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EXPANSION OF COMPLEX FUNCTIONS ANALYTIC
IN A STRIPE IN SERIES OF HERMITE FUNCTIONS OF SECOND KIND

PETAR K. RUSEV
Sufficient conditions are given for a complex function analytic in a stripe to be
represented by series in Hermite functions of second kind.

It is well known that the system of Hermite polynomials {/7,(z)}
[1,5.5] is a solution of the difference equation

(l) yn—H_szn‘{‘Q”yn—x - 0.

The system of Hermite functions of second kind {K,(2)}; , is defined
by the equalities

oo
n=Q

(2) Kiz)=— ] PO gt poo,1,9,...,

provided that z¢ C\(— oo, + o). It is not difficult to prove that the system
{KA(2)}>_, is also a solution of the equation (1). Further, from (2) and the
property H,(—z) (—1)"H,(z) of Hermite polynomials follows that K,.(z) is
an odd function and that K,,4,(2) is an even function.

Let us note that the equality (2) defines for every » 0,1,2,... two
analytic functions respectively in the half-planes A+ {2z ¢ C\Imz>0} and
H™={z¢C\JUm z<0}. In order to make difference between these two func-
tions we accept the following notations, namely K (z) K.(z) for z¢FH+

and K;(z) K.z) for z¢ H—.

If 0<t,<-+oo, we define further for n 0, 1, 2,... and z¢S(z,)
{z¢ C\Um 2z <1,} the functions
3) K{Xz; v) = K, (2 +it) — K (2 —it,)
resp.
(4 Ky) (z370) K, (2 +in) + K5, (2 ).

In this way we introduce a system of complex functions {K\')(z;7,)}"

n=10

analytic in the stripe S(r,) and such that K((z;z,) is an even function in

this stripe for every n 0,1,2....
Further we define

(5) KSJ.:A)(Z: Y”) I\,‘.’u(z + i'O) " K.’Tl

(2—iry)
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278 P. K. RUSEV

resp.
(6) KD (2510) — Ky, o (2 +itg)— K, (2—iT0)

and get a system of complex functions {K?(z;z,)}:>, analytic in the stripe
S(z,) and such that K®(z;r,) is an odd function in this stripe for every
n=0,12,...

The main result of the paper is the following

Theorem 1. Let 0<1,<<-+co and f(z) be a complex function satis-
fying the following conditions :

(a) f(2) is analytic in the stripe S(1.);

(b) for ewvery 1, 0=t1<x,, there exists a u(r)>0 such that

f(2)=0{ z —#@ exp(—2?)} if z—>cc and z¢S(x)={z¢C: Imz <z}.
Then f(z) can be represented in the stripe S(z,) by a series of the kind

) 1@~ (@)K P(=3%) +a()IK: 1)}

with coefficients

(®) aO(f) g LA+ i)+ () At —ix)} f(E)at
and

) O f) = —guig ] Hlt +ix0)— (1Y H(t—ix)} 0,

where I, —\22"n) . Moreover, the series on the right side of (9) is abso
lutely uniformly convergent on every compact subset of S(z,).

Proof. If —z,<o<r, with /(c) we denote the straight line with para-
metric equation —=f+ic (—oo<{t+ o). Let z¢S(z,) and z be chosen so
that Imz <vr<z,. Then we define

1 5 1 = flt—iv)
(10) f+(2)=~g;:“[_)¢f-(;g dr= "2£i_w{”—t;i§" dt
and
1 Q) 1T fittin
(11) O e o vl S = e

Let us note that from the condition (b) of the theorem follows that the
functions f+(z) and f—(z) are uniquely determined in the stripe S(z,) and
that for every z¢ S(z,) holds the equality

(12) [@)=fH=2)—f(2)

After dividing the equation (1) by 2/, we can write it in the follow-
ing canonical form K,yy Yuiy— 17'2Vn+ Ra—ey Yn—y =0, where k,=(2/,)"". By
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using this last form of the equation (1) it is not difficult to derive the cor-
responding formula of Christoffel — Darboux, namely

” A » &
(13) L 3 @K+

{—2z n {—2z

where 1,4 ,(z, 0) {H.(2)K,11(0)  H,+.(2)K,(0)}/21..

In the equality (13) we replace ¢ with z-+4ir,, z with £+i(z,—17), mul-
tiply with—(2ai)~'f (¢ ir), integrate over the interval (- oo, +cc) and
get that

v

(14) (=) = 0a,;(f K (2+it) + R} (2)

where

(15) @ ()= — g | Hilt+isy 0)f (¢ in)dt

and

16) R @)= oy K (et [Tl

H, . \[t+il—0)f (¢

)
z—t+iz dt}

K: (z+ i’o)» 7:

In our paper [2] we have established the following asymptotic formulas
for Hermite functions of second kind namely

(17) Ki2) (- iy +'ay2(2n/e)"? exp| 22/2+iz(2n+1){1+k} (2)}

in the half-plane /At and respectively

(18) K (2) —int'aJ2(2n/e)? exp [ —22/2 —izy2n + 1|{1 + &, (2)}

in the half-plane /7 . The functions {k;(z)}= , resp. {k.(2)}7_, are analytic

in Ht+ resp. H~ and lim, .2 *(2) O resp. lim,_,..k, (2) =0 uniformly on every
compact subset of /7+, resp. H .

In the same paper we derived from the integral representation of Her-
mite polynomials [1, (5.6.4)] an inequality of the kind

(19) Hy(2) = O{(2n/e}"" exp 22+ oy2n + 1]}

on every closed region S(o) (0 6< + ).

Now, let A be an arbitrary compact subset of the stripe S(z,) and

0<d<r<rt, are chosen so that Ac S(s). From the asymptotic formula (17)
we get that

(20) K, (z-+itg) = Of[(2v +2) e] D2 exp[ (g~ 2)) 20 +3]}
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resp.
(21) K} (z+it))=O{(2v/e) exp |- (v, —ON2v+1]}

uniformly for z¢ A.

Since A is compact, there exists L>0 such that |z ¢+it =L ¢ it|
for every z2¢ A and every £¢(— oo, + o). Then, from the inequality (19) and
the condition (b) of the theorem follows that

< H [t+i(zg—2)] f(E—iv) . SR S dt
_Li""iofr’ﬂf —dt— O{(@2v/ey *expl(ro—nW2 11 [ i)
resp.
< H, ([t+i(zg—7)] f(t—i7) . s —— = dt
T U= 0@ ) el exp((ro— 0V 2+3] | i T

— o0

Then, from Stirling’s formula and the equalities (20) and (21) follows that
R}Y(z)- Olexp [—(x—0)}2v+ 1]} uniformly for z¢ A. From (16) and (14) we
can conclude now that

oo

(22) fH(2)- ".:‘0 a(f) K; (z+ix,)

uniformly on A. Similarly, by using the asymptotic formula (21) and also
the inequality (19), we get the expansion

(23) f @ 2 a (K@ ino)

with coefficients @, (f)= —oory | Hilt—i(o— 0)) (t+ix)at.

The Cauchy integral theorem and the condition (b) of the theorem give
further that [ H,(C+iv,)f (g)d::uf )H,,(u—izo) f(de, i. e.
(=) 0

THt —ivtin) f(t idt= | Hit+iz)f (D).
Therefore a*(f)— — ﬂ!—,;-_"f Hi(t +ir,) f (t)dt.

In the same way we get also a, (f)—= —-2;:7 7H,.(t—ir0)f(t)dt.

1) Let f(z) be even in the stripe S(z,). Then, having in view that
Hy( -2) (=1)YHJ(2)(n-0,1, 2,...) we get that a:(f) a)(f) resp.
a,, . (f)—aj,, (f) Therefore, for z¢S(z,) from (12), (22) and (23) it fol-

lows that in this case

@) X a (K ting) - 2 an (K2 —in)



EXPANSION IN SERIES OF HERMITE FUNCTIONS OF SECOND KIND 281
oo ) o
= oa;'( INKG (2 + i) + Kan(z — i)}

+ ,,%oa+ (RKS,, (2+it0) — Kona(2 —ix);

2n+

= 3 a; (/KM 70).
n=0
2) If f(z) is odd in the stripe S(zr,), in the same way we get the
expansion f(2) = X af(f)IKP(z;1,)-
n=0
3) In the general case f(z)=g(2)+#A(z) where g(2)=[f(2)+f(—=2)]/2 and

h(2)=[f(2)—f( 2)]/2, g(2) is even and 4(z) is odd. Moreover, g(2) and /%(2)
satisfy the same conditions as the function f(2),i. e.

@)= 3 a(@K{(ir) and k@)= X ar()KI(;mo)
n= n=0

But H,(—z2)==(—1)"H,(2) as it was mentioned above, therefore

@@= oy > (Halt—ito) +(— 1V Ho(t i)} (D)t
resp.
ar) = g | (Ht+ing) (= 1y H(t =i} f (D)t,

i. e. we get the expansion (7) with coefficients given by (8) and (9) and
thus Theorem 1 is proved.
Using Rodrigues’ formula for Hermite polynomials namely /,(2)
(- 1lyexp2exp(- 2?1, (5.5.3)] we can easily derive another integral
representation for Hermite functions of second kind namely

- n+1 7 exp(_tz)
Ku(2)=(1) n!_il;o(t—z)"+l dt
From the last representation follows immediately that K*}(2)=(— 1)*Ka44(2)

(k—=1,2,3,...). Then as a conclusion from Theorem 1 we get the following
result

Theorem 2. Let f(z) be a complex function satisfying the conditions
of Theorem 1. Then for every k=1,2,3,... and every z¢S(z,) holds the
equality

@) @ S DHPOKD (@ ) +a () KP4z 7))

I (@ (DK w0) +aD (/KD w)

where ab(f)=C 1yal, (f) resp. aD(f)=(—1yaR (f)
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We shall see now that for the coefiicients of the expansion (24) are
valid the following integral representations

(25) @)=~y J At i) (1 HAE i) fRNOE
resp.
(26) an(f)- . _°f° (Hut+i) (V) H(t  ir)} fk)t)dL.

First of all, from the property H(z)--2nH, ,(2)[1, (5.5.10)] follows that
(27) al)(f)= Eiml f {H®(t +ix))+(— 1)"HP(t—ix,)} f (¢)dt.

Let 0<z<7, and y,(f) be the circumference with center at the point ¢
and radius v. Then, using the integral formulas for the derivatives of an
analytic function and also the condition (b) of Theorem 1, we get easily that

k! ¢ IR .
F®() mf(t)~(;1[£;;’;,—; dc‘=—~;f e—*0f (t+zei®)dt — O exp(—t2+rt t )]
if £/ +o0o ( co<t<+o0). Then from (27) after integration by parts we
get (25). In a similar way we find the equality (26).

The integral representations (25) and (26) lead to the idea that Theo-
rem 2 can be obtained as an application of Theorem 1 to the function f'*(z).
We shall see now that such a proof of Theorem 2 is impossible. Indeed, if
an analytic function f(z) satisfies the conditions of Theorem 1, in general
the same is not true for the derivatives f®(z) (k=1,2,3...). An example of
such a function is the following (z+iz,) ' exp( 22).

REFERENCES

1. G. Szego. Orthogonal polynomials. New York, 1959,
2. P. Russev. Hermite functions of second kind. Serdica, 2, 1976, No.2. 177—190.

Centre for Research and Education Received 12. 6. 1975
in Mathematics and Mechanics

1000 Sofia P. O. Box 373



