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SOME PROPERTIES OF OPERATOR SPACES
STEFAN HEINRICH

Conditions are obtained under which the Banach spaces /,(E, F) of p-integral operators
and Ilp([j, F) of absolutely p-summing operators :

(a) do not contain a subspace isomorphic to ¢,

(b) possess the Radon-Nikodym property.

The present paper is concerned with the study of properties of the Ba-
nach spaces /,(E, F) and Il,(E, F) of p-integral and absolutely p-summing
operators, respectively. Gordon, Lewis, Retherford [1] and Saphar [2]
dealt with the question of reflexivity of these spaces, and the weak sequential
completeness was considered by the author in [3]. In the first part of this note
we obtain conditions under which the spaces /,(£, F) and Il,(E, F) do not
contain a subspace isomorphic to ¢.. The second part is devoted to the study
of the Radon-Nikodym property in these spaces. Kalton [4] and Diestel
Morrison [5] studied the space KI(E, F) of compact operators from a simi-
lar point of view using, however, specific properties of K(E, F).

1. Definitions and notation. Let £ and / be Banach spaces. £’ denotes
the dual space of £ and L(E, F) the space of bounded linear operators from
E to F with its usual norm. Instead of L(E, E) we write L(E). A Banach space
E is said to have the bounded approximation property (b. a. p.) if there exists
a net (o,)CL(E) of finite dimensional operators such that sup, o, <oo,
lim, 6,x—x =0 forall x¢ E. A Banach space E has the Radon-Nikodym pro-
perty if every countably additive E-valued measure of finite total variation
has a Bochner derivative with respect to its variation [6, ch. 6]. For given
Banach spaces E and F we shall use the notation £ F and ECF to indicate
the isomorphism and the isomorphic embedding, respectively.

Let 1--p<oc. An operator T¢ L(E, F) is called p-integral if there is a
probability measure » defined on the weak-star compact unit ball U° of E’
such that ;7 admits the following factorization:

JTEn oy L, e, v) S F,
where /,, /, and j:F > F” are the corresponding canonical embeddings, and
Q is a bounded linear operator with () --1. The p-integral norm of 7 is
defined by (7') inf»(U")"?, where the infimum is taken over all possible
factorizations.

An operator T¢L(E, F) is called absolutely p-summing whenever there is
a constant p>>0 such that for all finite subsets {x,CFE the following inequa-
lity holds:

SITxp ! )P0 sup (X{x, x) ")~
vVEE, | x|=I
The absolutely p-summing norm of 7 is defined by =z, (7))~ info.
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~An operator T¢L(E, F) is said to be p-nuclear if it admits a representa-
tion of the form Tx —2X3% (X, X))V, where (X )CE, (y)CF, (X7, | x, )"
—C, <o and

sup (XY V) D= Ce<oe (1/p+1/g-1).
VIEF Iy =1k=1
The p-nuclear norm is defined by »,(7 )= inf C,C..

Finally an operator 7¢L(E, F) is called quasi-p-nuclear, if j7 is p-nuclear,
where j is an isometric embedding of F into a space [..(/"). The corresponding
norm is defined by »¥(7")—»,(jT).

The spaces of p-integral, absolutely p-summing, p-nuclear and quasi-p-nuc-
lear operators are Banach spaces, denoted by /,(E, F), I1,(E, F), Ny(E, F) and
N,?(E, F), respectively. If £’ or F possesses the bounded approximation pro-
perty, then N, (E, F)Cl,(E, F) and NY(E, F)CII(E, F). For detailed informa-
tion on the introduced operator spaces see [7].

Let £(X)F be the algebraic tensor product of £ and F, and let a be a
crossnorm on £ (X)F. The completion of E(X)F with respect to « is denoted
by E@,,F. The crossnorm « is called uniform [8] if for all 75 ¢ L(E) and T,¢ L(F)
we have T\X)7, - T, T, . Denote the extension of 7,(X) 7, to E@,lF
by 7, X). T,

2. Operator spaces which do not contain ¢,. Banach spaces which do
not contain a subspace isomorphic to ¢, possess important properties [9]. We
shall study here the question under which conditions the property “not conta-
ining ¢,” is carried across from E’ and F to I,(E, F) and II(E, F).

Theorem 1. Let E and F be Banach spaces such that E' and F have
the b. a. p. and let 1 - p<oc.Suppose E'1Dc, and F1Dc,.

(a) If 1(E,F) NyE, F), then I,(E, F) 1 Dc,.

(b) If II,(E, F)=Ng(E, F), then II(E, F)]Dc,.

The theorem will follow from the two propositions below. First we make
a general remark. If « is a uniform crossnorm on E'(X)F and if F possesses
the b. a. p., then the elements of £(X).F can be identified in the usual way
with operators from E to F. It is easily seen that for arbitrary S, ¢L(E),

S, € L(F) and T¢E'(X).F we have
(1) (S1 RaS)T— S, TS,

where on the right-hand side 7 is regarded as an operator.

Proposition 1. Let a be a uniform crossnorm on E'(X)F and let
o¢ L(E) and v¢ L(F) be finite dimensional operators. Further suppose E'")Dc,,
F1Dc, and F has the b. a. p. If a sequence (T,)CE'(X).F is equivalent to
the unit vector basis of c, then
lim sup a( X §,7,0) 0, lim sup a(f‘ S Ty) — 0.

1 A=N = /

N-—co N—oo | =]

“k ‘ “k

Proof. It is sufficient to verify the first equation. By hypothesis, the se-
ries X7, is weakly unconditionally convergent. Denote the identity of F by /g
Since o' (), /r is bounded, the series X', (0" (X),/r) T, is weakly unconditionally
convergent, too. We have dimIm o’ m< oo, therefore Im (¢o'(X)./r) = (Imo")(X) F
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CE'(X.F. It follows from the properties of crossnorms that (Imo’)(X)F is
isomorphic to the direct sum of m copies of F. Since F7Dc, we have
(Im o’) X) F 1Dc¢,. Thus, the series X,(0’(X). /r) T, is unconditionally convergent
[9]. Now the properties of unconditionally convergent series and (1) together
yield the required equation.

Let a be a uniform crossnorm on E’(X)F and suppose F has the b. a. p.
We shall say that « is boundedly complete on E’(x)F if for each sequence
(Tn) CE'(X)..F with supa(T,)<co and liMm, n e | TmX —Tox| =0 (x¢€E)thereis
a T,¢ E'(x).F such that lim, ,, | 7,x—Tyx |—0.

Proposition 2. Suppose E' and F have the b. a. p. Let a be a uni-
form boundedly complete crossnorm on E'(X)F. If E' 1 D¢, and F D¢, then
[E"(X). F1C¢. . ~

Proof. Assume that ¢,CE’ (x).F and let (7T,)CE" (X.F be a sequence
which is equivalent to the unit vector basis of ¢, Without loss of generality
we may assume that a(7,) -1. Since the dual space £’ possesses the b. a.p.,
we can find a net of finite dimensional operators (o,)CL(E) such that o, | <=C;
and for every x’¢E’, limy, o,x’—x" =0. We shall define now successively a
subsequence (7,,) and a sequence of finite dimensional operators (¢,)CL(E)
such that ¢, - C, and for a given ¢>0 the following inequalities hold:

R
(2) Sa(Tn o0,—Tn)<g,
=1 J J
and
(3) a( = Tu ar)<e.
j=k+1 7

Put 7, -1 and choose by the b. a. p. of E' a o,¢L(E) with «(T,0,—T))<e.
It follows now from Proposition 1 that

lim supa( & §,7,0,)=0.

Now |51 k=N
Hence there is an n, such that for every increasing sequence ny—=mqy<my<m,<---
we have a (372 T,,./_al)<e. Next choose o, such that (7, o,—T7,)<e/2 and
a(Tn, 09— Th)<e/2. Again by Proposition 1 there is an n; with « (.S}’-Zsrmiog)<e
for all sequences r,—my<m,<my< --- . Continuing this selection process, we

get the desired sequences.
Since (T,,.) is also equivalent to the unit vector basis of ¢, the series

%=1 Ta, x is weakly unconditionally convergent in F. By hypothesis, we have

FDec,. Thus, the series is unconditionally convergent [9] and in particular
norm convergent. Again by hypothesis there is an element 7, ¢ £’ ()Z),,Fsuch that

(4) Tox—X T, x

k=1

for each x¢ E.
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Since F possesses the b. a. p., too, there is a finite dimensional operator
r¢ L(F) such that 'z -=C, (the b. a. p. constant of F) and a(7,—t7,)<e.
It follows from Proposition -1 that there exists an index [/ with

(5) a(j‘j T T,,k)<e.
k=l
Now
(6) alle—2) To(or —or_))= o1—0a1_, ‘al|(lp—1) Ty =2C, e

Elementary calculations and (4) yield

([F—‘t) Tn (0, '01_1) = (IF—r)k.l_‘lT,,k (01—01‘1)

—1 oo
(/er) > T,, (0[—01__1)+(1F—t)2 y e (01 O‘[_l)
k=1 X k=1 F

—1 oo oo oo
=(lp—1) X T,,k (6, 01— —(lp—1) = T,,k o1— + 2 T,,k o— .‘_‘tT,,k o+ T,,l or.
k-1 k=1 k=141 Py

It follows from (2) and (3) that

-1

> a7, (0r—01)]

1—1
(l[(IF—I)k_flrnk(Ol—G'[ ‘)]‘ﬂ IF*ti k_——

2C‘3 kz;lla ( Tnkol_ T"k)+a ( Tnk Ol—1— T"k)]< 4C2 £
Likewise

(II(IF—‘!):‘:: Tnk01_|]<2c-_xfy a( X Tnkol)<5, a(Tnl_TnIUl)<5-
k=1

R=l+1
Finally it follows from (5) that a(.E‘,:‘;,zT,,ko,)<eCl. Consequently,
(l[(IF - I)TU(O[ ~01._1)]>’!(Tnl)—(6C2+C1+2)821—(6C2+C1+2)6

since we assumed that a(7,) == 1. Choose now « such that 1 —(6Cy+ C,+2)e>2C\e
Then the above inequality together with (6) yield a contradiction, which con-
cludes the proof.

Proof of Theorem 1. By hypoth.e\sis we have /,(E, F)— N, E, F) and,
since F has the b. a. p., N,(E, F)~ E’®gp F, where g, is a uniform crossnorm
[2, 10]. We shall verify that /,(E, F) satisfies the completeness condition. Let
(T.)1,(E. F) be a Cauchy sequence in the strong operator topology and
SUppose sup, ¢, (7,)< co. Since

I(EF)~(F X, Ey, (p+1/g=1)

[10] and since /,(E, F) can be embedded isometrically into /,(E, F"'), the se-
quence (7,) is weak-star Cauchy in /,(E, F"). Consequently (7,) converges in
the weak-star topology to an element 7,¢/,(E, F’’). Now it follows that
7, ~lim, ,. T, in the strong operator topology and thus Im T,CF. This implies
T,Cl,(E F).
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The completeness of 1/,(E, F) E'@,p F follows from the relation IT,(E, F)
/1, (£, F”):(F’®gq Ey, 1/p+1/q 1.

The folloWing proposition is due to A. Persson [11]. It was established
in the case when E’ is separable or reflexive, but the proof is actually valid
for £ possessing the Radon-Nikodym property.

Proposition 3. If E has the Radon-Nikodym property, then for
l<=p<oo

(a) each strongly p-integral operator from E to F is p-nuclear and

(b) each absolutely p-summing operator from E to F is quasi-p-nuclear.

Remark. An operator 7¢ L(E, F) is called strongly p-integral if it admits
a factorization of the form

T:E". CU") = L, ») © F,

where /,, 1,, Q and » are the same as in definition of p-integral operators.

Theorem 2. Let E and F be Banach spaces such that E' and F have
the b. a. p. and let 1- p<~. If E' has the Radon-Nikodym property and
F1Dec,, then I(E, F) D¢, and 11,(E, F)712 c,.

Proof. If £ has the Radon-Nikodym property, then £’ 1D ¢, [6]. Thus,
we need to show only /,(E, F)=N,(E, F). Let T¢l,(E, F). Then jT:E - F"”
is strongly p-integral, thus p-nuclear. Since E’ has the b. a. p., we conclude
that 7°¢ N, (E, F) 12, ch. I, prop. 15].

The following example shows that the assumptions /,(E, F)=N,(E, F) and
11, (E, F) N,(;’(E,F) of Theorem 1 are essential at least for 1< p<Zoo.

Example. If 1<p<~, then /,(C|0,1], 1,[0,1]) D¢, and [7,(C[0, 1],
L,[0, 1)) Dc,.

Indeed, let / denote the identity operator from CJ[0, 1] into L,[0, 1]. / is
p-integral but not compact hence not p-nuclear [7]. L,[0, 1] has an uncondit-
ional basis. Denote the associated sequence of one-dimensional projections by
(P,). The series X,P,/ is not norm convergent in I,(C, L,), since / is not p-

nuclear. Thus, there is a block sequence Q,,:.)'Z’f,’,,}d’k such that inf, ¢, (Q./)

-C,>>0. It follows immediately from the properties of an unconditional basis
that there is a constant C, such that

C.Ci'sup & p(X5,Qa)=C,ipy(T)sup &,

for each (&, ¢c¢, Hence (Q,/) is equivalent to the unit vector basis of ¢,.

The second assertion follows from the relation [/7,(C|0, 1], L,[0, 1])
=1,(C[0,1], L,[0, 1)), which is established in [7].

3. Operator spaces with the Radon-Nikodym property. Motivated by
Theorem 1 and Proposition 3 we shall show here that the Radon-Nikodym
property is carried across from £’ and F to /[,(E, F) and I1,(E, F). The addi-
tional assumption on E of Theoremn 3 (b) seems to be a technical one. How-
ever, it is not known if this assumption can be omitted.

Theorem 3. Let E and F be Banach spaces such that E' and F pos-
sess the b. a. p. and let 1 p<co. Suppose E' and F have the Radon-Niko-
dym property. Then

(a) 11,(E, F) has the Radon-Nikodym property and

(b) 1,(E, F) has the Radon-Nikodym property provided E is WCG.
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The essential part of the proof is contained in

Proposition 4. Suppose E and F are separable and F has the b. a.
p. Let « be a uniform boundedly complete crossnorm on E'X)F. If E' and F
have the Radon-Nikodym property, then E'(X).F has this property, too.

Proof. Let (2, ) be a measurable space and let u:2 — E' @aF be a
countably additive measure with finite variation |« . Since F is separable and
possesses the b.a.p., there is a sequence of finite dimensional operators 7,
such that z, =C and
(7) lim |z,y—y| =0

for each y¢F.r,u is a measure of finite variation taking values in the closed
subspace E'(X)t,(F) of E’'(X),F. This subspace is isomorphic to the direct sum

of a finite number of copies of E’. Hence E'(X)r,(F) has the Radon-Nikodym
property. It follows that there is a Bochner integrable function 7,(w) with

(8) 1, (A [Ty(w)d u
a

for each A¢>. Moreover z,u (A~ 7, w (A)—-Cu (A) and  r,ul|(A)
= [4a(Tyw)d u, AcX [13, ch. [lI]. By the scalar Radon-Nikodym theorem
we get

9) a(Ty(w)=C

for w — almost all w¢ Q.

Let now {x,} be a dense countable subset of £. The measure u(-)Xnm
is F-valued and of finite variation. Thus, there exists a Bochner integrable
function ym(w) such that, for A¢2X

(]0) w(A) X fym((“) d w.
A

Hence 1, u(A) Xm= [ataYm(w)d w and by (8) 1, Ym (®) Thlw) Xm, w - a. e.
It follows from (7) that
(11) lim| 7T, (w) Xm—Ym (w) 0, |u -a.e.

n-oo

By (9) and the density of {x,} we have for |u | — almost all w¢ £,
lim T,,l(w).\'m T,,__)(m)x =0 (x¢E).

L y—ro0

Il1

Since « is boundedly complete, there is a function T:.(.)—>E®(,F with
limy o | Th(w)x— T(w)x =0, (x¢E), wu -almost everywhere. By (11)
(12) T()Xm  Ym(w) | u -a. e.

Thus 7, 7(w)Xm — taYm(®) T(w)xm and therefore z,7(w)- 7,(w) for almost all
w¢ Q. Since T(w)¢ E (X, F, it follows by (7) that lim, .. a|r,T(w)— T(w)]=0,
| -a. e. Now the Dominated convergence theorem [13, Ch. IlI] yields

lim [a|7,(w)— T(w)]d u/=0.

n—co 2
Hence 7(w) is Bochner integrable and it follows from (10) and (12) that
w(A)xm [ 4 T(w)Xmd w|. Thus w(A) [4T(w)d wu| (A¢Y). This concludes
the proof.
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Proof of Theorem 3. It will be sufficient to show that separable subspa-
ces of I1,(E, F) and /,(E, F) possess the Radon-Nikodym property [6].

(a):Let BC 1I,(E, F) be a separable subspace with a dense sequence (7).
By the definition of the n,-norm there is a separable subspace £, £ such
that 7, (7, £)=mp(7T,). Since the norm of the restriction of any 7t 1/,(E, F)
is not greater than 7,(7), we can embed B isometrically into I/(E,, F). The
images of 7,!g are contained in aseparable subspace F,C F. It is easily seen
that given a separable subspace F, of a space with b. a. p. F there is a separable
subspace F, such that F,CF,CF and F, has the b. a. p,, too. Now we have

BC 11, (E,, F,)C I, (E,, F)). Since E; has the Radon-Nikodym property [6], we
get 11, (E,, F)=Ng (E,, F,) and since F; has the b. a. p., NY(E,, F)  E| @p Fp
where ¢, is uniform. It follows in the same way as in the proof of Theorem 2
that ¢, is boundedly complete on Ei(X)F,. '
(b): Let BC/,(E, F) be separable and let (75,) be a dense sequence in B.
We have /,(E, F)C I,(E, F") (F @,_qE)’, (1 p+1/g-—1). Using the right-injecti-
vity of the crossnorm ¢ [2, 10|, we can find a separable subspace E,CE
such that the restriction of each 7, to F’@,qE preserves the norm of 7.

Since Eis WCG, we may assume that £, iscomplemented in £ [6, ch. 5]. Now
(F ®,-q E\) I, (Ey, F")

and we conclude that the restriction 7'/ g defines an isometric embedding of

B into /,(E,, F). Since E| has the b. a. p. and the Radon-Nikodym property,
we have /,(E,, F) - N,(E, F). Using now the definition uf the p-nuclear norm,
we can find a separable subspace F,(F such that F, has the b. a. p. and B
can be embedded isomorphically into N, (£}, F,). Finally,

Iy(E\, F)) Ny (E,, F) - Ei®e, F

and the proof of Theorem 2 yields again that g, is boundedly complete on
E{(X)F,. This concludes the proof.
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