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A DIAGONAL THEOREM, UNIFORM BOUNDEDNESS
AND EQUICONTINUITY THEOREMS FOR TRIANGLE
SET FUNCTIONS

PIOTR ANTOSIK

A nonnegative set function u is triangle iff (AU B)=u(A)+ n(B) and w(A)=u(AuUB)+u(B
for any sets A, B from a given collection of sets. A set function is continuous if it vanishes
on a disjoint sequence. It is proved that any pointwise bounded family of triangle and conti-
nuous set functions is uniformly bounded and any pointwise convergent to null sequence of
such functions is uniformly convergent on each disjoint sequence of sets.

1. By N we denote the set of all positive integers and by 9t the collec-
tion of all nonempty subsets of M. R. will denote the extended nonnegative
real number system with usual addition and convergence.

A set function u« from Y to R.. is said to be continuous iff lim,_,.. u(E,) =0
for any disjoint sequence {E,} in 9. It is subadditive iff u(A U B)= nu(A)+ u(B)
for any disjoint sets A, B in ).

Instead of writing n({j}), p({iy, ... 0)), u({iyiy ... }) we shall write u(j),
w(lyy ...y ip) and u(i,, i, ...), respectively.

Diagonal Theorem (for set functions). Let u; (i¢ N) be a subadditive
and continuous set functions on W such that lim;,.. u; (j)- 0(j¢N) and
lim; ,. 1, (i) 0. Then there exists an infinite set I, Ic N, such that lim u, (/) 0,
icl, i > oo,

We show that this Diagonal Theorem can successfully be used in proofs
of theorems on uniform boundedness and equicontinuity of families and sequ-
ences of triangle and continuous set functions. In turn these theorems are
proved for additive and continuous set functions on a e-ring R with values in
triangle-normed groupoids or quasi-normed groups. The Diagonal Theorem for
set functions replaces more sophisticated auxiliary diagonal type or other the-
orems [1; 2; 5; 6; 7]. The Diagonal Theorem for set functions and the diago-
nal type theorems [1] are independent in the sense that the knowledge of one
of them does not help in proving the other. At the end of the paper it is
shown that Phillip’s LLemma [8] follows from the Diagonal Theorem.

2. At first let us prove the following

Lemma 1. /f uis a continuous set function from N to R., then for
each positive number « and for each infinite set A of positive integers there
exists an infinite subset B such that for each Cc B we have n(C)<"e.

Proof. Let B, (n¢ N) be infinite pairwise disjoint subsets of A. We assert
that there exists an index n, such that for each Cc B, we have u(C)<e.
In fact if this is not true then for each n¢ N there exists a set C, with C,c B
and u(C,) e Since {B,} is a disjoint sequence, so is {C,}. Consequently s is
not continuous. This implies our assertion.
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Proof of the Diagonal Theorem (for set functions). We put i,—=0,
I,~ N and select positive integers i, and infinite sets /, such that for
each n¢ N

(l) in -1 <f”,

(") Im——l Dlm

(i) i,<<1,,

(iv) w; (i, ..., i,UA)<1 n for each Acl, ,,

(V) inv 1€ I’

(Vi) stiy g By ooy in) <13 (n+1),

(vit) 2, (in1)<<1/3(n+1).

Since lim, . u, (i) =0, there exists an index r such that u,(i)<<1/2 for i -r.
We put i, =r. By Lemma 1 there exists an infinite subset /, of /, such that
l,cl, i,<I, and u; (A)<1/2 for each Ac/,. Then by the subadditivity of u;
we have o (i, U A) w;, (i) +wu;, (A)<1 for each Ac/,. Thus we see that (i)—(iv)
hold for n 1. Since lim; , ; ({;) =0 and lim,_ . «, (/) -~ O, there exists an index
such that u;(i,)<<1/3.2 and u;(i)<<1/3.2 for i ~r. For /, is an infinite set,
here exists an index i, such that i,€/; and i,=r. Therefore also (v)—(vii)
told for n 1. Assume that we have already found iy, ...,i,+, and 7/, ..., /,,
huch that (i) —(vii) hold for n ~p. By Lemma 1 there exists an infinite set
sp-2 such that [, oClp o1y lp1<<lp.2 and u;, (A)<1 2(p-+-1) for each Ac/,.».
Thus we see that (i)—(iii) hold for n-—-p--1. Moreover, we have

Mipiy (i -y ip1U A)gp,ﬁ*lu',, ey ip)-{-/t,p*l(ipfl)—%—y,-pfl(A)(1/'(pj'_ 1).

Therefore also (iv) holds for n—p-+1. Since lim,,.u,(j)—0, j¢ N and u, is
subadditive, there exists an index r such that «,(i,...,4 . 1)<<13(p+2) and
w,(i)y<1/3(p+2) for i=r. For I,y is an infinite set, there is i, » such that
i# .9¢1,.y and i,,,~r. Then we see that also (v)—(vii) hold for n -p—+1. By
induction the existence of i, and /, such that (i)--(vii) hold follows. Let
I-{i,iy,...}. By (i) we see that / is an infinite set of positive integers. By
(ii) and (v) we have {i,.1, in.2,...}=4, Acl, and by (iv) we can write
w, (D) s, (iyy ..y 0,0 A)<<1/n. Hence our assertion follows.

The Diagonal Theorem for set functions implies the following

Diagonal Theorem (for nonnegative matrices). Let x,; (i, j¢ N) be a
matrix of nonnegative numbers such that lim, . x;;=0, (i¢N), lim;,.x;;~0,
(jeN) and lim; ,..x,, - 0. Then there exists an infinite set 1, Ic N, such
that i1 X< ~.

To prove this theorem it is enough to put u(E)=2,¢rx,; for each E €N
and to apply the Diagonal Theorem for set functions.

3. A set function « from a collection ® of sets to R. is said to be
triangle iff « satisfied the conditions

(T1) w(BUB)~-u(A)+u(B),

(T2) u(A)-=nu(AuUB)+ u(B)
for any disjoint sets A, B in R such that AuBe.

If « is a triangle set function, then we have 1(A) - w(B)+u(B\ A).

In the sequel we shall write sup,, sup,, sup, instead of writing sup..q,

SUPmen, SUp,eon, frespectively, where 91U denotes the family of triangle and
continuous set functions.
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Lemma 2. Let R be an algebra (o-ring) of subsets of a set S and let
w, (neN) be triangle set [unctions on R. Then we have

(*) lim SUp,U,,(E) 09
n—co E

iff

**) limsup u, (E,,)=0

for each disjoint sequence {E,} in R.
Proof. Evidently () implies (x+). Suppose that (+) does not hold. If there
exists a set £¢ R such that lim,,. w,(E)="¢>0, then putting E,~E and E, ©

for n 2,3,... we see that also (+x) does not hold. Therefore we may addi-
tioraly assume that
(1) lim u, (E)=0

n—oco

for each E¢®R. Under this additional assumption we select a positive number
£, positive integers k&, and sets A, such that for each n¢ N

(i) kn <<k,

(“) An—IDAm

(iii) pap, (Anr)<e and g, (A,)>2s
and

(iv) lim su,p ttm (A, N E)==2e.

Since (;) does not hold, there exists a positive number ¢ such that
(2) lim sup u,, (E)>2e.
E

n-co E

We put k£, 0 and A, ~S. By the additional assumption (1) there exists an
integer r such that s,(A,)<e for n -r. Then there exist sets E,, E,,.
such that

lim sup n, (E,,) >2e.

Let A={J;; , E,. Then we have
(3) lim S;_lp 1, (EN A)>2e.
n—soo L

Thus there exist a set £, and an index k,=r such that wus (E,N A)>2e.
Assuming A,=E, N A we see that (i)—(iv) hold for n 1. Suppose that we
have already found k,,...,%k, A,...,A, such that (i)—(iv) hold for n=p.
By the additional assumption there exists an r>k, such that ‘u,,(Akp){E for
each n-—r. Since (iv) holds, there exist sets £, Ey, ... such that lim, ,. supmu,
(Akmem)\’QF. Let A U, lA,,‘,r\E,,,. Then we can write lim,_,.. sup,u(EN A)
~.9¢. Thus there exists a set £, and an index k,., such that &k,., >max(k,, r)
and u.pyl(E,,ﬂA)F-r. Assuming A, .~ E,NA we see that (i)-—(iv) hold for
n p+ 1. Therefore, the existence of k, and A, with (i)- (iv) hold for n¢ N fol-
lows by induction.
Let £, A, Amn 1, m¢N. Then by (ii) {E,} is a disjoint sequence in A,
Moreover, since u, (n¢ N) are triangle set functions, we can write /4,,"(5,,)
‘ll,,,"(A,..])-—[l‘" (A,) e by (iii). By (i) we see that &k, — co. This implies that
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lim, .. sup,, sty (En)>e. Thus we have proved that if (+) does not hold then
also (=) does not hold. This implies our assertion in the case when @ is an
algebra of sets. The case when R is a o-ring can be easily reduced to what
have been proved. In fact, if (x) does not hold, then there exists a sequence
of sets £,, in R such that
lim sup u,(E,,)=0.
n—co m
Assuming S=Jz_, E,, we see that § is an algebra and (+) does not hold with
respect to S. Hence by what have been proved our assertion follows.
A set function u, from a collection R of sets is continuous, iff lim,.
w(E,) 0 for each disjoint sequence {E,} in K.
Theorem 1. Let nu,(n€N) be triangle and continuous set functions on
a o-ring R such that

(4) limu, (E)=0

for each E¢R. Then we have

(5) lim sgp 1 (E)=0.
n—oo

Proof. If (5) does not hold, then by Lemma 2 there exists a disjoint
sequence {£,} in R and >0 such that
(6) lim sup u, (E,)=e.
n—cc m
Thus there are two increasing sequences of positive integers %, and [,
such that

(7) He, (E: ) >e.

Let », (A) = ux, (Ujea Ey) for ATID{i} and »,(A)=0 if AD{]. It is easy to
verify that », (n€N) are triangle and continuous set functiors on % z1d
lim;. v, (j)— 0, (j€ N). Hence by the Diagonal Theorem for set functions there
exists an infinite set /, /c N such that
(8) lim »,(/)-0.

i—oo, (€]

Since wug, (n€ N) are triangle, we have

(9) My, (F)+ug, (Fi);;'/‘ki (Ek,-)v
where F=J,esEx, and F,=U{F,, j€1, j=+i}. For », ()=, (F;) we may write
(10) lim u, (E,) 0

by (8), (4) and (9). But (10) contradicts to (6). This contradiction implies our
assertion.

Theorem 2. Let I be a family of triangle and continuous set functi-
ons on a o-ring R such that

supu(E)< oo

for each Ec R. Then we have
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sup sup u (E)< oco.
E

Proof. If the theorem is false, then there exist a sequence {£,) in & and
a sequence {k,} of positive integers such that
lim u,‘,”(E”) ~o.

Let »,(E) *u;l(Ek")uk”‘E)‘ Evidently », (2¢/N) are triangle and continuous
set functions on & and lim, .. »,(E) -0. Therefore, by Theorem 1 we have

lim supy,(£)=0.

n—c E

On the other hand, v,,(Ekn)-:l for n¢ N. Hence we have

lim sup», (E£)="1.
n—< E
This contradiction implies our assertion.

4. This section is concerned with additive and continuous set functions
from a o-ring R to a triangle normed groupoid X.

A triangle normed groupoid is a set X' (called groupoid) with a binary
operation (x, y) — x+y and with a function (called a triangle norm) x| on X
with values in R. such that

(N) | x+y' -~ x + vy,

(N2) x = x+y +y
for any x, y in X.

We see that if « is an additive set function from R to a triangle normed
groupold X and »(E) ~ w(E) , then » is a triangle function on $¢. Morover, if
w« is continuous, i. e., lim,,.u(E,) 0 for each disjoint sequence {E,} in R,
then » is continuous.

Theorem 3. Let u, (n¢ N) be additive and continuous set functions on
a o-ring R with values in a triangle normed groupoid X such that

lim | u,(E) —0
for each E¢R. Then we have
lim sup wu,(E)|=0.
E

"0

Proof. To prove the theorem it is enough to consider the family of
functions » such that »(E)  w(E) , w€9I, and apply Theorem 1.

Theorem 4. Let I be a family of additive and continuous set func-
tions on a o-ring R with values in a triangle normed groupoid X such that

sup u(E) <o

for each E¢R. Then we have

sup sup u(E) << oc.
E "

Proof. To prove the theorem it is enough to consider the family of
unctions » such that »(E)= w(E), n¢9, and to apply Theorem 2.
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When X is a normed group, Theorem 4 reduces to the case proved in
[5]. When X is a quasi-normed group and members of . are countable additive
set functions the theorem reduces to the case proved in [7].

5. We recall that a quasi-normed group is an abelian group X with a
function (called a quasi-norm) x| on X such that |0/=0, —x ' =|x and
x+yl< x'+yl. We write x, —» x, iff x,—x'—0. A sequence {x,} is said
to be fundamental, iff for any increasing sequence of positive integers p, we
have x, ,—x, —0.

Theorem 5. Let n, (n€N) be additive and continuous set functions on
a o-ring R with values in a quasi-normed group X such that {u,(E)} is a
fundamental sequence for each E¢R and let {E,} be a sequence in R. Then
we have

(1) lim u, (E,) =0 uniformly on N,
iff
(ii) lim u,(E,)=0 for each n¢ N.

Moreover if u(E)=lim, . u,(E), E€R, then u is an additive continuous set
fanction and

(i) lim u(E,,)—0.

m-—soo

Proof. Evidently (i) implies (ii). Suppose that (ii) holds. If (i) does not
hold, then there exist two increasing sequences of positive integers {%,} and
{l,} and a positive number & such that |ue (£;,) >e for each n¢N. We may

assume that k,—n and [,—n for n¢ N. Then we can write

(11) L 1n (Ep) >e.

Since (ii) holds, we can select an increasing sequence of positive integers p,
such that

(12) lim 1y, (Ep, ,,)=0.

Let now »,(E) u,"+I(E)—;z," (E). Since {u,(E)} is a fundamental sequence for
each E¢R, we see that lim,,.»,(£)=0 for each E¢®R. Hence by Theorem 3
lim sup tp, s (E)—1tp, (E)| = 0.

This implies that
lim ' up, | (E,,”+l)-—ﬂ,,n (EPn-H) =0.

n—»o0

Hence by (12) it follows -that
lim u, (E,

n-—soco

n+l)i0’

which leads to contradiction with (11). Thus (ii) implies (i). To prove (iii) we
note that

w(E,,) w(E,)—ua(E,) |+ ua(E,) .
Hence and from (i) follows (iii). This completes the proof.
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If in Theorem 4 [E,! is a disjoint sequence in R, then (ii) holds and
consequently (i) and (iii) hold for disjoint sequences. In other words, any point-
wise convergent sequence of additive and continuous set functions is uni-
formly continuous and the limit is continuous. This reduces to the case proved
in [4] when X is a normed space.

[et « be a countable additive set function on a s-ring =%, i. e., lim, , .u(E,) —0
for each sequence (£,} such that £,5F,. and N~  E, . Then it is easy

to verify that « is an additive and continyous set function. Thus if in Theo-
rem 4 u, (n¢N) are countable additive set functions and (£} is a nondecrea-
sing to the empty set, then (ii) holds and consequently (ii) and (iii) hold for
each nonincreasing to the empty set sequence. This means that the sequence
{1,} is uniformly countable additive and that its pointwise limit is a countable
additive set function. This is what Nikodym’s type theorems on uniform co-
untable additivity say. When X is a Banach space this reduces to the case
proved in [6]. When X" is a quasi-normed group this reduces to the case
proved in [2].

Let » be a nonnegative measure on a o-ring R and let « be a set func-

tion on R with values in a quasi-normed group X. The set function s is
v-contmuous_ iff (£, —0 as n-> oo implies u(E, —0 as n— ~~. Let {Ex} be
a sequence in R such that »(E,) -0 as n---, let E Uj;_,E, and let

R AFNE:F¢R). Then R’ is a o-ring and for any disjoint sequence {F,} in
9’ we have »(F,) 0 as n - ~. Consequently u(F, —0 as n—~ for any
disjoint sequence [F,} in :R’. This shows that x is a continuous function in &R’
Thus it u, (¢ N) are additive and »-continuous set functions on a o-ring R
and (E,} is a sequence in R such that »(E,) -0 as n — o, then u, are addi-
tive continuous set functions on K’ and (ii) holds for the sequence {E )
Therefore, by Theorem 4 (ii) and (iii) hold for the sequence {E,}. This is
what Vitali-Hahn-Saks type theorems say. When X is the real number system
this is the case proved by Vitali, Hahn and Saks. When X is a Banach space
this is the case proved in [6].

Theorem 5. Let u, (n¢ N) be additive and continuous set functions
on a o-ring R with values in a quasi-normed group X such that
(13) lim u, (E) w(E)

n—s oo

for each E¢R. Then we have

(14) lim sup | u, (E)—u (E)| 0.
n-+w E

Moreover, if X is a complete quasi-normed group and {(En| is a disjoint
sequence in R, then we have

(15) lim sup | X [u,(E,)—u(E,)) | =0.
n-sco ME‘R’"“"

Proof. By Theorem 4 s is an additive and continuous set function.
Therefore, the difference », u,—u is an additive and continuous set function,
moreover, lim,,.. »,(£) 0O for each E¢AR. Thus by Theorem 3 we have

lim sup | v, (E) =0,

neo [
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which is equivalent to (14). To prove (15) we take an arbitrary disjoint sequ-
ence (£, in R. Since X is complete quasi-normed group and »,(E)= u, (E)
—w(E) is continuous, we infer that for each Mc N and n¢N, the series
Smemv,(En) is convergent. Let {M,} be an arbitrary sequence of sets in O\
and let ¢, be a sequence of positive numbers tending to 0. Then for each
n¢ N, there exists a finite subset K, of M, such that

(16) z 1',,(E,,,)"~: >y ’n(Em) + &pe
meM" mel\’"

Since K, (n¢ N) are finite and », (n¢ N) are finitely additive, we can write
X vy (En)=va (F.),
KII

me
where F,—~Umex, E,, for n¢ N. Hence by (16) we have.
lim sup| X »,(E,) | =0.
] M.

oo m
n— J j

Since {M,} was an arbitrary sequence in & this implies (15). Thus the proof
of the theorem is complete.
In the case when X is the real number system the second part of the

Theorem 5 is equivalent to Phillip’s Lemma proved in [8].
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