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ON DUAL SPACES OF LOCALLY CONVEX SPACES
DEFINED BY IDEALS OF OPERATORS

HEINZ JUNEK

l.et 4¢ be an ideal of linear operators between Banach spaces according to A. Pietsch.
A locally convex space E is called an s-space if it admits a projective canonical spectrum
containing only operators of the ideal 4. In this paper it will be proved that if £ is an in-

jective, symmetric and complete metric space ideal then the strong dual space of each locally
convex metrizable ,{-space is an s{-space again. This statement generalizes the well-known

relevant results for nuclear. semi-Schwartz and Schwartz spaces.

1. Many facts about nuclear, strongly nuclear and Schwartz spaces may
be proved without using special properties of nuclear or compact operators,
but only that of being an ideal. The concept of #-spaces was introduced by
A. Pietsch [8], where & denotes an ideal of operators between Banach
spaces (see definition 2.1). This approach enables a simultaneous treatment of
many classes of locally convex spaces (1. c.s.).

A very important theorem of the theory of nuclear spaces asserts that
the strong dual space of any nuclear F- or DF-space is also nuclear. That is
why Pietsch [9] raised the question under what assumptions on the ideal #
the strong dual of an st-space is of the respective type again. We will call
this the dual space problem ani discuss it in this paper.

It turns out that it is useful to introduce two further classes of I c.s.,
called co-#-spaces and mix-s-spaces, because the dual space problem can be
treated only by using the interrelationship between these three classes (see
definition 2.1). These initiating considerations will be done in section 2. Mar-
tineau pointed out in 1964 that the strong dual of each nuclear F-space is
even strongly nuclear. These peculiarities will be described generally in sec-
tion 3 and will be important for the following sections. In section 4, in the
main part of this paper, the dual space problem will be solved for F-spaces
(see Theorem 4.1 and Corollary 4. 2). Section 5 deals with applications to se-
veral classical ideals. Furthermore, there will be shown that the dual space
problem in the case of [)F-spaces is not solvable for numerous ideals #. For
the class of all 1. c.s. the dual space problem is not solvable if the ideal # is
different from the class £ of all linear bounded operators between Banach
spaces. This can be proved as follows. Let B be any Banach space. Accord-
ing to [3] there is a quasicomplete (of course not metrizable) nuclear space
E with £, B. Accordingly to Mackey we have (E,), -£,- B. Since E,

b
surely is an s-space, B would be an s-space, too. But this is possible only
for 1,¢ . This shows st =E.

2. Classes of locally convex spaces defined by operator ideals. At first some
concepts of the theory of operator ideals in the sense of Pietsch (8,9
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which are necessary for the following description shall be given (see
also [1, 4]).

A subclass st of the class £ of all linear bounded operators between

Banach spaces will be called an operator iaeal, if the components (L, F)
AN B(E, F) satisfy the following three conditions:

(1) #&(E, F) contains the class F(E, F) of all finite dimensional operators;

(12) «(E, F) is a linear subspace of 8(E, F);

(13) 1i T€8(E, E), Se AE,F) and Re¢ 8(E, F,) then RST ¢ A(E,, Fo).

The ideal st will be called injective, if any operator 7¢8(E, F) belongs
to +(E, F), as soon as there exists an isomorphic embedding J:F— F, such
that J7 ¢ #&(E, F,).

For each operator ideal st there exists the dual operator ideal #? with
comporents AYE, F) [S¢8(E. F): S ¢ A(F, E")j.

The iceal 4 will be called symmetric, if & C A“. For instance the ideals 7
(resp. &V, &, &,) of all finite dimensional (resp. compact, weakly compact,
nuclear, strongly nuclear) operators are symmetric.

A functional a« defined on all ideal components (£, F) will be called a
quasinorm on s if the following conditions are satisfied:

Ii 1g denotes the identical mapping of the reals, then «(lg) 1.

There exists a constant » =1 such, that (S, +S,) #(a(S)+(S.)) holds
for all S,, S,¢ (£, F) and all Banach spaces E, F.

T¢8(E, E), S¢ ME, F) and R¢ £ (F, F,) implies aRST) R «(S) T .

It is easy to prove that S —«S) for each S¢.t. Therefore, a quasinorm
« on # defines on each component A(E, F) of s a separated uniform topo-
logy. An operator ideal st is called a complete metric ideal, ii it is topologized
by a countable system of quasinorms such that all components A(E, F) are
complete with respect to this topology.

Now we shall introduce the operator-ideal-defined classes of locally convex
spaces. Let £ be any locaily convex space (l.c.s.) and let 11(£) be a neigh-
bourhood basis oi the origin and B(£) be a basis of the bounded subsets of E.
We will assume that all elements of both 11(£) and W(E) are absolutely convex
and closed. Let the gauge functionals of U¢(£) and B ¢ B(E) be denoted by
p.- and p,, respectively, and let us define the linear spaces

E(B) lenB and EU-— E p,\0).

By Cgz: E(B) -~ E and Cy,: E ~ E U we denote the corresponding car.onical
linear mappings Now, the spaces £(B) and £/U can be normed by 'x 4
pe(x) and C,(x) , pu(x), respectively. Let their completions be denoted
by E, and E,. The mapping C,, C,C, can be extended to a linear bounded
mapping Cpuy:Ey + Ep For A, Be B(E) with AC o Band U, Ve I(E) with
UUC oV for some o -0 there exist canonical mappings C,,:E,— Ez and
Cuyy:Ey— E,. These mappings are determined by C,C,, €, and C,,Cv  Cy.
Definition 2.1. Let & be an operator ideal. A locally convex space
E is called :
an #A-space (denoted by E ¢ sp ), if for any Ve WE) there is a Ue WE)
with U C oV and Cyve AEy Ev);
a co-st-space (denoted by E¢co ) if for any Ac W (E) thereis a B¢ W(E)
with A C 0B and C ¢ AME ,, Ep);
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a mix-A-space (denoted by E¢ mixst) if for any A¢ B(E) and for any
U€WE) the mapping C ,, belongs to &(E,, E;. i

Because - is an ideal, this definition does not depend on the chosen
bases W(E) and W E". If 4 is the ideal of the nuclear (compact! mappings, one
will get the nuclear spaces (Schwartz spaces) and the conuclear sraces (co-
Schwartz spaces) as st-spaces and co-#-spaces, respectively. The ‘U-spaces
will be called infra-Schwartz-spaces.

A straightforward computation proves Proposition 2.2:

Proposition 2.2 (Permanence Properties'.

The class sp+ is closed with respect to the formation of arbitrary pro-
ducts (and finite direct sums).

The class co +t is closed with respect to arbitrary locally convex direct
sums (and finite products).

The class mix A is closed with respect to both arbitrary locally convex
sums and products.

There hold the obvious relations sp A C mix# and co .t C mix .

Proposition 23. Let & be an injective operator ideal and let E be
any l.c.s and F) its strong dual space. Then :

E¢coA? implies E, ¢ sp

E, ¢sp A" implies E¢«co. (Particularly, if + is also symmetric then
E¢cost and E,¢spst are equivalent (1)

If E is quasibarelled, then E¢sp A1 implies E, ¢ cos, anu vice versa;

If E is quasibarelled and E, ¢ co A® then E¢sp;

If E is uasibarelled and E:mix A" then E,¢mixst, and vice versa;

E}, ¢ mix A& implies E ¢ mix st.

Proof. Let {/° and A“ denote the polars of the sets U¢1l(E) and
A€y E), respectively. The Proposition is proved by the following statements:

“) ‘EU)’ E’[Yﬂ;

(ii) There is an isometric embedaing of E',, into (E,);

(iii) There is an isometric embedding oi E, into (E’y)"

In view of the above proposition the dual space problem can be reformulated
to the question under what assumptions is a mix-#-space an #- or co-#-space.
This will be answered in section 4.

3. DF-spaces belonging to sp . In this section properties of DF-s-spaces
will be described. To do this we start from a statement ‘given in an earlier
paper [5].

Theorem 3.1 |5 Theorem 4.2]. Let st be an injective operator ideal.
A mapping S: B - B, (B, B, Banach spaces) is said belonging to #°°(B,B))
if S can be linearly and continuously factored through an #-space E. Then :

AP is an injective oparator ideal contained in all powers A" of #;

A =a iff s is idempotent, i.e. A A2

The ideals 7, @, ‘U and &, are both idempotent and injective. The ideal
of the nuclear (or more exactly quasi-nuclear) operitors & fulfils &P-—d,

As mentioned in the introduction the strong dual of a nuclear F-space is
already strongly nuclear. This is a special case of the following proposition.

Proposition 3.2. Let & be an injective operator ideal and E any DF-
space. Then E is an #A-space iff E is an #A*P-space.
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Proof. Let {8, be an increasing fundamental system of the closed abso-
lutely convex bounded subsets of the s-space E. For a given neighbourhood
V,cWE) we select a sequence {V,} of neighbourhoods of zero V,¢11(£) such
that the canonical mappings Cv, v : Ev, - » Ev, belong to . Let {0pplnmen
be a system of positive real numbers with B, Co,.V, and let V- N{0.V,0

~n< -}. Since the chain B, C B,C ¢,,V, is valid for n m, we get

m-—1
Bmm V- Bmm n Onn Vu'
n==0

Because of N{g,V, 0 -n-—-m—1}¢ W(E) the set V is a neighbourhood of zero
[12,1V 6.7]. The space £, proj limEy is obviously an st-space. Because of
VCe,,V, the mappings Cyy : Ey— Ey  are continuous and consistent with
the mappings of the projective spectrum {Ev }. Therefore the mapping Cyvy, is
factored as Ey - E, — Ey,. This proves that Cyy, belongs to .. By mean$
of this proposition we will show in Section 5 that there are numerous ope:
rator ideals such that the strong dual space of a DF-#-space is in general
not an st-space.

4. Strong duals of metrizable t-spaces. Now we state the impor-
tant theorem of the theory of s- and co-A-spaces.

Theorem 4.1. Let & be an injective and complete metric ideal of ope-
rators, the topology of which is given by an increasing system {a,jnen Of
quasinorms «,. Then each metrizable mix-#-space E is also a co-#-space.

Particularly each metrizable #-space E is a co-#A-space.

Proof. Let {/,) be a countable basis of neighbourhoods of zero of £
and let A¢B(F) be given. The abbreviation £, will be used to denote the
Banach spaces Ey . By assumption the mappings C.,: E, — E, belong to
AE,, E,). Let x; be the constant corresponding to the quasinorm a. We
choose numbers 0<"¢, -1 which satisfy

(1) o Wxpa,Can) 1 (neN).
J=1

Let Z=['({2 "}, {E,)) be the Banach space containing all sequences {5,}.en
with EneE'l and (:-n) 4 E; 12 : Sn n<~' BY “I"(EII) ("i'lfns’l)iGN' where 'sl'n
denotes the Kronecker delta, an operator J,: E, > Z with | J, 2 "c, is de-
fined. Let 7,=J/,Can€AE, Z). Then

a(T,)=a/(J,C 1) J; aCay) 2 cialC ).

We claim that the sequence of operators S, X' T,¢ A(E,, Z) is a Cauchy
sequence with respect to any quasinorm «a,. In fact, for any n -k and each
p €N the estimation

nip nip { nip i
S,y S, a2 T)) S (M xpaTy)) - B (Hx)2 ‘c;a/(Cay)
=T B f~nil jonid VN o |
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is valid. Thus we obtain «J(S,+p—Sx) -X7°7 27¢ using (1). Since #& is comp.
lete, the sequence S, converges to an operator S¢e A(E, Z). Because of §— S,

a,(S S, it also converges with respect to the uniform operator norm. There-
fore we have Sy lim,.. S,x for each x¢ E, Because of

Oy

n
Sx - S Tx (6,Capx, :Ca2X,..., €xCanx,0,...)
=1

we obtain

(2) Sx=(c,CaixX ien-

Let p, denote the gauge functional of the neighbourhcod U;. Then the
set B |x¢E: pglx) Iz 27%p(x)—1} is absolutely convex, closed and
bounded, i.e. B¢ WV(E). The set M- {(¢,Cpix)ien: X€ E(B)} is a subspace of Z
because of

(3) (c,CBiX)ieNn 7 5‘-2“"51 Cpix ; ilzﬁcipi‘x)‘ palx).
i—1

i=

A linear mapping R from M into E(B) will be defined by R((¢;Cs,iX)ien)
— x, because Cp,x— Cpg.x' for all i¢ N implies p,(x—x")= 0, and consequently
Y — x'. Because of (3) R is isometrical. From (1) it follows ¢; Ca4; =1 for
all i¢ N. Thus for all x¢ E(A) we obtain the inequality

oo

Palx) S2 ep(x) 3;2"'6,- Caix ; ?_3]‘3"’?/ Cai palx)=palx).
= &=

Therefore A C B and the canonical mapping Caps exists.
Because of C4,x Cg:Cpax for all x¢E(A) the formulae (2) yield Sx
(€,Cp.iC 1.8X)ien, Where C,px ¢ E(B). This shows S(E(A)) & M. Thus (2) also
defines an operator 8':E,— M with §J,8', where M denotes the closure
of M in Z and /,, the inclusion M-~ Z. Since s is injective the operator &’

belongs to A(E, M). From RS'x- R((c,Cs,iCrax)ien) Canx we conclude
Ciu RS ¢ AE, Eg). This proves the theorem.

Corollary 4.2. Let & be an injective, symmetric and complete metric
ideal of operators. Then the strong dual space of each metrizable mix-#-
space E is an Av-space. Particularly the strong dual of each metrizable
A-space is an s-space.

Proof. Theorem 4.1, Proposition 2.3 and Proposition 3.2 yield the assertion.

Corollary 4.3. If 4 is an injective, symmetric, complete metric ope-
rator ideal tien A< is symmetric and idempotent. Particularly #A P-4
is valid.

To prove this Corollary we use the following Lemma.

Lemma 44. If A is injective operator ideal then each operator
T'c 40 B, B,) can be factored through a metrizable #-space E.
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Proof. According to the definition of #4' there is an st-space F such
that the diagram commutes:

T
3|

 Therefore there is a sequence {U,} of neighbourhoods of zero such tha
the canonical mappings C, .1 ,:F,., — F, belorg to st. Without loss of gene
rality we can assume that the mapping F — B, is factorable through 7. Accord
ing to [5, Proposition 1.7] the space £ -~ proj lim F,} is a metrizable A-space
Moreover, 7 factores through E.

Prooi of the Corollary 4.3. Let 7 be any operator of A, factoring
through the metrizable A-space E. Its adjoint operator 7" factores through the
Asr-space E; by Corollary 4.2. This means 7'¢AP°P or equivalently 7 ¢AsP=r?
Therefore
(4) AP C AsPsPd C AP,

Now let 7¢ A4 or T"¢ AP, By (4) we obtain 77 ¢4 PP, But AP*P is injec-
tive, thus 7 ¢ st*P<P. This shows

(6) AP C AP C AP,
Both (4) and (5) yield
5P — ASPsSp AP d_

Because of Theorem 3.1 this implies the idempotency of s°P.

If 4 is an injective, symmetric and complete metric operator ideal then
by Theorem 3.! and by Corollary 43 the ideal 4 is the largest injective and
idempotent ideal contained in +. Theorefore #4*® should be called the injective
and idempotent kernel of s.

Problem. Under which weaker assumptions on s the ideal A% is
idempotent ?

Corollary 4.4. Let & be an injective, symmetric and complete metric
operator ideal.

a. For each metrizable [.c.s. E the following are equivalent .

(i) E ¢ mix .

(il) E€ co .

(iii) E € co #*P.

b. For reflexive DF-spaces E the following are equivalent :

(iv) E€ mix 4.

(v) E¢sp .

(vi) E¢sp AP,

If £ C C then each of the conditions (iv) (vi) imply the reflexivity for
complete DF-spaces E.
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Proof. The equivalence of (i), (ii), (iii) and of (iv), (v), (vi) will be proved
by the Corollaries 4.3, 4.2 and by Proposition 2.3.

If Fis a DF-mix-s#-space then £ is a metrizable co-#-space because of a.
Since 4 < . all bounded subsets of E, are separable. But E is o-quasi-barrelled,
so it must be quasi-barielled. On the other hand, £ is semireflexive (cf. sec-
tion 5.3). This shows the reflexivity of £.

5. Applications and Counterexamples. 5.1. The results of the foregoing
section are applicable immediately to the ideals C,U, d, and &. In the case of
the ideal © this yields the results contained in [13]. The resulting statement
for the ideals ‘) and &, are new as far as I know. Furthermore, theory
is applicable to the ,-nuclear spaces according to Rosenberger [11]. ’

A statement for [F-spaces which corresponds to Theorem 4.1 (true
for nuclear DF-spaces) is missed. We shall show below that such assertion
does not hold for a wide class of ideals.

5.2. An operator ideal # is called /2-factorable if each operator 7 ¢ #4(B, B,)
can be factored through the separable Hilbert space /2. In this case the class
sp# is determined only by the component st (/%,/2) and we obtain the follow-
ing variation of the Theorem 4.l1.

Proposition. Let #& be an [*>-factorable operator ideal such that the
component & 12 [2) is a complete metric space with respect to a countable
system of seminorms. Then each metrizable st-space E is a co-#-space and
its strong dual is an #A°P-space.

Proof. We modify the proof of the Theorem 4.1 by an exclusive usage
of separable Hilbert spaces. First of all we may assume that each £, is iso-
morphic to /2. For given A¢B(£E) we define:

Z 1242 2"}, {Ea}) with | (&) 3=32% &

n=1

J,:E, — Z is defined by Ju(En)— (Oin€usn)ien, Where the ¢, are chosen in
conformity with (1) in the proof of the Theorem 4.1, maybe with C.,;

instead of a,(C4,);
B {x€L:pplx)* X 27Cp(X) -t

M {(c;Chix)ien:XE E(B)}.

Now it is easy to show that B is bounded and contains A and that E, is
isomorphic to /2. A repetition of this construction with B instead of A pro-
duces a bounded set C such that Cgc:Eg— Ec belongs to A (I3, [?).

5.3. To provide some counterexamples we use the following proposition.

Proposition. Let 4 be the ideal of the weakly compact operators
and E a complete l.c.s. Then E¢mixV iff E is semireflexive.

Proof. The l.c.s. E is semireflexive if and only if each set A¢ B (E) is
weakly compact in E. Therefore, A is weakly compact in E; too. This means
E ¢ mix V. Conversely if £ is a mix-U-space then for given A¢Y(E) and any
U¢W(E) the weak closure of the image C (A) of A is compact in (Ep),. But
E, proj (E,, is closed in the product space 1I{(Ey), U¢WE)]. Therefore by
Tichonov's Theorem A must be relatively weekly compact in £. Now A is
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absolutely convex and closed. Due to Mazur’'s Theorem it is weakly closed.
This shows the weak compactness of A.

A similar consideration shows that any complete L c.s. £ is a mix-C-
space if and only if each closed and bounded subset of £ is already compact.

Corollary. If E is a complete metric l. c.s. then the following hold :

E¢mix ‘U iff E is semireflexive ;

E¢mix C ifr E is a Montel space.

Let £ denote Kothe's example of a Frechet-Montel-space having /' as a
quotient space [6,§31.5]. Thus £ is not a ‘U-space (ci.[9; 22.4.5] or [4; § 6(6))).
On the other hand, by the above Corollary E belongs to mix C. Therefore,
it 4 is any operator ideal between € and ‘U then E is a mix-s-space but not
an s-space. Because of Corollary 4.2 the dual space F E, belongs to
sp C C sp.t. Since E is reflexive we have F, E. ThiS proves:

Corollary. If # is any operator ideal between C and ‘U then there
is a complete DF-#-space F such that its strong dual space is not an
A-space.

5.4. Further counterexamples are obtained for some /[*-factorable ideals.
Lel s be an [*factorable ideal of operators such that st(/% [?) is complete
metric. If (2, [2)? ~#({%, [?) then there is a DF-#°P-space, the strong dual of
which is not an st'P-space. To prove this we choose an operator 7°¢ #4(/2
[2)N\ A(/2, [?)%. Without loss ol generality we may assume that 7 is positive.
Then 72¢A(2 122" ' for all k¢ N. We define E—proj [({i2T)}, (R},
where {4,(7)} denotes the decreasing sequence of the eigenvalues of 7. An
easy computation confirms that £ is an (/2 [?)*-space for all ¢ N but it is
not an N 4((% [?)*-space. Thus E is not an s#-*P-space. Since FE is reflexive

the dual space E’ provides us with the wanted counterexample.

Note added in proof. As I learned after completition of this paper
E. Nelimarkka in his Doctor’s thesis “On operator ideals and locally
convex st-spaces with applications to Zi-nuclearity“, Helsinki, August 1977,
considered semi-ideals (i. e. sublpasses + of £ satisfying only the conditions
(1'1) and (13) of an ideal) to make a theorem like Corollary 4.2 for semi-
ideals applicable to .1, (a)-spaces.
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