the system (5.1) for which the numerical in-
tegration formula corresponding to these functions was used for the appro-
ximate expression of the Cauchy-type integral occurring in them, independ-
ently of which integration formulae were used for the approximate expres-
sion of the ordinary integrals occurring in the same integral equations.

In general, after the solution of the system of linear equations appro-
ximating a system of singular integral equations of the form (5.1) and the
determination of the unknown functions ¢#) at the abscissae 7;, in the cor-
responding integration intervals |aj ;] used for the numerical integration
in these intervals, we have to find expressions giving these unknown func-
tions ¢;(f) along the intervals |a; 4;] and not only at the points 7,,. This
can be generally achieved by using the methods of interpolation. Here only
the cases when the (auss, Radau and lobatto formuiae are used as inte-
gration rules in intervals |a; 4] will be dealt with.

LLet us consider at first the case of the Gauss quadrature formula. We
have generally to find an approximate expression for a function ¢(f), the
values of which are known at the points £, (k& 1, 2,..., n), roots of the
polynomial p,(z) of the system of orthogonal polynomials associated with
the Gauss quadrature formula used. To express the function ¢(f) along the
corresponding interval [a, 4], we assume it to have a polynomial form of
degree (n 1) as follows:

n

1
(6.4) g (= 2 ¢;piD),
0

!

where ¢, are coefficients, which can be determined according to the follow-
ing formula given by D. Paget and D. Elliott [19]:

b S Apltan(te, P01 a1,
r k1

(6.5) C;
where A, are the weight coefficients corresponding to abscissae 7, and 4,
are constants given by

(6.6) - h, fw(t)p?{ 1dt

with w(f) the weight function.

In the case of use of the Radau quadrature formula,it can be shown
that (6.4) and (6.5) remain valid. The same is also true for the case of the
[Lobatto quadrature formula, except of the fact that the coefficient ¢, for
i-n | must be determined by

(6.7) i Z APty = ApiLy)-

Formula (6.7) may be used for the computation of all the coefficients
¢, (i 0,1,..., n—1) instead of formula (6.5). This is true not only for the
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l.obatto method, but also for the Gauss and the Radau methods. In reality,
ormula (6.5) results from (6.7) after an application of the numerical inte-
fration method under consideration for the integral of the right side of (6.6).

7. On the Numerical Soiution of Singular Integral Equations of the
Second Kind. The method of numerical solution of systems of singular in-
tegral equations of the first kind developed in paragraph 5 can be extended
so as to apply to systems of singular integral equations of the second kind
too. However, such an extension causes the method to become more com-
plicated as regards the selection of points v, oi application of the singular
integral equations.

We will consider in the present development only one singular integral
equation of the second kind of the form:

w(tjy ()

(7.1) Al x)g(x)+ Bix) r t— x

dt- [ tyk(t, Xypt)dt— f(x),

as the extension of the method which will be presented here to systems of
such equations is obvious after the development of paragraph 5.

In (7.1), all the given functions are assumed to be generalized Holder-
continuous inside the integration interval [a, 8]. At the ends a, 8 of this
interval the functions /l(x) and B(x) are assumed bounded and different
from zero, the functions w(x) and f(x) are assumed to present singularities,
as in paragraph 5, and the kernel k(/, x) is assumed to have the same be-
haviour as the kernels Kj;,(7, x) in paragraph 5. It may be noted that the
singularities of the weight function w(x) should be consistent with that of
the function f(x), depending also on the functions A(x) and B(x) and the
integration interval [a, 8], in a way that the unknown function ¢(f) be Hol-
der-continuous along the whole integration interval [a, ] without any sin-
gularity at its end-points.

Now, applying a method of numerical integration to the second inte-
gral of the left side of (5.1), which is an ordinary integral, with x-+a, 8 and
the generalized form of the same method to the first integral of the left
side of this equation, which is a singular integral, according to formula
(3.15), we find the following approximate expression for (7.1):

n
. gty
2 A,

) Y n %) |

|
(72) Acx)w(x)gix)+ l)’(_\‘), o
k ol

LS ARR(L,, x)(ty) =f(x),
=1

where /, are the abscissae and A, the weights relative to the numerical

integration method with integration interval |a, g8} and weight function w(x)

In use.

FFrom (7.2), it is obvious that the best selection of points x, of appli-
cation of this equation, in. order that it is reduced to a system of linear
equations, is that these points be the roots of the following transcendental
equation :

. 2q,(x) A(x)
(7.3) w( ¥)a,(x) B(x)

In the case examined in paragraph 5, when A(x) — 0, these points were
simply the roots oi the function ,g,(x). The number and distribution of
these roots were investigated in paragraph 4. An analogous investigation
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for the roots of (7.3) reveals that this equation has at least (n 1) roots
and at maximum (n+1) roots. From these roots, (n—1) lie inside the (n—1I)

inter_vals (te tes1) (R=1, 2,..., n 1) and the last two, if they exist, lie in
the intervals (a, #,) and (¢,, B), supposed that these intervals are not of zero
length.

In accordance with this selection of points x, of application of (7.2),
this equation is reduced to the following system of linear equations:

o4 [ Bxp)
(7.4) kf}A #|tp—x,

+R(t xp)\@(t)=f(x.), r—=1,2,..., ry

where r, may be equal to (n 1), n or (n+1). This system of equations
may be complemented by one or more conditions resulting from physical
considerations, as in the case of systems of singular integral equations con-
sidered in paragraph 5.

The disadvantage of the method presented here is that the points x,
of application of the singular integral equation depend not only on the nu-
merical integration formula in use, as in the case of singular integral equa-
tions of the first kind, but also on the ratio A(x)/B(x) that is on the form
of the singular integral equation itself. This disadvantage is partly eliminated
by the fact that in most practically occurring problems which are reduced
to singular integral equations both functions A(x) and B(x) are constants,
when the points x,,, once found for some problem, can be used for all ca-
ses of this problem when only the kernel k(Z x) and the right side func-
tion f(x) change.

Another possibility would be to use as points x, the roots of functions
ga(x), as if A(x) were identical to zero, and then to express the values
@(x,) of the unknown function at these points by interpolation through the
values ¢(¢,), which will finally be the unknowns in the system of linear
equations resulting from (7.2). Nevertheless, such an approach has the se-
rious disadvantage that the interpolation used reduces the accuracy of the
quadrature formula especially when this formula is a very accurate one.

8. Applicatlon of Usually Used Numerical Integration Rules to the
Solution of Singular Integral Equations. In this paragraph we will consi-
der the most generally used numerical integration rules of the Gauss, Ra-
dau and Lobatto type and we will determine the corresponding functions
ga(2), the roots of which should be taken as the points of application of
singular integral equations of the first kind, as we have seen in paragraph
5, or which are involved, together with the corresponding polynomials o,(2)
in (7.3), the roots of which should be taken as the points of application
of singular integral equations of the second kind.

Every numerical integration rule is characterized by the type of it
(that is Gauss, Radau or Lobatto for the rules considered in this paragraph),
as well as by the name of the corresponding orthogonal polynomials (as
Legendre, Chebyshev, Jacobi, Hermite, Laguerre etc.).

I) The Gauss-Legendre numerical integration rule. This rule is applic-
able to integrals with integration interval [—1,1] and weight function
w(f) 1. The system of associated orthogonal polynomials is the system of
Legendre polynomials P,(2), when the functions o,(2) and g.(2) are given
by formulae
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(8.1) on(2) - Pul(2),  qn(2) = Qul2),

where Q,(2) are the Legendre functions of the second kind. These func-
tions have (n+1) roots inside the integration interval [ -1, 1] alternating
with the roots of Legendre polynomials according to a theorem report-
ed by G. Szego [20]. As the functions Qu(z) are either even or odd,
their roots appear by pairs of opposite roots, except the root x—0, when
the point 0 is a root of function Qu(2).

Table of roots of the Legendre functions Q,(2) and O,',_llz) for n=2(1)11

X (Qn( £x£)=0) X (Q (£ xx)=0) Y (Qu{£ % )=0) X Q]  (+xz)=0)
n=2 n—8
0.000000 0.000000
0.000000 0.000000
0.937612 0.360623 0.409449
n—3 0.672548 0.748081
_ 0.893670 0.957206
0,429707 0.623175
et 0.994486
n—d n—9
0.000000 S000000 0.164368 0.184704
0.475294 0.529164
0.639003 0.805405 0.734720 0.802140
0.980429 yhopr o
0.914550 0.966663
" 0.995584
0.280595 0.348370 n=10
0.752756 0.881699 0.000000 0.000000
0.986867 0.294423 0.326049
n—6 0.562687 0.616763
0.000000 0.000000 0.7809-?7 0.840627
0.463374 0.547340 0.929855 0.973300
0.820643 0.920609 0.996384
0.990584 n=11
ne? 0.136039 0.149549
, 0.398027 0.435360
0.207455 0.241443 0.630196 0.682483
0.586501 0.668994 ' 0.816208 0.868954
0.864172 0.943076 0.941401 0.978137
0.992921 0.996985

In the table we give the roots of the functions Q,(z) for » =2(1)11 and
with an accuracy of six decimal digits, because it seems that these roots
have not been tabulated up to now.

1) The modified Gauss-Legendre numerical integration rule. This
rule is an extension of the above-mentioned Gauss-Legendre numerical in-
tegration rule applicable to integrals with integration interval [0, 1] and
weight function either w(f) - 1A\1 £ or w(f)—1/t.

In the first case the functions o,(z) and ¢.(z) are given by

(8.2a) 0ul(2) ~ PouV1 ~ 2), gu(2) — e QualVT—2)

vi—z
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or by
(8.2b) on(2) N1 2Po (N1 2), gu(2)= Quua(V1 —2)

depending on whether the end-point #—1 is not included among the abscis-
sae f or it is included, while in the second case the functions ¢,(z) and
qn(2) are given by

(8.3a) 0n(2)= Pon(NZ),  n(2)— - Qualy2),
\..

or by

(83[)) ‘5;,(2) \/Zl 2n I(\/z)y ‘In(z) (\)'lll *l(\/:)

depending on whether the end-point /0 is not included among the abscis-
sae f, or it is included.
Egs. (8.2) and (8.3) mean that the roots of functions g.(z), x, are gi-

ven by
(8.4) X, l—xi x, x;

in the first and the second case respectively, where x, are the roots of the
l.egendre functions Q,(2).

It may be also remarked that the modified Gauss-Legendre numerical
integration method is either a Radau or a Gauss method depending on
whether one of the end-points O and | of the mtegratlon interval is includ-
ed among the abscissae used, or not.

I11) The Lobatto—Legendre numerical integration rule. This rule is
applicable to integrals with integration interval [ I, 1] and weight func-
tion w(¢) 1. The system of associated orthogonal polynomials is again the
system oi Legendre polynomials P,(z), when functions ¢,(2) and g,(z) are
given, because of (6.3), by

2n ~l_( 2
nin-—1)

)P

n

on(Z) = Pa(z) P, 2(2) (2),
(8.5)

2n—1 ,
gn(2) - Qu2) Qu-o2) (22— 1)Q, (2

The number of useful roots of functions ¢,(z) is (7 -1), as their roots
-1 coincide with the ends of the integration interval [—1,1] and cannot
be used for the numerical solution of singular integral equations. In the Table
we give the roots of functions g,(z), except 1, for » 2(1)11 and with
an accuracy of six decimal digits.

1IV) The modified Lobatto-Legendre numerical integration rule. This
rule is an extension of the above-mentioned Lobatto-Legendre numerical
integration rule, in the same way as the modified Gauss-Legendre numeri-
cal integration rule is an extension of the Gauss-Legendre numerical inte-
gration rule. The integration interval is [0, 1] and the weight function ei-

ther w(f) 1yl ¢ or w(t) 1N\t
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In the first case the functions ¢,(2) and ¢,(z) are given by

4n--1

ou(2) = Por(V 1 —2) Paus1  2) InEn 1) 2 n N1 —2),

1 I
q"(z):\/l_-_i 1Qan(N1  2) — Qan—a(V1 -2)

(R.6a)
1 dn—1 _ -, =
Ji—z 2n(2n-1) 2Qo, (W1 —2),
or by
) n—1 7 ¢ — 5 |
0n(2) 5, N1 =2 Pu V1 2) - PVl 2)
(4n—1y4n—3) | . .D f .
(8.6b) aninixzn- 1y V1= Z P2 (V1—2),

4

. n—1 / / (4n —1)4n-—-3) ' |
l/n(‘) “2”1 {Q'Jn I(V 1 Z) ’* an. ,.’;(V/] :)} an(n— |)(2n 3) ZQ.-_,’! 2\/] S 2)

depending on whether the end-point/— 1 is not included among the abscis-
sae fp or it is included, while, in the second case, the functions s,(2) and
g.(2) are given by

4n-—1 ) ‘
8.7 on(%) I')‘.’n(\/z) P-_m_-:(\/Z) 2114;111—1)(1 - Z)PQ"_I(\/Z),
DS o NN - Y R =L WSS
s Jz oo . v ! Jz 2n(2n—1) )5, 4V
or by

4n—1 e (4 —1)(4n—3) ,
n,,(z) S Ton \/Z{P‘_’uv—l(Jz) "p«'" -"(V": \n(n l:?ﬂf ]T\/Z(] —Z)PQ,,_Q(\/Z)'
(8.7b)

n

dn—1 . / (4n—1)(4n—3 . -
(/n(Z)’ - ’é;;‘{Q?n—I(JZ)'* Q?u—’{(\/Z)} 4&(&%(1 - Z)QQ"_2(¢Z),
depending on whether the end-point/ 0 is not included among the abscis-
sae £, or it is included.

Equations (8.6) and (8.7) mean that the roots of functions g¢,(2), x;, are

given by formulae (8.4) in the first and the second case respectively, where
x, are the roots of the corresponding functions g,(z) of the second of (8.5).

It may be also remarked that the modified Lobatto-Legendre numerical
integration method is either a Lobatto or a Radau method depending on
whether both the end-points O and 1 of the integration interval are includ-
ed among the abscissae used or only one of them is.

V) The Gauss-Chebyshev numerical integration rule. This rule is
applicable to integrals with integration interval [—1, 1] and weight function

w(t) 1/J1—¢*. The system of associated orthogonal polynomials is the
system of Chebyshev polynomials of the first kind 7,(2), while the func-
tions ¢.(z) are proportional to the Chebyshev functions of the second kind
U, 1(2) [13] and take the form of the Chebyshev polynomials of the second
kind U,_,(¢) on the integration interval [ 1, 1] because of Eq. (3.13). That is
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(8.8) on(D)=Tu(2), qu(2)= — 5 Uni(2), U-1(2) =0.

It may be further noted that the roots xx of polynomials U, (#), that
is the roots of functions g,(z) are given by

(8.9) x, cos(ka/mn), k 1,2, ..., n—1.
V1) The Lobatto-Chebyshev numerical integration rule. This rule is
also applicable to integrals with integration interval [—1,1] and weight

function w(f) 1/J1 ¢2. Because of Egq. (6.3), the functions o,(2) and ga(2)
are given by:

(8.10) on(2)  Tu(2)— Tuo(2) 22— U, (2),

gu(2) = —5AUn—i(2) - Uns(2)} = —7Tn1(2),

when the roots x, of the functions ¢,(z) are given by

2k -1
(8.11) xa=cos 5N k1,2, n—1.

VIl) The Gauss-Jacobi numerical integration rule. This rule is applic-
able to integrals with integration interval [—1,1] and weight function
w(t)—(1—t)*(1 +¢’(a, b> -1). The system of associated orthogonal
polynomials is the system of Jacobi polynomials P{*?(z) and the functions
ga(z) are related to the Jacobi functions of the second kind Q(@9(z) [13].

That is
(8.12) on(2) = P@(2), qa(2) =(2 1)a(z -+ 1)? Q@2 2).

The roots xz of the functions g,(2) should be taken as the points of
application of a corresponding singular integral equations, although such a
selection is not in agreement with the developments of Erdogan, Gupta
and Cook [6], which are, in some way, unjustified. Erdogan, Gupta and
Cook propose that these points x, be selected as roots of a proper Jacobi
polynomial.

VIII) The Gauss-Laguerre numerical integration rule. This rule is
applicable to integrals with integration interval [0, o) and weight function
w(t) e . The system of associated orthogonal polynomials is the system
of Laguerre polynomials L,(z), when the functions o.(2) and g,(z) are gi-
ven by

oo L"(f)

(8.13) o2) = Ll2), qu2) — Jet o dt.

It can be easily shown that the functions g.(z) satisfy the recurrence rela-
tions for the Laguerre polynomials

(8.14)  ¢4(2) = (1 —2)qo(2), nou(z) (2n -1 2)qn-1(2)(n 1)gn—2(2),

while ¢o(2) may be expressed as
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—t

(8.15) go(2)~ - e*Ei(x), Ei®) — [ at- [ 5 at.

—z

The integral Ei(z) is the well-known exponential integral. It may be
also shown that the functions ¢,(z) are confluent hypergeometric functions
for the Gauss-Laguerre rule, while the corresponding functions for the
Gauss-Jacobi rule (whose special cases are the Gauss-Legendre and the
Gauss-Chebyshev rules) are hypergeometric functions.

I1X) The Gauss-Hermite numerical integration rule. This rule as applic
able to integrals with integration interval (—oc, ~) and weight function
w(t)—e—*. The system of associated orthogonal polynomials is the system
of Hermite polynomials F/,(z), when the functions o,(2) and g.(z) are gi-
ven by

(8.16) o) =Hu@), ue) = —5 [e [ ar.

It can be easily shown that functions g¢,(z) satisfy the recurrence rela-
tions for the Hermite polynomials:

(8.17) g1(2) = 2294(2), qu(2)—22q.,—1(2)—2(n— 1)g.—2A(2),

while go(z) may be expressed as

(8.18) go(2) = —miw(z) (Im2>0), go(2) - aiw(—2z)(Im z<0),
go(2) = 2JaF(2) (Imz - 0),

where w(z) is the complex error function and F(z) the Dawson integral.
These two functions are defined as

. o0 _—f?

(8.19) w(z)- - [ dt, F(x)

It may be also shown that the functions ¢.(2) are confluent hypergeo-
metric functions, as in the case of the Gauss-Laguerre numerical integration
rule.

X) The modified Gauss-Hermite numerical integration rule. This rule
is an extension ot the above-mentioned Gauss-Hermite numerical integration
rule applicable to integrals with integration interval [0, o) and weight func-

tion w(f)— 1/Jt. The functions o,(2) and g.(z) are given by

(8.20a) onl(2)~ Han(W2),  qu(2) ‘J“;’ 7:,(2)
or by
(8.20b) on(2) = NzH2n1(N2),  §u(2) = ¢%,_ (V2

where ¢'(z) denote the functions ¢,(z) for the previously studied Gauss

Hermite method. When formulae (8.20a) are used, the end-point £=0 of the
integration interval is not included among the abscissae f, and the numeri-
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cal integration rule considered is in reality a Gauss rule. On the contrary,
when formulae (8.20b) are used, the end-point / 0 of the integration in-
terval is included among the abscissae 7, and the numerical integration rule
considered is in reality a Radau rule.

9. Applications to Crack Problems in Plane Elasticity. The method
of numerical solution of singular integral equations presented here may be
successfully applied to a lot of problems of Mathematical Physics that could
be reduced to singular integral equations. In this paragraph we will consi-
der only crack problems ocurring in the Theory of Plane Elasticity for iso-
tropic media.

Consider a complicated crack L (Fig. 1), possibly branched and with
more than two tips, in an infinite isotropic elastic medium. If the loading
at infinity as well as on both edges () and ( ) of the crack (the sym-
bols (+) and (—) assigned to them in an arbitrary way) are known, then
this problem can be reduced to a singular integral equation of the form

1 g 1 .o
- ’(l)dt»—— — AL
Aty vt ol I z s

(9.1)
dt ’ 1 . () | B T—t | .
dt l al j o1t dr + ftl']'l q(r)(, ty dI' Jtb),
where f(¢) is a known complex function and ¢(7) the unknown complex func-
tion along the crack [N. loakimidis, 21]. This function ¢(f) may be con-
sidered as representing the dislocation density along the composite crack.
Moreover, it presents singularities of the order of "( 1 2) at the crack tips
and, possibly, weaker power or logarithmic singularities at the branch po-
ints, corner points and points of loading discontinuities. These singularities
may be found by the general method proposed by P. Theocaris [22]
for wedges and are supposed to be known.

Under these conditions, the complex singular integral equation (9.1)
may be reduced to a system of real singular integral equations ol a num-
ber equal at maximum to the double of the number of the branches ot the
composite crack, in which it can be divided, so that no irregular point of
geometry or loading exists in each one of them.

Several plane crack problems have been solved by reduction to singul-
ar integral equations or systems of such equations. These equations, result-
ing from (9.1), are of the first kind and can be solved by the numerical
method proposed in paragraph 5 and using the numerical integration rules
considered in paragraph 8. Among these problems we can quote the prob-
lems of periodic collinear cracks, periodic parallel cracks and doubly-perio-
dic arrays of cracks (solved by using the Gauss or lobatio-Chebyshev nu-
merical integration rule), the problem oi a star-shaped crack with branches
of equal lengths and symmetrically oriented (solved by using the modified
Gauss or Lobatto-Legendre numerical integration rule), the problem of a
cruciform crack with equal or unequal arins (solved by using either the
Gauss or Lobatto-Chebyshev numerical integration rule or the moditied
Gauss or Lobatto-Legendre numerical integration rule), the problem of an
edge crack in a half-plane (solved by using both the Gauss-Laguerre and
modified Gauss or lLobatto-Legendre numerical integration ruoles), the
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problem of a simple curvilinear crack in an infinite medium (solved by
using the Gauss or Lobatto-Chebyshev numerical integration rule), the prob-
lem of a branched crack consisting of a main crack and two or more bran-
ches with equal or unequal lengths and arbitrary orientation (solved by
using either both the modified Gauss
and Lobatto-Legendre numerical inte-
gration rules or only the modified
Lobatto-Legendre numerical integration
rule) and, finally, the problem of pa-
rallel semi-infinite periodic cracks (solv-
ed by using the modified Gauss-Her-
mite numerical integration rule).

In some of these problems, the con-
dition of single-valuedness of displace-
ments was taken into account, com-
plementing (9.1). The problems, where
it was not taken into account, were
those problems where the symmetry
assured that this condition was satis-
fied. Also, in the problem of a branch-
ed crack, when solved by using only
the modified Lobatto-Legendre nu-
merical integration rule, special condi- \
tions resulting from physical consider-
ations at the common point of the Pio. 1. Crack of a complicated shape
branches were also taken into consi- g - incanoinf‘;nicte",’,‘,’e’gium ——
deration, according to the procedures
developed in paragraph 5.

It can be also noted that, when we are interested in the evaluation of
the stress intensity factors at the tips of the cracks, then the Lobatto rules
including between their abscissae these points should be preferred over
the corresponding Gaussian rules, because, in this way, no extrapolation,
introducing errors, is needed for the evaluation of the stress intensity fac-
tors. The values of the stress intensity factors found by the numerical so-
lution of (9.1) together with the condition of single-valuedness of displace-
ments, were found to be in satisfactory agreement with their values esti-
mated theoretically or by numerical methods or by experimental techniques
like the method of caustics, developed by P. Theocaris [22-25]. This
fact proves the effectivenes of the method of solution of singular integral
equations presented here.

Moreover, except of the first fundamental problem for cracks in plane
isotropic elastic media, the cases of the second and mixed fundamental
problems can be also reduced to singular integral equations [21]. Although
the equation for the second fundamental problem is quite similar to (9.1),
valid for the first fundamental problem, the equation for the mixed funda-
mental problem is more complicated and contains also the unknown func-
tion o(f) as a free term. In a similar manner, the case of more complex
crack problems in isotropic media, as well as of crack problems in aniso-
tropic media can be reduced to singular integral equations [21], a numerical
solution of which can be found by the method developed here.
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10. Discussion and Generalizations. The method of numerical solution
of singular integral equations developed here can be successfully applied
to all problems of Mathematical Physics which can be reduced to singular
integral equations. The only difficulty in such an application is that the
points used as points of application of the singular integral equations, that
is the roots of functions g.(2), or (7.3), should be computed before the so-
lution of the singular integral equation. Nevertheless, the roots of functions
g(2), depending only on the numerical integration rule in use and not on
the singular integral equation to which this rule is applied, can be comput-
ed once, tabulated and then used whenever needed, considered associated
with the quadrature rule, like abscissae and weights. The same would be
possible for some standard and frequently used forms of (7.3).

The problem in these considerations is that functions ¢,(z) are usually
transcendental, difficult to compute functions and the computation of their
roots is not a very simple matter. Up to now, we have tried the computa-
tion of the roots of ¢.(z) only in the case of rules associated with the Le-
gendre polynomials with an accuracy of twenty-six digits and we hope to
be able to compute the roots of other forms of ¢,.(2) as well.

Further, extension of the method considered here for singular integral
equations along closed curves is a problem which can be studied, as well
as the estimation of the error of the solution of a singular integral equa-
tion, although the error analysis is quite the same as for Fredholm integral
equations and can be considered as known.

Finally, it is believed that the method proposed here will be applied

in future to other problems, except crack problems, with, we hope, an equal
success.
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