Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

EXTENSIONS OF A FUNCTIONAL LIST PROCESSOR
GEORGI I. POPOV

Extensions of a functional list processor are proposed, discussed, and specified on the
WISP language. The processor itself is the HELP processor and its principles, workings, and
machine-independent implementation are described in Weite (1973). The extensions are sup-
posed to widen the application field of the processor, to facilitate the programming of so-
phisticated problems, and to allow for the execution of large programs in a memory limited
a size.

1. Introduction. A prototype of the HELP processor is LISP, but more
natural external notation of the procedures is adopted and some of the featu-
res are restricted. Brief notes regarding some of the HELP characteristics
would be useful to provide a basis for the explanation of the extensions pro-
posed.

In HELP a notational distinction is made between constants and variab-
les. A HELP constant is an atom defined as any string of letters, digits and
asterisks, the first being an asterisk. A HELP variable is defined similarly «x-
cept that the first character must not be an asterisk. The variables are used
as names of functions or bound variables in function definitions.

A HELP program is a set of symbolic expressions to be evaluated. The
syntax of the HELP expressions can be found in [I].

The functions form the heart of the HELP processor. There are five built-
in functions:

the selectors CAR(e) and CDR(e),

the constructor CONS (e,, e,),

the predicates ATOM(e) and NULL(e).

All other functions used must be defined by the user. They permit the
problem to be divided into components while programming is going on, but
the evaluation of an expression is an indivisible process. Any problem should
be formulated in one expression only and all input data must be supplied with
that expression. Sometimes this is not so convenient. Moreover, if the avail-
able memory is not sufficient for the evaluation of an expression correspond-
ing to a complex problem the problem has to be divided into several parts.
These parts are to be programmed with different expressions. Since a data transfer
between expressions is not possible, several completely independent runs of the
HELP processor are necessary, because the HELP processor has no explicit
storage for temporary allocation of intermediate results.

In the proposed modified HELP version such an explicit storage is pro-
vided. A result produced by one expression could be used by others. Thus,
the user’s HELP program becomes an ordered sequence of expressions.

2. Global variables and assignment statements. For the purposes of data
trans er between expressions, a special global type of a variable with corres-

SERDICA Bulgaricae mathematicae publicationes. Vol. 3, 1977, p. 94 - 105,

95

FUNCTIONAL LIST PROCESSOR

ponding notational distinction is introduced. A global variable is represented
by any string of letters, digits and asterisks, beginning with & Examples of
global variables are:

& GV1
& 155
& THIS #1S = A « GLOBAL = VARIABLE

The value of any global variable can be an atom, a list, or remain unde-
fined in some cases. A global variable dictionary isused to associate the names
of the global variables with their values. This dictionary provides the explicit
storage mentioned above.

The global variables could be used as primaries in the HELP expressions.
An assignment statement is added to the HELP syntax to assign values to
the global variables. The left part of the assignment statement must be a glo-
bal va iable and the right part could be any type of expression. The value
computed by one expression and assigned {o a global variable could be used
in another expression as a value of a primary. Hence, the syntax of HELP is
extended with a global variable and an assignment statement. The modified
HELP becomes more like a conventional programming language.

The global variable dictionary is addressed by the base register G. This
register must be reset at the beginning of a program execution.

A—=NIL, F=NIL, G-—=NIL. X HELPQ Q@ @2

The character X before the sequentional number of a line (for example,
X HELPY()(@®2) means that the line of the source WISP text of he proces-
sor HELP with that sequentional number is changed. When an insertion is
made, a digit instead of X is put to indicate the index number of the insert-
ed line.

The original HELP subroutine FINPUT is modified to pick up the global
variables.

TO GVAR IF (CHAR)-'& 1 HFLP(478
GVAR, USE NEXTCH, USE READST. 2 HELP()515
D-'G, M -'X, USE LOOKUP. 3 HELP(3515

TO BAKG IF CDR Y NE NIL. 4 HELP(®515

Z - NEW ELEMENT,CDRY Z. 5 HELP(3515

CAR Z-NIL, CDR Z-S. 6 HELP()515

BAKG, Z—2@, EXIT FINPUT. 7 HELP(@515

The syntax type of a global variable is assumed to be 2¢). After recog-
nition of a global variable the control is transferred to the label ASST where
a check up for an assignment statement is performed.

TO ASST IF Z- 2. 1 HELP@®5Q
ANALYZER FOR ASSIGNMENT STATEMENT 16 HELPQ Q8%
ASST, TO ASST2 IF (CHAR) ", TO EX. 17 HELPQ (8D
ASST2, H- CDR Y, USE FINPUT. 18 HELPQZ8
TO ERR25 IF Z NE 19. 19 HELPD 8%
PUSH DOWH T, CAR T ASSTI, TO REX. 2 HELPG 8D
ASST1, X NEW ELEMENT. 31 HELPO B8
CAR X117, CDR X=CAR R. 22 HELPD 8D
CAR R X, POP UP T, TO CAR T. 23 HELPQ 82
ERR25, 1-'2, 2—'5, TO ERROR. 2 HELPOQTQ

96 G. L. POPOV

If a left part of an assignment statement is not identified, the recognized
global variable is a primary. The expected construction is an expression and
the control is transferred over to the label EX. Error 25 is signalled when an
assignment statement is expected but the left-hand part global variable is not
followed by an assignment operator.

For the execution of an assignment statement the following WISP lines
are added:

EVALUATION OF AN ASSIGNMENT STATEMENT 1 HELP(272

L17, PUSH DOWN T, CAR T--L171. 2 HELP272
E=CDR E, TO CAR E. 3 HELP)272
L171, CAR H=CAR R. 4 HELP »272
POP UP T, TO CAR T. 5 HELP®?272

The value assigned to a global variable can be an atom or a list. This
value is obtained by evaluation of the right-hand side expression.

When a global variable is recognized as a primary, it must be analyzed
by the' analyzer for primaries. For this purpose the followinglines are inserted:

TO PR2» IF Z 20p. 1 HELP(»147
PR2¢», Y CDR Y, TO PR21 IF CAR Y NE NIL. I HELP(»158
1-'2, 2--'6, TO ERROR. 2 HELP)158
PR21, Y- CAR Y, USE GVCMP, TO PR3. 3 HELP®158

Error 26 is printed out when a global variable used as a primary has an
undefined value. The subroutine GVCMP serves for compilation of a global
variable into the accepted intermediate form and could be considered as an
analyzer for global variables. A special subroutine for evaluation of a global
variable, used as a primary, is not necessary because the global variables are
compiled as atoms or lists and they are evaluated by the appropriate subrou-
tines.

3. Deletion of global variables and function definitions. During the exe-
cution of the user’s programs some of the global variables could become not
necessary any longer. Deletion of the name and the value of a global variable
from the G-dictionary is provided by applying the subroutine DELETE. Dele-
tion of a function definition is provided too, which permits to release memory
when a function definition is no more necessary. The user might add to his
program the following new HELP operators :

DEL global-variable-name;

DEL function-name .

After deletion of a function, it could be defined again. If the implementor
wants to prohibit the redefinition of a function before the DEL operator is
applied, the HELP() (/55 line of the WISP text of the processor HELP must
be changed:

TO ERRI19 IF CAR P NE NIL. X HELP® /55

For the deletion of a global variable and a function definition the follow-
ing WISP operators are. inserted :

TO DLT IF Z 21. 2 HELP A5
DLT, USE FINPUT, P - CDR Y. 1 HELP Y8)
TO DLTF IF Z - 3. 2 HELPO)8

FUNCTIONAL LIST PROCESSOR 97

TO ERR24 IF Z NE 2. 3 HELPQ 8D

D 'G, TO DLTC. 4 HELPQO 280
DLTF, D 'F. 5 HELPQ B8
DLTC, USE DELETE, USE FINPUT. 6 HELP3 08D

TO L1 IF Z NE @9, TO NPRINT. 7 HELPQ 38D
NPRINT, (NIL)- &1. X HELPQO(A77
ERR24, 1='2, 2 '4, TO ERROR. 1 HELPOQTD

HELPQ(»77 line must be changed to provide printing of the deleted ele-
ment name. When an attempt to delete another element except a global vari-
able or a function definition is done, error 24 is printed out. To delete a func-
tion definition the following changes into the subroutine FINPUT are made :

TO FUNC IF (CHAR) ;. 1 HELP55
BAKF, Z 3, TO NOCH IF (CHAR) (. XHELP®»515
EXIT FINPUT. 1 HELP(®»515

4. Segmentation and batch processing. An attempt to avoid the difficul-
ties in the external memory usage in the list processors is carried out. A pos-
sibility for execution of large programs in a limited core memory only is
proposed. The problem to be programmed could be divided into consistent
parts. The transmission of data between them is to be performed by means of
the introduced global variables. These parts could be considered as segments.

At the beginning of the HELP working the built-in functions must be sav-
ed. The stack N and subroutine STODEF are used for that purpose.

N NEW ELEMENT, CAR N=NIL, CDR=NIL. 1 HELPQ @12
USE STODEF. 1 HELPA %19
USE STODEF. 1 HELP()24
USE STODEF. 1 HELP %29
USE STODEF. 1 HELP (%34
USE STODEF. 1 HELP (539

A signal to open a new segment is the inserted into the user’s program
new HELP operator
SEGM;
SEGM is a reserved word. When it is identified, Z is set to 22 which is

the internal number of that syntactical element. The control is transferred to
the analyzer for seg nent.

TO SEGMPR IF Z 22 3 HELPQ@ Q50
ANALYZER FOR SEGMENT 1 HELPQ $87)

SEGMPR, TO L731 IF (CHAR) NE ;. 11 HELPQ 8
F NIL, W=N. 12 HELPO (M8

RESTOF, USE FETDEF, TO RESTOF IF CAR W NE NIL. 13 HELP A8
Z 'X, CAR Z 'Y, A=NIL 14 HELPO)8

Y- G, USE DICSCAN, TO SEGMC. 15 HELPO)®87

The function dictionary F is reset and the built-in functions only are co-
pied into it again. This is performed by the subroutine FETDEF. The subrou-
tine DICSCAN is used to scan the global variable dictionary G and to purge
out the atom dictionary A. Only the atoms, used into the values of the global
variables, are copied into the previously cleared A-dictionary. The control is

08 G. I. POPOV

transferred to SEGMC and the execution of the next segment is initiated.
SEGMC, Q NEW ELEMENT, CDR Q NIL. X HELP) /42
It is advisable to delete all unnecessary global variables before a segmen-
tation call.
A possibility for a batch processing of user’s programs is provided by
the new HELP operator

PROG;

The names of the atoms TRUE and FALSE and the built-in functions
must be defined at the beginning of every user’s program as described in [1].
The card with these names must follow the card with the PROG operator.

The following additions and changes in the HELP processor are done:

TO PROGPR IF Z - 23. 4 HELPO QD5
ANALYZER FOR PROGRAM 8 HELP) ()8
PROUPR TO L)1 IF (CHAR) NE 7;, TO PROGC. 9 HELP Y)8
PROGC, USE INITL. X HELPO 1

5. Insertions into the reserved word dictionary. The reserved words DEL,
SEGM and PROG are inserted into the reserved word dictionary BASIC. The
following element definitions are used :

B7, ELEMENT % @ B71 BS. X HELP 2641
BS, ELEMENT (30 /() B81 B9. 1 HELP %641
B9, ELEMENT 0 (A B9l NIL. 2 HELP 64!
B23, ELEMENT %) (A5 B231 B24. X HELP 648
B24, ELEMENT (5 (5 B241 NIL. X HELP)649
B231, ELEMENT 3% (») 'F B232. 1 HELP)649
B232, ELEMENT (/) (A NIL 12. 2 HELP 79649
B241, ELEMENT) (A5 'L B242. 3 HELP 649
B242, ELEMENT % (53 NIL 21. 4 HELP)649
B81, ELEMENT (3% A5 'S BS2. I HELP)673
B82, ELEMEMT (% (A5 'E BS3. 2 HELP 673
B83, ELEMENT () (A 'G BS4. 3 HELP)673
B84, ELEMENT A% (A5 'M BS5. 4 HELP()673
B85, ELEMENT (3 (A5 NIL 22. 5 HELP)673
B91, ELEMENT Q) A% 'P B92. 6 HELP)673
B92, ELEMENT A (35 'R B93. 7 HELP()673
B93, ELEMENT A0 (A 'O B94. 8 HELP()673
B94, ELEMENT 0 ()% 'G BY5. 9 HELP()673
B95, ELEMENT () (3 NIL 23. 17 HELP673

6. Implementation of integer arithmetics. Non-numeric data processing
problems often involve integer arithmetics to a certain extent. Thus, an imple-
mentation of integer arithmetics in HELP is necessary. It is carried out by
means of built-in functions. The predicate INTEGER is used to check if a
given atom is an integer. The one-argument function MINUS and the two-
argument functions SUM, DIFFERENCE, PRODUCT, QUOTIENT and REMAIN-
DER perform the arithmetic operations implicated by their names. Six built-in
functions relating integers are added as well. They are the predicates EQ, NQ,
GT, GE, LT and LE. Their values TRUE or FALSE could be used for condi-
tional transfer of control.

FUNCTIONAL LIST PROCESSOR 99

An integer in HELP is any string of digits possibly beginning with a plus
or a minus sign an always preceded by an asterisk. Examples of integers are
%1976, =—796, =— ()) »5. T'he integers are atoms and are stored in the atom
dictionary A. The plus and minus signs are inserted into the atom character

set of the HELP processor. The identifier character set is not changed.

ATOM, W='X, USE NEXTCH, USE READST. X HELP(491
IDFN, W - NIL, USE READST. X HELP)5)1
TO IFID IF W NE ’X. 1 HELP»561
TO LOOP IF (CHAR)—'+. 2 HELPZ561
TO LOOP IF (CHAR)="—. 3 HELPX561
IFID, TO LOOP IF (CHAR)=letordig. X HELP562

When an arithmetic built-in function is to be computed, its arguments are
sent to the IOCS where the arithmetic operations are actually performed. The
result computed is sent back. In the case of the implementation on the FACOM
230-45S the decimal arithmetic operations of the ¢ mputer are used. So the
restrictions which these operations impose on the operands are valid for the
arguments of the implemented built-in functions. If an argument is not accept-
ed, an appropriate message is printed out by the IOCS. This way of imple-
menting integer arithmetics depends on the computer used, but there are many
inachine-independent aspects of the problem which will be specified on WISP.

The arguments and the results could be transferred between the HELP
and the IOCS character by character through a buffer provided in HELP and
accessible both from HELP and from IOCS. For that purpose the following
lines are inserted in the HELP and WISP files.

BUF, ELEMENT @0 OO0 Q0 2. 1 HELP 7676
BUF EQU ZBUF& 1 WSPM7223
In that case the storage area of the element BUF will be accessed from
the IOCS under the name of ZBUF.
Several subroutines are added to the IOCS. The control is transferred to
them by a WISP operator of a new type with an immediate parameter:

CALL &.

The CALL operator has to be translated as a subroutine call or as a re-
turn-jump instruction. This must be provided in the WSPM file.

The 1 CS subroutines SND and RCV are used for a character transfer
between HELP and 1OCS. The subroutine INDRESET is used to reset certain
conditions in IOCS before sending an argument to IOCS or receiving a re-
sult from [OCS. In IOCS the arguments are transformed from internal HELP
processor code to a representation suitable for execution of the desired ope-
rations. This is performed by the subroutines SHFI and SHF2 for the first
and the second arguments respectively. The operations are triggered by calls
to appropriate subroutines in IOCS: MINUSF, SUMF, DIFF, PRODF, QUOTF,
REMDF, EQF, NQF, GTF, GEF, LTF, and LEF. The results are transformed
to internal HELP processor code before sending them back to HELP.

The HELP predicate INTEGER differs from the other functions and could
be specified on WISP code only.

LL16. EVALUATE THE BUILT-IN FUNCTION INTEGER 1 HELP(»471
Z CAR R, POP UP R. 2 HELP()471

100

L161,
L163,

L162,

TO L321 IF
TO L142 IF
TO L162 IF
TO L162 IF
TO L142 IF
Z CDR Z.
TO Li1e6l IF
TO LI141 IF
TO L142 IF

G. I. POPOV

CAR R NE 'F.

CAR Z '+
CAR Z '—.
CAR Z NE digit.

CAR Z digit.
CAR Z NIL.
CAR Z character.

Z=CAR Z, TO L163.

Z=CDR Z.

L164,

TO L161 IF CAR Z-digit.

TO L142 IF CAR Z—=NIL.

TO L142 IF CAR Z

character.

Z—-CAR Z, TO L164.
The insertions into the HELP processor for the other integer arithmetics
functions follow :

L2GSF.

L25F.
L26F.
L27F.
L28F.
L29F.
L3QF.
L31F.
LVRES,
NILVAL,
NONATOM,

NONINT,
ARGNUMB,

ONE-ARGUMENT FUNCTION MINUS

Z- CAR R, POP UP R.

TO ARGNUMB IF CAR R NE 'F.

TO NONATOM IF AF Z-—=).

USE SENDING, CALL SHF1.

CALL MINUSF, USE RESRCV.

BUILT-IN FUNCTION SUM

USE ARGSND, CALL SUMF, USE RESRCV.
BUILT-IN FUNCTION DIFFERENCE

USE ARGSND, CALL DIFF, USE RESRCV.
BUILT-IN FUNCTION PRODUCT

USE ARGSND, CALL PRODF, USE RESRCV.
BUILT-IN FUNCTION QUOTIENT

USE ARGSND, CALL QUOTF, USE RESRCV.

BUILT-IN FUNCTION REMAINDER

USE ARGSND, CALL REMDF, USE RESRCV.

BUILT-IN FUNCTION EQUAL

USE ARGSND, CALL EQF, TO LVRES.
BUILT-IN FUNCTION NOT-EQUAL
USE ARGSND, CALL NQF, TO LVRES.
BUILT-IN FUNCTION GREATER

USE ARGSND, CALL GTF, TO LVRES.
BUILT-IN FUNCTION GREATER-OR-EQUAL
USE ARGSND, CALL GEF, TO LVRES.
BUILT-IN FUNCTION LESS

USE ARGSND, CALL LTF, TO LVRES.
BUILT-IN FUNCTION LESS-OR-EQUAL
USE ARGSND, CALL LEF, TO LVRES.
TO L141 IF (BUF)-'1, TO L142.

2 'A, TO FAIL.

2='B, TO FAIL.

2 'C, TO FAIL.

2-'D, TO FAIL.

M'—‘QLDOO\lO'ZCﬂAQJ

—— i —
N OO e W

18
19

2
21

23
23
24
25
26
27
28
29

3
31

32
33
34
35
36
37
38
39

HELP %471
HELP 471
HELP($471
HELP (7471
HELP (%471
HELP (471
HELP %471
HELP()471
HELP 471
HELP$471
HELP(%471
HELP 471
HELP(»471
HELP %471
HELP (%471

HELP(»471
HELP(»471
HELP 5471
HELP&471
HELP»471
HELP(471
HELP (5471
HELP (3471
HELP (471
HELP (3471
HELP®471
HELP()471
HELP (471
HELP®471
HELP (3471
HELP(»471
HELP(®471
HELP®471
HELP($471
HELP(®471
HELP (471
HELP471
HELP®471
HELP 5471
HELP($471
HELP (471
HELP®471
HELP®471
HELP($471
HELP(®471
HELP()471
HELP(»471
HELP(®471

FUNCTIONAL LIST PROCESSOR 101

The HELP subroutine SENDING is used to send an argument of a built-
in integer arithmetics function to the IOCS. The one-argument function MINUS
uses SENDING directly. The HELP subroutine ARGSND is used to send the
two arguments of the other built-in integer arithmetics functions to the IOCS.
ARGSND uses SENDING as a subroutine. The HELP subroutine RESRCV is
used to receive a result back from the IOCS.

The value set in the element BUF as a result of the execution of the
built-in relational functions EQ, NQ, GT, GE, LT, and LE is one for TRUE
and zero for FALSE.

Several interpreter errors can be recognized and indicated during an exe-
cution of an integer arithmetics built-in function.

ERROR A — An argument has a NIL value
ERROR B — An argument is a list

ERROR C — An argument is not an integer
ERROR D —Incorrect number of arguments

The approach towards the integer arithmetics implementation described
does not imply principle changes in the original HELP processor. The execu-
tion time of the built-in functions is comparatively long, but the arithmetics
facilities of the non-numeric processor HELP are to be considered auxiliary.

7. Subroutines added to the HELP system. The WISP text with com-
ments of the subroutines added to the HELP system follows.

The subroutine NAMESCAN is used to copy into a linear list a name of
a dictionary entry. On entry, the base register Y has to point to the first cha-
racter of the name. On exit, the base register S will point to a linear list, re-
presenting the desired copy of the name. Both CAR and CDR fields of the
last element of list S will contain NIL. X and Z are auxiliary pointers. The
test for a letter, or a digit, or a space is represented by the incorrect WISP
operator TO NLDS IF CAR Y-let-dig-sp.

ENTRY NAMESCAN.

S=NEW ELEMENT, Z S. Form the list S
NSCAN, TO NEND IF CAR Y - NIL. Test for end of name
TO NLDS IF CAR Y - let-dig-sp. Test for let-dig-sp
Y=CAR Y, TO NSCAN. No, it is a branch point
NLDS, X=NEW ELEMENT. Yes, get new element
CAR Z=CAR Y, CDR Z X. Copy a character
Y-—=CDR Y, Z—CDR Z, TO NSCAN. Prepare next checking
NEND, CAR Z=NIL, CDR Z=NIL. Set the last element

EXIT NAMESCAN.

The subroutine STODEF is used to save a function definition. The sub-
routine FETDEF serves to restore a definition saved. N is a stack. Z and W
are auxiliary pointers.

ENTRY STODEF.

PUSH DOWN N, CAR N CARY. Save the value
Y- CDR Y, USE NAMESCAN. Get the name
PUSH DOWN N, CAR N S. Save the name

EXIT STODEF.
ENTRY FETDEF.
Y CAR W, USE NAMESCAN. Get the name

The subroutines
the G-dictionary and restore
form the values of the global

G. 1. POPOV

D-="F, M- 'X, USE LOOKUP.

Z NEW ELEMENT,CDRY - Z.

Y CDR Y, CDR Y —5.
W - CDRW,CARY - CARW.
W =CDR W, EXIT FETDEF.

DICSCAN,

variables.

tion of the user’s programs.

DLIST,
DLDS2,

DNEXEL,
DLDSI,
DADV,

DVALUE,

DPOPUP,
DEXIT,

LNOATOM,
LLIST,

LNEXEL,

LADYV,
LPOPUP,
LEXIT,

AEXIT,

ENTRY DICSCAN.
TO DEXIT IF Y- NIL.
X="Y.

PUSH DOWN N, CAR N=X.
TO DLDS! IFCARY
TO DVALUE IF CAR Y NIL.
X—Y.

Y CAR X, TO DLIST.

Y CDR Y, TO DLDS2.

TO DPOPUP IF CDR X - NIL.
X ~CDR X, TO DNEXEL.

Y CDR Y.

TO DPOPUP IF CAR Y- NIL.
Y -CAR Y, USE LISTSCAN.
X—CAR N, POP UP N.

TO DADV IF AF X 3.
EXIT DICSCAN.

ENTRY LISTSCAN.

TO LNOATOM IF AF Y).

USE ATOMSCAN, TO LEXIT.
X="Y.

PUSH DOWN N, CAR N -X.
X=Y.

Y=CAR X.

TO LLIST IF AF Y- (A,
USE ATOMSCAN.

TO LPOPUP IF CDR X NIL.
X -CDR X, TO LNEXEL.
X=CAR N, POP UP N.

TO LADV IF AF X Q.
EXIT LISTSCAN.

ENTRY ATOMSCAN.

Y CDR Y, USE NAMESCAN.
D--'A, M ’X, USE LOOKUP.
TO AEXIT IF CDR Y NE NIL.

Z-—-NEW ELEMENT, CDR Y=Z.

AF Z -)1,

X=NIL, CAR Z--CAR X.
CAR X=Z, CDR Z=S.
EXIT ATOMSCAN.

let-dig-sp.

Lookup the F-dictionary
Get new element
Restore the name
Restore the value

LISTSCAN and ATOMSCAN serve to scan
into the cleared A-dictionary all atoms which
This is necessary for the segmenta-

It the dictionary is empty
Set a fence

Save the return point
Check for let-dig-sp
Check for end of list

It is a branch point
Move to the left entry
Scan if let-dig-sp

Check for completion of list
No, move to next element
Move to defining element
Check for undefined value
Get the value

Restore the return point
Check for no fence

Check for atom

Yes, use ATOMSCAN

No, set a fence

Save the return point

It is a branch point

Move to the left entry
Check for no fence
Restore an atom

Check for completion of Ilist
No, move to next element
Restore the return point
Check for no fence

Get the atom name
Lookup the A-dictionary
Check for new entry
Yes, get new element
Set the atom flag
Attach the base register
chain, set back pointer

FUNCTIONAL LIST PROCESSOR 103

The subroutine DELETE performs a complete deletion of a dictionary
entry. It deletes not only the value, but the name of the entry too.

ENTRY DELETE.

Z—S, W=D. Set travelling pointers
DNEXT, TO DABS IF CDR D —NIL. Check for dictionary end
D-=CDR D, Y- CAR D. No, work on next entry
DCHECK, TO DNEXT IF CAR Y NE CAR Z. Check for mismatch
TO DDLT IF CAR Y=NIL. Check for end of entry
DSTEP, Y-CDR Y, Z-—~CDR Z. Step to next character
TO DSUBCH IF CAR Y NE CAR Z. Check for mismatch
TO DSTEP IF CAR Y NE NIL. Check for end of symbol
TO DDLT. Delete it
DSUBCH, D Y, W-D, Y CAR D. Check for subdictionary
TO DCHECK IF AF Y . Yes, search it
DDLT, TO DLT2 IF D NE W. It is first entry
Y - CDR D. Move to next entry
TO DCOM IF CDR Y NE NIL. Only one more entry?
Y CAR Y. Yes, delete branch point
DCOM, CAR D=CAR Y, CDRD=CDR Y. No, retain branch point
DABS, EXIT DELETE.
DLT?2, TO DLT3 IF D NE CDR W. It is second entry
TO DLT21 IF CDR D NE NIL. Is it last entry?
Y-CAR W, D W, TO DCOM. Yes, delete branch point
DLT21, Y--CDR D, TO DCOM. No, retain branch point
DLTS3, TO DLT31 IF CDR D NIL. It is third or etc. entry
Y CDR D, TO DCOM. No last entry
DLT31, W =CDR W. Last entry
TO DLT31 IF CDR W NE D. Scan the list
CDR W =NIL, EXIT DELETE. Delete last entry

The subroutine GVCMP is a compiler for global variables when they are
recognized as primaries. During the compilation new structures are created and
put into the result stack R.

ENTRY GVCMP.

TO GNOATOM IF AF Y - Q. Test for atom value

Z=NEW ELEMENT. Get new element

CAR Z—1L1, CDR Z=Y. Form an atom structure

CAR R=Z, EXIT, GVCMP. Include it into R stack
GNOATOM, Z-—-NEW ELEMENT, CAR R-=Z. New element into R stack

J-NEW ELEMENT. Get new element

CAR Z L2, CDR Z=J. Form a list structure

PUSH DOWN S, CAR S—"Y. Set a fence

[=J, X—Y. Set auxiliary pointers
GNEXEL, Y =CAR X. Move onto the value

TO GLIST IF AF YO @. Test for atom

Z - NEW ELEMENT. Yes, get new element

CAR Z-—-L1, CDR Z-Y. Form an atom structure

CAR 1=Z.

104 G. 1. POPOV

GADV, TO GENDLIS IF CDR X=NIL.
X CDR X.
Z NEW ELEMENT.
CDR I=Z,1 CDR L
TO GNEXEL.
GENDLIS, CDR I-=NIL.
X-—CAR S, POP UP S.
TO GADVI1 IF AF X .
EXIT GVCMP.
GLIST, PUSH DOWN S, CAR S I
PUSH DOWN S, CAR S X.
Z=NEW ELEMENT.
J--NEW ELEMENT.
CAR Z=L2, CDR Z -J.
CAR I Z.
[-J, X Y, TO GNEXEL.
GADVI1, [CAR S, POP UP S, TO GADV

The subroutine SENDING is used to send
arithmetics built-in function to the IOCS.

ENTRY SENDING.
CALL INDRESET, Z CDR Z.
TO S»1 IF CAR Z ' +.
TO S»1 IF CAR Z 7 .
TO S»2 IF CAR Z digit.
TO NONINT.
S@3, TO S»1 IF CAR Z digit.
TO S»4 IF CAR Z NIL.
TO NONINT IF CAR Z character.
Z CAR Z, TO S»3.

S, (BUF) CAR Z, CALL SND.
Z CDR Z, TO S3.

SA2, (BUF) '+, CALL SND, TO SA1.

S24, (BUF) ', CALL SND.

EXIT SENDING.

Test for end of list
No, work on next element
Get new element

Set pointer to it
Process the element
Set end of list
Restore X pointer
Check for a fence
Yes, it is a fence
Save | pointer

Save X pointer

Get new element
Get new element
Form a list structure

Work on next entry
Restore I pointer

an argument of an integer

Get first character

Is it a plus sign

[s it a minus sign

Is it a digit

No, arg. is not integer
Check for digit

Check for end of arg.
Argument is not integer
Advancing through CAR Z
Send a character
Advancing through CDR Z
Send implicit plus sign
Send an ending space

The subroutine ARGSND is used to send the two arguments of an inte-
ger arithmetics two-argument built-in function to the I0CS.

ENTRY ARGSND.

Z CAR R, POP UP R.

TO ARGNUMB IF CAR R 'F.
TO NONATOM IF AF Z).
USE SENDING, CALL SHF2.

Z CAR R, POP UP R.

TO ARGNUMB IF CAR R NE 'F.
TO NONATOM IF AF Z).
USE SENDING, CALL SHFI.
EXIT ARGSND.

(et the second argument
If only one argument

If non-atom argument
Send second argument
Get the first argument

If more than two arguments
If non-atom argument
Send first argument

The subroutine RESRCV is used to receive a result of the execution of
an integer arithmetics built-in function from the [OCS.

FUNCTIONAL LIST PROCESSOR 105

ENTRY RESRCV

CALL INDRESET, B- S, Z 'S. Save the S-list
R»1, CDR Z NEW ELEMENT, Z- CDR Z. Get new element
CALL RCV, TO R»2 IF (BUF) " Receive a character
CAR Z (BUF), TO RO1. Loop if not space
R»2, CAR Z NIL, CDR Z- NIL. Close new S-list
D ‘A, M ’X, USE LOOKUP. Check the A-dictionary
TO R®3 IF CDR Y NE NIL. Is there such integer, yes
Z NEW ELEMENT, CDR Y Z. No, attach new base reg.
AF Z- OL. Set the atom flag
X NIL, CAR Z CAR X. Attach the base register
CAR X Z, CDR Z S. chain, set back pointer
R»3, CAR R CDR Y, S B, TO RET. Restore the S-list, to RET

EXIT RESRCV.

For the name definition of every one of the built-in functions added to
the HELP system the following sequence of WISP operators must be inserted
into the HELP file aiter the card with sequential number HELPQ) (4.

TO QUIT IF Z NE 3, X NEW ELEMENT.
CAR X label-of-evaluation-routine.

CDR X 'F, Y CDR Y, CARY X

USE STODEF, USE FINPUT.

The first card of the user’s program must reflect the definition order, for
example :

«T, =F, CAR(CDR(CONS(ATOM(NULL(I(M(SM(DF(PR(QT(RM(EQ(NQ(GT
(GE(LT(LE(;

8. Conclusions. — The modified HELP language resembles a conventional
language. The flexibility of the system is increased and the programming of
complicated problems is simplified.

- The introduced segmentation provides execution of large user’s prog-
rams into a core memory limited in size. The utilization of external memory
is avoided. Such a type of segmentation could be applied to other list proces-
sors as well.

— Batch processing of the user’s programs is provided.

-~ The implemented integer arithmetics extends the application field of
the HELP processor.

— The proposed modified HELP processor retains all possibilities of the
original version described in [1]. It can be implemented without any efforts
by anyone who is familiar with that original version.

The extensions introduced increase the size of the processor program
part with about 300/, If a suitable overlaying of the processor programs is
applied, the increase of memory needed will be considerably smaller.

REFERENCES

1. W. Waite. Implementing Software for Non-Numeric Applications. New York, 1973.
2. D. Bobrow. Symbol Manipulation Languages and Techniques. Amsterdam, 1968.

Ministry of Supply and State Resources Received 12. 4. 1976
Computer Center Sofia

