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CHARACTERIZATION OF B*-EQUIVALENT BANACH ALGEBRAS
BY MEANS OF THEIR POSITIVE CONES

HRISTO N. BOYADZIEV

The complex Banach star algebra #& is called B*-algebra if ||x*x||=| x|} for every
xeA& and B#-equqivalent algebra if it is isomorphic and homeomorphic to a B*-algebra. It is
well known, that in a B*-algebra (and hence in a B*-equivalent algebra) the set K of all self-
-adjoint elements with non-negative spectrum is a cone (K+KcK, AKcK for 2=0 and
K n —K={0}). Our aim is when given a partially ordered Banach algebra #& with positive cone

K to impose on K some conditions, necessary and sufficient for # to be a B*-equivalent star
algebra. Necessary and sufficient conditions for a Banach star algebra to be symmetric and to
be B*-equivalent are given.

1. Throughout this part # will be a complex Banach star algebra with
norm ||.!|, spectral radius ¢ (.), continuous involution x-—x* and for x¢#
we denote by Sp(x) its spectrum. Let A be the set of self-adjoint elements
and K the wedge K—{z|z=2%_1xx,, X €4 1=k n} (evidently K+KCK
and AK C K when 1 -0). We shall consider only algebras with a unit, so let
e be the unit of 4. Also let P—{f|f a positive linear functional on £ and
f(e)=1} and Extr P—the extreme points of P.

Let p(.) be a real function defined on the wedge K with the properties:

1) p(Ax)=4p(x) when >0 and x¢K.

2) p(x)=p(x+2) when xz 2x, x, 2¢K.

If p(.) is such a function, it follows from 1) that p(0)—p(0.0) -0p(0)=0
and from 2) with x—=0 and z¢ K that 0-=p(0)<p(0+2)=p(2). So p(.) is non-
negative on K. Let x¢ K. We take ¢>0, t<<o(x)™! (when ¢ (x) is zero, ¢(x)~!
means co). There exists y¢H with e—fx=y?% i. e. e—-ftx+y* and we have
according to 2) and 1) p(tx)—ple), p(x)=t 'p(e). Let now f—p(x)~1. We
obtain p(x)=o(x)p(e). So if p(e)=0, then p(x)—0 for every x¢ K. For the next
lemma we consider p(.) normed p(e)--1.

Lemma 1. Let x¢ K. There exists f¢ P, f(x)— p(x) (and if f(z)<p(2) for
every z¢ K and f¢ P, then f can be chosen from Extr.P).

Proof. Let L={z|z=ie+ux, i, u¢ R} (R—the set of real numbers). Evi-
dently L is a real linear subspace of the real Banach space /. For z=1e + ux¢t L
we define f(z)=A+up(x). We obtain thus a linear functional f on L. We'll
show that for z¢ LN K, f(z)=0. Let z=1e+ux¢LNK. There are four possi-
bilities :

a) A0, u -0. Then i+ up(x)—f(x)—0.

b) <0, u==0. Then ux=—1le+z and from 2) and 1) it follows p( ie)
= — A= pux)—=up(x), A+up(x)0.

¢) 120, u<<0. Then de= —ux+2z, p(—ux) — —up(x)<p(ie) -2, A+ up(x)=0,
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d) <0, u<0, 0= ie—ux+z, A=0 because O0=—p(—ie)=—21=0. This
case is impossible.

We use now a well known theorem to extend f from L to /H as positive
linear functional.

Theorem ([1, theorem 2.5.2)). Let X be a real linear space partially ordered
by the wedge N. The linear functional f on the linear subspace M T X can
be extended as linear and positive on X if for every u¢ X there exists ve M
with v —u¢ N and if f(u)==0 for ue MNN.

In our case if y¢ /A and £>||y || then e—¢7' y=22 with z¢ H,sote—y €K
and fe¢ L.

With H=X, L=M and K=N we apply the theorem. (We can also extend
f directly with the Zorn’s lemma.) As every z¢#4 is represented uniquely
z=a-+ib,a, be¢ H(a—(z+2%))2,b—(z—2%)/2i), we extend f to & (f(z)=f(a)+if(b).
Evidently f¢ P and f(x)=p(x).

If f(z)<p(2) for every fc¢P and z¢ K, let P,={f!feP, f(x)=p(x)}. This
set is convex and compact in the weak topology (pointwise convergence). As
P, is non-void, the set of its extreme points Extr P, is also non-void accord-
ing to the Krein-Milman’s theorem. One can easily see that Extr. P,C Extr P,
so if f¢ Extr P, and f-+ 0 then f¢Extr P. The proof is completed.

With this method a more general lemma can be proved.

Lemma la. Let X be a partially ordered normed real linear space
with positive wedge K and let p(.) be a monotone increasing real function
on K(p(x)=p(y) when 0-—x-y) with p(ix)=ip(x), x¢ K, A—-0. Let X has an
order unit e. Then for every x¢K there exists a positive linear functional f
on X with f(x)=p(x) and f(e)=p(e).

If & is commutative and B¥* then the norm ||.|| is monotone increas-
ing on K.

Proof. [3] a) If x, y€H, then | x2/=|x2+y?|. We have x—(x+iy)/2
F(x—iy)/2,andso | x| < x+iy /24| x—iy /2= x+iy| (|2* | = | 2| x|

| x|2= | x+iy |2= || (x+iy) (x—iy) | = || x*+ y2].

b) If u,v¢H, there exists w¢H with u?+ov2=w?% Let u, v¢H and
O<t<min(||lul[-" ||7| ). Then| (tu)?| = || tu!2<1,||(fv)?||= | tv|2<1 and there
exist x, y¢ H such that e—#u?-—-x2, e —f20®=y2 According to a) || x% /=1 and
Il ¥||=1 hence | e—(f2u2+£1?)/2|=| e—t? |/2+| e—¢t?2?| /2=<1, and so
(f2u2+120?)/2 — 22 for z¢ H. Take w—\2 z/t.

As for every X€#A x*x=u?+7® (u—(x+x%/2, v=(x—x%)/2i¢ H), every
z¢ K can be represented in the form z--a? with a¢ /. According to a) for
every x, y¢ K we obtain || x|-=| x+y|. (It is shown later that if in the non-
commutative case the norm is monotone increasing on K, then #£ is B*-equi-
valent.)

Now according to Lemma 1 and to the fact that every f from Extr P is
multiplicative, for every x¢s we obtain a multiplicative linear functional f
with £ (x*x)-|| x*x |l. Now f(x"x)=f(x*) f(x) = F(x) f (x) = | f (x) 2= || x* x]| =]| x 2.
Finally: f(x)| | x||. This gives the isometry in the Gel'fand’s representation
of #, which is the main point in the proof the Gel’fand-Naimark theorem.

This method can be applied to real commutative Banach algebras to-ob-
tain a classical result:

If A4 is a real commutative Banach algebra with unit ¢ and || x|]2< || x2+ y?||
(it follows ||x?| = x| and | x?| <[/ x®+y2?|)) for every x, y¢ #, then for every
x ¢ A there exists a multiplicative linear functional f with |f(x)|=| x| This
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gives the isometrical isomorphism on Cgx(A) — the continuous real functions on
A-—{f f multiplicative and linear on #}. In this case positive linear functionals
are those linear functionals f for which f(22)=-0, z¢ A4 and the extreme points
of the set P—{f|f positive, linear on #4 and f(e)=1} are multiplicative. (See
also [3] where f¢ Extr P is obtained otherwise.)

Let us now see when the spectral radius o(x)— lim, || x"||'# (who has the
property | f(x)|<o(x), f¢ P, x¢ H) is monotone increasing on K.

Lemma 2. In #& the condition

2a) o (xY)—o(x2+y?), x%y?—y2x% x,yeH

is equivalent to symmetry.

Proof. If 4 is symmetric ((e+a*a)~' exists for every ac¢#), ther. 2a)
follows from [2,4.7.12.], [4, V. 37.6.] which states that if # is symmetric, then
for every self-adjoint x¢#A
*) o(x)— sup {|f(x) | |f ¢ Extr P}.

Conversely, let o(x?)=o(x2?+ y?) when x2y?=y%x%.x, y¢ f{and let a¢ H, a®2+0
and 0<f{<| a@?| ' There exists y¢/H with e—fa*-y? i e. e=y?+fa® From
2a) o(e—ta?) =o(y?- - 1<1+¢ and o((1+¢)~te—£(1+£)'a?) <1. Then

e—[(1+8)~te—t(1+8) 1a®]=H1+1) " (e+a®)
is invertible, so e+a? is too. (In fact we need only o(y? =1 when e=y24 x2.
with x¢ A, yeH and y2x*—x2%y2) So every x¢ /1 has real spectrum according
to (2, 4. 1. 7., p. 184]. Now A is symmetric according to the Shirali-Ford’s the-
orem [6].

Remark 1. In fact 2a) and 2) (from the first page, with o(.) instead of
p(.)) are equivalent (2) — 2a) is trivial, and 2a) — 2) without xz=2zx according
to the symmetry of 4 and (*

We consider now the norm [ 1] (| flx) =]| x|| for f¢ P and x¢ P and x¢ H).

Lemma 3. If in £

2b) | x?| = x2+4+y?|, x2?=y2x? X, y¢H then A is symmetric and for
every x¢H with non-negative spectrum o(x)=| x||.

Proof. Let a¢ H, a?+40 and 0<{<|| a?||~'. There exists y¢ H, e—ta?=y?,
i. e. e=y2+ta®. We obtain ¢(e—ta?)||e ta®|=1<1+£. The proof continues
as in Lemma 2 and we obtain that e-+a? is invertible, so # is symmetric.

We will see now that the norm is monotone increasing on K (the condi-
tion 2) with ||.|| instead of p(.)). Let x, 2¢ K and xz=2zx. The elements of K
have non-negative spectrum [2, 4.7.10.], so if 6>0, Sp(x+ce) - Sp(x)+e>0,
Sp(z+e€)>0 (Sp(y)>0 means i>0 for every i¢Sp(y)) and hence there
exist a, b¢ H with a2 x+ee, b2 z-+ee [2,4.7.2.) Evidently a26?--b%a2, so
according to 2b) we have ‘[x+se |S|,x+z+24se] Letting ¢ —0 we obtain
||x{|=||x+2z]. As .|/ is monotone increasing on commuting elements of K
and |ix||=|1| ]xh then | x| -—=o(x) for every x¢ K (proved for p(.) at the
beginning). The inverse inequality also holds, so || x| - o(x) for every x¢K.
If now x¢ A and Sp(x)=0, we have Sp(x-+ee)>0 for £>0 and x+ee — a* with
a¢ H. Now || x+ee|? '(x+ee) o((x+ee)?) | (x+ee)?| =| x2+2ex+ee||. Let
e —0. We obtain |x|2=| x?||. As this holds for every x¢ /H with Sp(x)=-0,
then |z | —o(z) for every such element (|z |- |22|V2=| z¢| = | 22"
= -+ = lim, || 227 || V¥ g(2)). Now 2) holds for | .| without xz-zx.

Remark 2. If in the inital Banach symmetric star algebra # for every
self-adjoint element x with non-negative spectrum we have || x||-~ao(x), then
|| z]|= (2a+1) o(2) for every seli-adjoint element z.
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Prooi. Let z be self-adjoint and e be the unit of 4. Then Sp(o(2)e+2)
—0(2)+Sp(2) -0(Sp(z)cR), | zll=lz+e (@) el|+e(2)e]| =ao(z+o(2)e)+e(2)
<(2a+1)0(z). Now we can state the theorem:

Theorem 1. Let £ be a complex Banach star algebra with continuous
involution x — x* and unit. Then the following conditions are equivalent:

a) The algebra # is symmetric and o(x)=| x| for every self-adjoint
element with non-negative spectrum.

b) /n & 2b) holds (see lemma 3).

c) The algebra # is B*- equivalent (the norm|| .| is equivalent to the B*
norm |., | x|=o(x*x)'2 for x¢#&) and o(x)=| x| for every self-adjoint ele-
ment with non-negative spectrum.

Proof. According to lemma 2, a) implies b), and b) implies a) according
to lemma 3. Evidently c) implies a).Now a) together with the above Remark-
2 implies c) according to the following theorem of Horst Behncke [5]:

If # is a complex unital Banach star algebra which is symmetric and
| x||=Bo(x) for every x self-adjoint, then # is B*-equivalent (the norm ||.||
is equivalent to the B*-norm |x|=p(x*x)"?).

(That in a symmetric algebra | x|=o(x*x)"? is a B*-semi-norm was prov-
ed by Ptak [4], and it is easy to see that ||.|| and .| are equivalent when
a) holds.)

2. We consider now partially ordered Banach algebras.

Theorem 2. Let &£ be a complex Banach algebra with unit e which
is a partially ordered complex linear space with positive cone K such that
if we denote H-=K—K:

a) If x¢H, then x*¢ K. i

b) The cone K is generating, i. e. A—H-if.

c) The norm is monotone increasing on commuting elements of K, i. e
|x||=||x+z| when xz=zx, x, z¢ K.

d) The algebra £ is semi-simple.

e) If a, b¢ H, then i(ab—ba)¢ H.

f) HniH={0}.

Then a continuous involution x — x* can be introduced in #, so that it be-
comes B*-equivalent and H={x|x=x*, K={x|x=x*Sp(x)=0} and
o(x)=| x| for x¢K.

Conversely: If & is B*-equivalent and o(x)=| x| for every self-
adjoint element with non-negative spectrum, then for H-—{x|x=x%},
K={x|x=x* Sp(x)=0} we have that K is a cone, H=K—K (this is
well known) and the above conditions a) — f) hold.

Proof. If a, b¢ H, then ab+ba—(a+b)* —(a®+b?) is also in H according
to a) and the fact that /7 is areal linear subspace of 4. According to b) and
f) every x¢sA has an unique representation x-—a-+ib with a, b¢ H. Now
X=a-+ib— x*=a—ib, a, b¢ H is an algebraic involution [4, 1. 12. 7.}, which
is continuous, as # is semi-simple (a result of Johnson [4]). The algebra A
becomes a star algebra with continuous involution and / is obviously the
set of self-adjoint elements.

Now if x, y¢ H and x2y?=y2x? we have according to c) that || x?||<| x*+y?|.
Applying theorem 1 we obtain that A is B*-equivalent with B*-norm
x| —o(x*x)? and || x||=e(x) if x¢/H and Sp(x)=0.

If x¢ H and Sp(x)=0, there exists u¢ H, u®>=x so x¢K. Conversely, if
x €K, e4x is invertible (as in lemma 3), so every x¢K has non-negative
spectrum.
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To prove that A is B*-equivalent we needed in fact only:

cl-|| x?||<| x2+y?|| when x2y2=3y2x? x, ye¢H

But with cl) only K> {x|x¢H, Sp(x)=-0}.

Conversely: If £ is B*-equivalent and H={x|x=x*}, K={x|x=x%
Sp(x)=0}, it is well known that K is a cone, /=K—K and a), b), d), e), f)
hold. If o(x)= ||x|| for every x¢ K we obtain c) using theorem 1 and lemma 3
in which we proved that the norm is monotone increasing on K. The proof
is completed.

In the same way, with the help of lemma 2 we can prove the following
theorem:

Theorem 3. If £ is a complex unital Banach algebra, and a partially
ordered complex linear space in the same time, with positive wedge K, such
that if we denote H-—-K—K the conditions a), b), d), e), f) from theorem 2
and also:

¢'") The spectral radius is monotone increasing on commuting elements
of K (o(x)<o(x-+2) when xz=-zx, x, z¢ K holds), then a continuous involution
X — X* can be introduced in # so that it becomes a symmetric Banach star
algebra and H={x|x- x*}, K={x|x=x*, Sp(x)=0}.

The converse is also true (except d)).

Remark 3. We needed £ to be semi-simple in the above theorems (con-
dition d)) only to obtain continuity of the involution. It can be replaced with
any other condition giving that continuity. For example, if /1 is closed (which
is so, if K is closed), the involution is continuous [4, V. 36.1.]. (In this case
the converse is also true — if £ is symmetric, K is closed according to a
recent result of Aupetit about continuity of the spectrum in symmetric
algebras.)

A theorem similar to theorem 2 can be proved, if c) is replaced with the
condition:

¢y If x,z¢ K and xz - zx, then || x| = a|]x+zl| (a —a constant). (If K is
a normal cone, this follows.) The proof will appear in another paper.

(So we can drop c) and d) if K is a closed normal cone. The converse
is also true — if A4 is B*-eguivalent, the set of all self-adjoint elements with
non-negative spectrum is a closed normal cone.)
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