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MAPPINGS FROM CONVERGENCE GROUPS
INTO QUASI-NORMED GROUPS

PIOTR ANTOSIK

An abelian group endow:d with a set (4 of sequences is called a convergence group |
is proved that pointwise limits of sequence of mappings vanishing on sequences from G are
vanishing on quasi-unconditionally (-convergent sequences.

1. In (3] is proved the following
Diagonal Theorem (for nonnegative matrices). Let {x;} (i, j¢ N) be
a matrix of nonnegative numbers such that
limx; 0, ((¢N), limx; 0, (j€N), and limx; 0.
Jrec [ —c0 {—c0
Then there exists an infinite set I, IC N, such that X ;¢;.x,;<~c.
Hence, the elements of I can be arranged into an increasing sequence
{pi} such that

lim 2 x,, 0, lim 2 x,, 0.

i / v Joo i=1 ¢
We show that this theorem can successfully be used in proofs of difficult
theorems in Functional Analysis and Measure Theory. It replaces more sophis-
ticated auxiliary diagonal type or other theorems and lemmas [1, 3, 5, 6, 7]. The
Diagonal Theorems [I1] and the lemmas on double sequences |7] are independent

in the sense that knowledge of one of them does not help in proving the other.

2. Let X be an abelian group and let (4 be a set of sequences {x,} of
elements from X. Instead of writing {x,} ¢ G we shall equivalently write x,~ o(Q).

An additive real (quasi-normed group valued) function on Y is called
G-continuous, iff x, > o(G) implies f(x,) »0. By 7G we denote the set of all
additive real and G-continuous functions on X, and by 7G the set of all point.
wise limits of sequences {f,} of elements from 7G. Thus f¢ TG iff there exists
a sequence {f,}, f.€ TG, such that f(x) lim, . f.,(x) for each x¢X. We note
that each element of 7(; is an additive real function on X. Moreover, we have
TGc TG, A question arises when the converse inclusion holds, i. e, when
TU> T

We say that a sequence {x,} of elements x, from X is quasi-unconditio-
nally G-convergent iff from each its subsequence |y, we can select a subse-
quence {z,} such that 2 27  z, — o(() for some z¢X. Instead of =z 27 2z,

» o((GG) we shall write Xz, 2z(G).

We note that each subsequence of a quasi-unconditionally G-convergent

soquence is a quasi-unconditionally G-convergent sequence. If Xz, 2((G) and
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fe¢ TG, then 2= f(zm)=f(2), and f(zn)—0, as m—occ. Thus, from each subse-
quence {y,} of a quasiunconditionally (G-convergent sequence {x,} we can select
a subsequence {z,} such that f(z,)— 0 for each f¢ TG. This implies that if {x,}
is a quasi-unconditionally G-convergent sequence, then f(x,) — 0 for each f¢ 7G.
In other words {x,}¢ L7TG if LTG denotes the set of all sequences {x,} such
that f(x,) — 0 for each f¢ TG [4].

Theorem 1. If {f,} is a sequence of elements from TG such that

(1) lim £,(x) =0
for each x¢X, then we have
(2) lim sup | fu(xm)| —0, lim sup |fu(xm) =0

for each quasi-unconditionally G-convergent sequence {Xm}.

Proof. Let {x»} be a quasi-unconditionally G-convergent sequence. Then
lim f,(x») -0 for each n¢N. Hence and from (1) it follows that if (2) does
not hold then there exist a positive number ¢ and two increasing sequences
{ka} and {/,} of positive integers such that 'f, (x;, ) >e ne¢N. Let g,—fx, and
Ya—x,. Then we can write
(3) lim g,(x) =0

n—oo

for each x¢X and

for each n¢ N. Let x;;—| gy, for i+j and x;=0. Since {x,} is quasi-uncon-
ditionally G-convergent, we have f(x,)— 0 for each f¢ 7G. Hence we have
f(y.) — 0 for each f¢ TG. This implies that lim ;,.x;;=0. From (3) it follows
that lim, .. x;;=0. Moreover, we have lim;, . x;=0. Thus, by the Diagonal
Theorem for nonnegative matrices, there exists an increasing sequence of posi-
tive integers p, such that

oo

(5) lim X x, , =0.
i j=1 £
Let &, -h; and Yo, =2y Then, by (3), (4) and (5) we can write, respectively,
(6) lim A;(x) =0,
J=doo
(@) hy(2)) >e
(8) lim 3 hdz)-0.

i—oo j=1, jki
We note that {z;} is a subsequence of a quasi-unconditionally G-convergent
sequence {x;}. Thus, there exists a subsequence {z,,j} of {z;} and an element
Z € X such that 22, -2(G). Since h, ¢ TG, we can write X7, /&y, (z,,j) hp,(2)
for each i¢ N. Since
\

o | o |
S |~ | = |
[ j:lhpi (zpj) hpi (zpi) j /“»hpi (ZP/)l

and
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| o | oo
Lz Iz,,l,(z,,j)g-f X |y, (25)),

| j=1, j+i J=1, j#
we have
hp, (D) X Ry (2) hp (2p).
J=1, j+i 4 ‘

Hence, by (6) and (8) we have lim, . A, (2, )~ 0 which Jeads to contradiction
with (7). This contradiction implies our assertion.

3. We say that G is a quasi-unconditional convergence iff each element
of G is aquasi-unconditionally G-convergent sequence. Thus if x, — o((), then
for each subsequence {y,} of {x,} there exists a subsequence {z,} and an ele-
ment z¢X such that Xz,—2(Q).

Theorem 2. If G is a quasi-unconditional convergence, then TG- TG
Proof. Let {f,} be a sequence of elements f, from 7G and let f be a
function such that

©) f)=lim ()

for each x¢X. Let {x,} be a sequence such that x,— O(G). We have to
show that

(10) lim f(x,)=0.
At first we shall show that
(11) lim sup fn(xm)=0.

If (11) does not hold, then there exist a positive number &, an increasing se-
quence {k,} and a sequence {/,} such that |f, (xk,) >e for each n¢N. Since

fo€ TG and x,—o(G), we see that limm .f, (Xs,)=0 for each n¢N. Thus
we may assume that {/,} is an increasing sequence. Let g,~f; and y,=xg, -
Then by (9) we have

(12) lim g,(x)—0

n—oo

for each x¢ ¥ and

(13) | Gn( Yn) >e.
Since limp . g(ym)—0, n€¢N, we can select an increasing sequence {p,}
such that

(14) limg, (vp,,,)=0.

Let Au(x)=gp,, (x)—&p,(X). Then by (12) we can write lim, .k.(x)=0 for
each x ¢ X. Since {y,,,,} is a subsequence of the quasi-unconditionally G-con-
vergent sequence, the sequence {y, .} is quasi-unconditionally G-convergent.
Consequently, by Theorem 1, we can write

lim sup & yp,,.,) =0.

m-—oo n

Hence we have
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(15) lim &, ( Yp,.,)=0.

On the other hand, | 2. yp,. )=, (Vpn.1)—8p,( Vo, ). Hence by (15) and
(14) we have lim, g, (¥p,.,)=0 which leads to contradiction with (13).
This contradiction implies (11). To prove (10) we note that f(xm) = f(xm)
—fu(Xm) 4 fa(xm). Hence and from (9) and (I1) we obfain (10). This proves

that f¢ TG and consequently 7Gc TG. Since TGc TG, we have 7G=T(, which
was to be proved.

In the case when X is a linear space and U is a linear convergence such
that each subsequence of a sequence in G contains an unconditionally conver-
gent subsequence, the Theorem 2 reduces to [7, theorem VIIL 2]

When X is a Banach space and G is the set of all sequences converging
to 0, then the Theorem 2 is equivalent to the Banach Theorem.

If X is a o-ring of sets and G is the set of all disjoint sequences {E,}
and nonincreasing sequences {£E,} to the empty set, then the Theorem 2 is
equivalent to the Nikodym theorem [6].

Final remark. One can easily see that all considerations in this paper
make sense and remain valid if one replaces the additive real functions by
additive functions on X with values in a quasi-normed group [I].
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