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EXISTENCE OF EXTENDED MONOSPLINES
OF LEAST DEVIATION

BORISLAV D. BOJANOV

Extended monosplines defined by an ETP kernel K{(x, ¢} are studied. The existence is
proved of an extended monospline with minimal L, norm (1= p<(:c) among all monosplines
of pre-assigned multiplicities of the knots. The pml‘)ylem is related to the existence of optimal
quadrature formulae of fixed type.

1. Introduction. Let K(x, #) be a real valued difierentiable function defined
on /< J, where / is an open interval of the real line R. We postulate here
that K(x, f) is extended totally positive (ETP) on /> J. For the definition of
this and other terms employed in this paper the reader is referred to [1, 2].
We shall write

(1.7) X (

Xgy Xpyeony X, x,,_L.‘)

Yoy V1o eney Yy Yy

to denote that x is a system of n--2 distinct rodes (x,)"! in J of multipli-
cities (v,);*! respectively. Let [a, bjc Tc /. Given the positive integers (ve)?*!
Oa,vy), viyen oy vy (b, v,04); ) will denote the set of all systems x of the
form (1.1) with x, -a, x,.,=b, x,¢ 7T, kB 1,..., n. Inthe case T~/ we shall
omit the indication of 7. Let wf) be a fixed positive summable function on
[a, b|. We will further assume that all derivatives occurring in (1.2) below are
continuous. The function

b n1 gl
(1.2) M(c, x;t) [ Kix, ho(x)dx— 2 2 ¢ K, (X, 1),

a k=0 ;=1
where K;(x,t) (0" 0x*)K(x,t) is called extended monospline (EM) with knots
X and coefficients ¢ |ca,f. For any fixed system of multiplicities (ve)i*! we
prove the existence of knots x¢ O((a, »,", »,,. .., »,, (b,r,.,)) and coefficients
a such that

(13) M@, x:) , inf{/M(c,y:) p:¢, ye2(@v) vy, ..., vn (b, vas )},

b
where 1 p< oo, |f , { [ f(f) "dt}'r. In the particular case » — .. - —y,—1

we get a result announced by Karlin [2] and proved recently in [3; 4] (see
also |[5]).

2. Preliminaries and notations. Lverywhere in this paper ¢ denotes the
conjugate number to p, i.e, 1 p-1¢-1. We assume that | <-p< cc. The proof
of our existence theorem is based on the relation between extended mono-
splines of least L, deviation and best quadrature formulae in the class
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b
Kja, bl: {(F:Fx) F(f;x) [K(x, t)f(tde, felLja,bl, [ 4 -1}

We shall briefly recall ths relation. Given the nodes (l1.1) and coefficients
¢ ¢, we define

n+l "k"“l

S(e, x5 F) — £ X ¢, F9(x,).

k=0 ;=0
The coefficients a  a(x) are said to be best for the nodes x in the class
K,la, b] if

sup{ /(F)—Sl(a, x; F) : F¢ Kjla, b]}

infsup { /(F)—S8(c, x;F) : Fe Kjla, b]} — : R,(X),
C

b
where /(F) [ F(x)w(x)dx. As is easily verified,
(2.1) R,(x) inf M(c, x3-) ,  M@(x), x;-) p.
C

The quadrature formula /(F)~S(a(x), x; F) is called best quadrature formula
with fixed nodes x in the class Kj[a, b]. R,x) is the error of this formula.

It follows from the strict convexity of the norm . , (I<<p<Zco) that the
best coefficients a(x) are uniquely determined by x. The uniqueness holds in
the case p -1, too, since the functions |{K,(x,, f)} form a Haar system in [a, b].
Henceforth we set M(x;#) - M(a(x), X;¢). The equality (2.1) shows that there is
one-to-one correspondence between monosplines M(x;f) and the best quadra-
ture formulae in the class Kj[a, b] with fixed nodes.

Let us introduce the functions

b
(2.2) g (x50 ([ Mx;8)7dt)y=17 M(x;6) 7 ' sign M(x;1),

b
(2.3) B(x;x)  [K(x, Hho(x ;1) dt.

Evidently &(x;-)¢ K,la, b]. The converse of the Schwartz inequality implies
that @(x;-) is the unique function in K,[a, b] for which R,(x) /(F)— S(a(x), x; F).
Furthermore, it follows from (2.1) that the best coefficients a(x) must satisfy
the conditions

o0 i
ac,, Mic,x:) g a 0

b
for k O,...,n+1,4 0,...,», 1. This gives [q(x:t)Ki(x,;t)dt -0, which is
a

equivalent to ®“)(x;x,) 0. So we proved

Lemma 1. For any fixed system x of nodes (1.2) there is a unique
function d(x;-)¢ Kja, b] such that ®VX(x;x,) - 0 for k- 0,...,n 1,4 0,...,
v,— 1 and Ry(x) [Hd(x:)).
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Definition. Let the multiplicities (v,), ' be fixed and let TcJ. We
call the quadrature formula
b nel vyl
(2.4) [FHo(t)ydt- 2 X ap FOXx))
a k=9 ;=0
optimal of the type ((@,»,), v\, vu (b,r, 1) T) in the class Kgla,b] if
X € Q((a, v, vy oy v (b, v00); T) and

Ry(X) inf{R(y):y¢Xa,v,), vi. .., v (byvn 1); T

The nodes X are said to be optimal of the same type.

Now it is seen from (2.1) that our problem (1.3) will be solved if we prove
the existence of optimal nodes of the type ((a, »)), q,. .., ¥, (b, v, 1)). We con-
clude this section by showing some properties of the ETP kernels.

Let Z(f:7) derote the number of the zeros of f in the interval 7 count-
ing multiplicities.

Definition. A system of differentiable functions {u(t),..., up(t)}
defined on |a, b] is termed ‘“extended Tchebycheff system” (ETS) on |a, b)
iff for any non trivial fe¢span {u,...., uy}, Z(f;la, b)<N—1.

Note that the ETP property of the kernel K(x, f) entails [1] that the
system (Ki(x,, 0, k=1,...,m, 4 O,..., wu,—1} is ETS in J for any

x (Xve-v Xm0 An analogous statement holds according to the second vari-
Uyy ooy U,

able 7 of K(x, 1.
Lemma 2. Let K(x,t) be ETP on J<J. Then for any set of nodes

(1.2)  such that x,<<- - <X; ~@< X, << < Xe<Lb X1, < - -<Xn.y we have
n*} s
Z(D(x;-); ] = X v+ X g,
i=0 =l+1

where o, -1, if v; is odd, and zero otherwise.

Proof. Let SC(f;T) denote the number of the sign changes of f in the
interval 7. Clearly our assertion follows immediately from the next two state-
ments:

(2.5) Z(Fg;): /) SCg;la, b)),
n+1 2

(2.6) ZfiJ) X v+ X6 N
i=0 i=t 1

for every piecewise continuous in J/ function g and every EM f of the form
(1.2) respectively.

The estimation (2.6) is known one [3]. We shall give here a new simple
proof. Let us assume that o“Mic, x;¢;) 0t 0, j—1,...,my wu-0,..., u; 1,

ti¢J and w,+--+u, N4+1.This implies that the quadrature formula
b n-1 ','_l

(2.7) [f(ho(tdt-— = X ¢;: fO(x,)
a =0 ;=0

is exact for the functions
(2.8) (0" '0t*) K(x, t), 6 JjolLeoomouo 0,000, uy—1.
But the system (2.8) is ETS on /. Then the interpolation conditions
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PO (x,)~0 for i 0,...,n+1, 2=0,...,v,— 1 "o,
P®(a)=1 wtere » » if a x, and » 0O otherwise,

determine the function P¢span{0«“K(x,t)) ot j-1,...,m, u 0O,.. .., u;—1}
uniquely. Evidently P has not other zeros excepting (x;) in /. Then P(x) -0
in [a, b], since the zeros x;.i,..., xs have even multiplicities and P®(a) 1.
Therefore /(P)>0. On the other hand, the quadrature (2.7) is exact for P, i e.
I(P)=Sl(c, x; P)=0. The contradiction proves (2.6).

In a similar way we show that (2.5) holds. Indeed let us assume that
SC(g;(a, b))=M and Fg;x,)=0 for i=1,...,n 4 0,...,»—1, where
v M- 1. Then [2K(x, t)g(t)dt=0 and consequently

b
(2.9) | Pt)g(tdt 0

for every function P¢span {Ky(x,¢t), i~ 1,...,n, 4 -0,...,» —1}.But accord-
ing to our assumption g(f) chang:s its sign M times in (a, b), say at the
points £,..., &,. Since K(»,?) is ETP, the interpolation problem

P(E)-0,j 1,..., M,
P(t,) g(t,) for some £, ¢ (5, ..., Sy

has a unique solution in span {K,(x, f)}. Denote it by Py(#). In addition
Z(P,;J)—-M since {K,(x,t)} is ETS in J. Therefore P,(f) has precisely M
zeros in J. Then sign P,(f)- sign g(f) for t¢ (a, b) because g(t,)— Py(t,). This
gives [ P(t) g(t)dt>>0 which contradicts (2.9). The proof of the inequality
(2.5) is complete. The assertion of the lemma then follows from (2.5) and (2.6)
in view of (2.2) and (2.3).

3. Continuity of the error. We shall prove in this section the continuous
dependence of the extremal function @(x;f) on the nodes x

Let us set

Qpla, by) -y (ry,..., Iy (R“':a, L N AL
y will denote max, , v, for every y (r,..., 1y) ¢ RY. Denote by Q((a, »,)
Vis oo os ¥u(Byvni1) i@y, b)) the closure of Q((a,v,), v, ., v, (0,7, 1)5]ay, b))
i. e., the set of all points y¢ Q,[a,, ;) for which there is a sequence {y"} in
QU@ vy)y Viye ooy Yy (B0 1)@y, b,]) such that lim; e YOy 0. As in [6] or
7] one could show that

inf{ A’(y; N ) P:yé !.)((ay y”), yl)' LA ] l'"' ‘bv Yn l);IaID hll)}
inf{ M(y:-) p:y€Q((a, v), vi,- -y v, (b, vai1)s]ay, 6]}

for every interval [a,, b,]¢ /. Next we shall slightly improve the above assertion.
Lemma 3. Let |y} be a given sequence in Oa, vo), y oo oy v (B, vn )
[al,bll) and let

X - (xli"‘I Xm ).

Wpye ooy My
Suppose that lim; .. y" —x/ 0. Then the sequence \M(y\");t)} converges uni-
formly to M(x:t) on |a,, b,].
Fsvroof. It is well-known [7] that the sequence {M(y”:#)} converges uni-
formly on [a,, b,] to a certain EM M(c, x:¢). Without loss of generality we
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may assume that y¢ -x| —.ix for all 7, where X 3 'ming x n Xz1— X,

Denote by v{),..., *“A» the coordinates ¢ of y*) yor which x,—7 -.x. Le.
us rewrite Miy'9 ;#) as
b m up—1
M, (t) ’;f K(x, t) o(x)dx ——kﬁl _‘_‘"}.! ad K[y ..., v .3t

where f[r,,..., 7,] denotes the divided difference of f based on the points
o~ -+ -1, Evidently AK[yY),..., ¥, it] converges uniformly to Kj(x,?)
on |a,, b,) It was shown in |6] that the number sequences {a{)}= are bounded.
Hence we may assume that lim, .. a‘,:; c,;- Let a ~{ay,} be the best coefficients
for the nodes x. Obviously

m w1

b
M, [ Kx, olx)dx— = 2 agR[3),. . ¥ it
a k=1 ;=0 o

This gives M(c,x; ) p - M(x;-) , since lim; .. M;(f) - M(c, x ;7). But the best
coefficients a are unique. Therefore ¢=a. The lemma is proved.
Corollary 1. Under the same assumption as in Lemma 3 we have

lim @Dy ;) —PpIN(X5-) ca,60=0

=13

for j 0,..., max (uy, ..., u,)

Indeed Lemma 3 implies lim; ,.. ¢{y';- —¢(x;:) =0, where - - = for
l<p<oo and - — - , for p 1. The result then follows from (2.3) realizing
that Kj(x, f) is continuous.

Corollary 2. R, is a continuous function in Q((a,r,),»,,..
Vs (h’ Vn '))

It is an immediately consequence of Corollary 1 and the equality R,(x)

I(D(x5-)).

4. Characterization of the optimal quadrature formula

Theorem 1. Let the multiplicities (vx);] be even numbers and let the
quadrature formula (2.4) be optimal of the type ((a,»,), vy, ..., ¥u (b, 75:1)
la,, b)) in the class Kja, b|, where a,<a<b<b ,and 1<q -~. Then a<x,

> —1
X, <b, @01 >0, (1" aw, >0 and ‘
0, a,, ,>0fork 1, ...n

al." 'k—l
Prooi. Consider the function My¢)= M((a(x),y; ) !, for

Xoyeoor Xp_ 1o by Xptyseoey Xnil _
y ()',,,...,l'k_l, Vi Vk+l,---,"n~l)
It follows from the optimality of the nodes x that M)(x,)—=0 for a,<x,<b,

M (a,) 0 if x, a, and M (b,)--0 if x, =b,. But sign M(x,)= - sign{ak

J—1
D)X 5 x,)}. Therefoer.

(4.1) ak."._,,fl)""‘(x;x,) 0 for a,<<xax<b,,

(4.2) ar,, 1 P(x;%,)0,

(4.3) @, 1 PU(X5x,) O,
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On the other hand, by Lemma 2, Z(®d(x;-);J) v, +- -, This implies @6
(Xx;x,) - 0.Theninview of (4.1) we have ay,, 1 = 0for a,<<x,<b,.

Next we prove that a,< x,. Indeed, assuming that «,-x, we obtain
sign ®"V(x;x,) (1)’ since the numbers (»,)7 are even and &(x;f) 0 in
|a, b]. Then (4.2) gives
(4.4) (— 1y 'a,_,‘,, 0.

Now, by virtue of Lemina 2, Z(#x;-)) -SC(e(X;-);(a, b)). Hence M(x:7) has
N vyt 4w, distinct zeros at least in (a, #). Let us denote them by
[y..., ty. The equalities M(x;¢;) -0 show that the quadrature formula (2.4) is
exact for all functions of the set »>: span {K(x, ¢} ,. Let us apply (2.4) to
the function P¢ 32 which is defined by the interpolation conditions

PYDx) 1, PiYx,) 0, 4 0,...,» -2,

Px,) 0, k-1, 4i-0,...,v—1.

Since K(x, t) is ETP, the function Pis uniquely determined and Z(P;J) N 1.
Hence P does not vanish in other points excepting x,..., X,:1  Then
(—1)=P(t) O for t¢la, b] and consequently

(—1reai, 1+ (—1)Sa, x:P) (—1)l(P)>0.

The above inequality contradicts (4.4). Therefore a,< x,. Analogously, using
(4.3), one can show that x,<<#,. Now it is easy to see that a<lx,, x,<b.
Indeed, let us assume that @a>>x,. Obviously the nodes x are optimal of the
type (@, v,), ¥iy oy ¥ (B,7vno1):3[x,, b)), too. Then, according to the necessary
condition we just proved, x, must lie in the open interval (x,,,) which is
impossible. Hence a< x,, since @ x,  x, by assumption. A similar argument
shows that x,<b.

Next making use of the equalities ax,,, 1 0, k 1,...,n we see that

Ak, -2 S(a, x;P) [(P)>0,where P¢ span {K(x, r,-)}‘/\'j,' and

P Dk 1, POYx,) 0,40 0,.. ., v, 3,
PO(x;) 0, ik, 2 0,...,», 1.
Finally, a, ,». ' /(P)>0 for P¢7? and such that
Pore—Na)y 1, Pia) 0, 2 0,...,», -2,
PiO(x,) 0,7 1,...,n+1, 2 0,...,», 1

Similarly ( —l)'""l la,,.,l,,”ﬁl 1>>0. The theorem is proved.
Theorem 2. Let the multiplicities (v, ' be fixed. Suppose that

Viseouy v, are even numbers. If RyX) Ini{Ry):ycQa v, v, .y ¥
(Byvui1)ila, b)), 1<q ~co and XEQi@ »), ry.. , v, (byvar1)i]a, b)) then the
nodes X must be of the form

X (B Xveoor X b )
Moy My ooy My Wmid

where w, vy tmii Va1
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Proof. Evidently w«, », tm 1 v,.1. Let us assume that u,>», Then

wg=vy+v, - -+r;forsomej, 1=j—-n. With any h, O0=h—x,—a we associate
the nodes
X» (@ ath, X,..., X,, b
u, vj, iy v oy My Mmoo
where « v, -+, Since X, € QU@ vy), Vise ooy Vi (0,7 1) 54, b)) we have
(4.5) RyX)“Ry(X)  MXn3) p= M(Xn3+) g

where
ll‘_1

~ b f
M(xn3t) - [K(x, Ho(x)dx — X apKi(a, 1)

=0

rg—1 m1 u,—;—‘

— 2 auDi(K(-:tyh)— X X a Ki(xg t).
i=p i=1l i=0

Here D,(f;k) denotes the divided difference of the function ilf(f) based on

the points a,...,a, a ' h,..., a+h and {a,;} are the best coefficients for

—
" rtl—u

the nodes x. Evidently D;(K(-:t);0) K;(a,t) and lim,_o M(Xn; ) p Ry(X).
Then, in view of (4.5), we have

o ¢ ~
(4.6) ah;,’ M(xp3t) Pdt -y 0.

In order to evaluate the above derivative we observe that D;(f;h)

Ja "u(¢) f*(t) dt, where u,(f) is the corresponding B-spline ([8:9]) of degree
i—1 with knots @ and a--4 of multiplicities « and 7--1-—u respectively. It
is not difficult to verify that u,(#) —(1/k2)u((t a)/kh), where u(-) is the B-spline
of degree i1 with knots at 0 and 1 of multiplicities » and A+1 -« respec-
tively. Then

a+h 1
Difsm ) [ ult—ay k) fotrdt— [ () fo)a+h) dr
a 0
and consequently
1
(4.7) S DAfih) umo [ () fO D (@ dr o apf6D (@),
0

where «,  [lru(r)dr. It is well-known [8] that u(z) O for z¢[0, 1] and u(r)=+ 0
Therefore a; >0. Now, using (4.7), we get from (4.6)

0o "~
oh ;,’ M (Xpi 8) 7 dt g

b uo—1
p [ Mx;t)” " sign M(x; )| .y 2 a,;4,K, . (a, t)ydt 0.
a i=n
This, together with Lemma 1, gives
-1

,‘\': apa, PV (x5a)- —ao, 14, P(x;a) 0.

'
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But ¢« (x;a)+0, as a consequence of lLemma 2. Moreover, @) (x;a)>0,
since @(x;t) 0 for t¢|a, b). Therefore ay, ,, 1 -0 which contradicts Theorem 1.
So we proved that «, v, In a similar way one can show that wum .1 vas1.
The theorem is proved.

5. Existence. First we prove an auxiliary resuit.

Lemma 4. Let h be an arbitrary positive number and let f¢C [t h,
v h|. Suppose that f has exactly r zeros in [t—h,v+h| and f(r—h) fx+h)

0. If 0<m<f(ty<M for all te[r—h,t+h] then p—a>m(Mr!272) 1% h,

where a, 3 are the zeros of f2(f) in [t —h, t+h).

Prooi. By Roile’s Theorem f*)(x) has exactly r—k zeros in [r—h, v-t-h)

Denote them by {4/~ (ty -+ ~te, x). Evidently f5(x) f’,"‘_' SNt dt
for k-~ r -2 and consequently i
(5.1) max  f(X) = (tr, r—r—Lr) max fE D (x).

tpy ¥ R r—k te a0 - dr N k]

Let £ be the unique zero of f '(£) tn [r A, v+ h|. Then
max  fr=2(¢) — fUD(E) - M(B—a)?/4.
asst<p

Since t,, <5<ty , » tor B 0,...,r—2, a repeated use of (5.1) gives
(5.2) foOE) (k) % p—a)®M 4, kR 0,...,r 2.
Now suppose that = _r. By Taylor’s formula

r—1 x
flx) T O gy kT ety T O dt.
k—0 (r— l)' 3
Making use of (5.2) and the assumptions of the lemma we get for x =
x r—2
fxy - g™y J—tr=tde— B fRE) x— 4R
t 3 =]

Sm(x 1)y Irl—MpB—a)2hn) °.
In the special case x t+#4 the above inequality gives 0 f(x-+h)>mh"r!
M(B—)%(2h)” 2 and our assertion follows immediately.
Now suppose that r & Let x- 7 In asimilar fashion as above we obtain
fxX)< m(r—x)y rt - M(B—a)*(2h) *
for odd r, and
flx)>m(x—1)'rl—MQpB—a)*(2h)y *
for even r. This together with the assumption f(r— &) 0 yields M(f— a)*(2h)
~>mh’/r\. The lemma is proved.

Theorem 3. Let K(x,t) be an ETP kernel in JXJ and let |a,b|C /.
Suppose that 1<q-~. Then for every sysieir (vy)'' of multiplicities there
exists an optimal quadrature formula of the type ((a,v,), ¥i,- -, ¥, (b,7a11))
in the class Kja, b The nodes (x,)"' and the coefficients a {a,,} of this
quadrature formula satisfy the relations

a X, <X, <: <X, <Xp | b,

aﬂ.'o-|>00‘ l)"“' Ian Lopat 1 >0,
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g,y 10, Qpi >0, j0,2,..., vg—2 for even v, 1 ~k-—n;
a,;>0,j 0,2,...,»,—1 for odd »,, 1 & -n.

Proof. First we consider the case when the multiplicities (»,)] are even
numbers. Let o inf{R,(y):y¢ 2((a,v,), v, ., ¥a, (b,vs:1))}. By virtue of The-
orem 1 we have

0 inf {Rq(y)l y/( .‘_)((a, l',.), Vigeo sy ¥y (bv "n—~l);lav b])}'
Since R,(-) is a continuous function in Q((a, »y), vy, ..., (b, va.1);]a, b)), there

exists X€Q((a, v)), v\, .., va, (b,v,:1):]a, b]) such that o Ry(x). According to
Theorem 2, x has a form

(@ Xuo-o X b )
Voy Myye ooy Hpyy Vpod

X

Obviously m--n. In the case m-—-n we have u, —v,, k- 1|,..., n and hence the
nodes x are optimal of the type (a,»,), »y,..., ¥s, (b,7,11)). Now assume that
m<_n. Then there is a node x, for which w, v, -vzo1+---+»e.; and ; 1.
With any 4, 0--& -.Ix, we associate the nodes
X(h) ((Z, Xiyeooy Xi—1 t—h, TRy, Xpo1y..., X b ),

Yoy Myy ooy Up—1, Yoy Mp—Viy Mkilyeeoy Upyy Voo

where 7 is a point from |[x, /4, x, k] which we shall collocate below. It
follows from the optimality of the nodes x that

(5.3) RyX) - Ry(x(h)).

Next we shall note some properties of the function @(x(4);¢). First we observe
that there exist numbers ¢ and k&, 0<e< AX, 0<<h,<<e/2 such that

(5.4) @"“# (x(h); t)>0

for every f¢|x, ¢ X, ¢ and k A, Indeed, as we saw before, @'“¥'(x;x,)>0
Consequently »'“¥(x;£)>0 in a neighbourhood of x,. Then (5.4) follows from

Corollary 1.

The inequality (5.4) and Rolle’s Theorem yield that @' (x(k):¢) (A O,...,
w,—1) has wu,—74 zeros at most in [x,—¢ x,+¢). On the other hand, @(x(k);?)
has w, zeros in [x,—&, X,+¢]: r—h and v+hk with multiplicities », and wu,—»,
respectively. Therefore

@) (X(h): t) has exactly u,—4i zeros

(5.5) . .
in |x,—e x, ¢ for every h-—h,, 2 0,..., u.

Now suppose that 4 is fixed in the interval [0, #,). We choose the point
v t(h) to satisfy the requirement

(5.6) I (x(h) s x,) 0.

It may be done. Indeed, let s(r) denote the unique zero of @' V(x(h);t) in
[x,—& x,+¢]. It is not difficult to verify that (z) is a continuous function of
v for fixed 4. In addition &(x,—h)<<x,and &(x+h)>x,. Therefore there exists
r€(x, —& x, +e) for which &(z) - x,. In what follows we assume that the point

r is chosen in this way.
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Since @'“®(x(h);t) is a sontinuous function in |a, b], we conclude from
(5.4) that there exist constants C,>0, C, >0 such that
(5.7) Co>P"K(X(h) ;) >C,, Le|x, & Xp+é
for every A -h,. Lef t,,..., ¢, - be the zeros of @V (x(h):¢) In |x, —&ex,+&]
Then, by Newton’s interpolation formula,

t-h
(5.8) DX(R)3t) (b))t ) [ u(x) DR (xX(h); x) dx.
t—h

Here u(x) is the corresponding B-spline. Hence ([8], [9}) u(x) O and f:fff u(x)dx
1 (np—4)! Using (5.7) we get
(5.9) DO(x(h);x,) Ch'* 'y i 0,..., u,
for all # - h,, where C does not depend of 4.
Let «, § be the zeros of @"“# “(x(h);t) in [x, ¢ x,+¢&. In view of (5.6),
(5.7) and (5.8)

&% P (x(h): x,)  max @k P (x(h);t) =C(F—w)?4.
W't g

Then, according to Lemma 4, there exists a constant, denote it again by C,
such that ’

(5.10) @V (x(h) 3 x,)  Coh%
Finally note that

(5.11) DV (X(h) 5 xk) <0,

since a<x,<f and ®"¥(x(h);t)>0 in [xz ¢ Xx,+ &
Clearly the nodes x are optimal of the type ((a, »)), u,,. .., t,, (0, 7n -1);la, b)).
Then, according to Theorem 1,

(5.12) @yt Oy @r2>0, k1, m,

where la,,) are the best coefficients for the nodes x. Let us apply the optimal

quadrature formula with the nodes x to the function &(x(k):f). We get

(5.13) Ry(x(h)—S(a, x: DX (h):.) - Ry(x).

Next, in view of (56), (5.10), (5.11) and (5.12), R,(X(h)+ax_,, 9y C h2—0
(h)y  R,/x), where

3

g
Mh) X oa,, PH(x(h);x, .

k=0
But, according to (5.9), &(k) O(kh') when h 0. Hence
(5.14) Ry x(h))<R,(x)

for a sufficiently small 4. This contradicts (53). So m n and the existence
part of our theorem is proved in the case of even multiplicities (»,)].

Now consider the case of arbitrary multiplicities (vy)!  '. Denote w, 2[(v,+ 1) 2.
k 1,..., n,where [.]| is the greatest integer function. Since the numbers (u)]
are even, there exists a system of nodes x which are optimal of the type
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a, vy, tyy. .., 1ty (b, v, 1). But, according to Theorem 1, a, w—1 -0 T
where the coefficients {ag;| are best for the nodes x. Then the nodes x are
optimal of the type ((a,»), »,, ..., vu. (b, 7, 1)) too.

In order to prove the last assertion of our theorem we observe that the
monospline M(x;?) has the maximal number of zeros. Denote them by £,,.. ., f,,
N ity LY7o, Then [’ K(x, f)w(x)dx

) S Tk %
= a,K;la, t)—+ S Qp, Kb, t)+ X X a,Ki(x,t))
h =} k =0

=1 L=

vo—1 vy 1—I

for j1,..., N. But {K(x, #)}" , is an extended complete Tchebycheff (ECT)
system in [a, b], because K(x, ) is ETP in J and |[a, b]c /. Then a,;>0, j 0
2,...,vg—1—1, k=1,..., n, according to an observation due to Karlin and
Pinkus [10, Proposition 2]. The proof is completed.

The following is a consequence of the relation between optimal quadrature
formulae in A [a, ] and monosplines of least L, deviation.

Theorem 4. Let K(x,t) be an ETP kernel in JXJ and |a, bljcJ. Sup-
pose that 1 p<_~. Then for any system (v,)'*' of multiplicities there exists
a monospline M(a, x;t) with nodes a x,<x,<---<XxX,<Xp.1 b such that

M@, x:) ,  Mb,y; ) , forall ye((a,r,),v,,..., v, (b,v, 1) and all real

coefficients b. Moreover, a,,, 1>0, (—1)’"“"'a,,.,_,,,+l 1 >0, @, ,,—1 -0,
a,; >0, 7 0,2,...,v,—2 for even vy, 1 -k -n, a,;>0, j-0,2,...,»v,—1 for
odd v,, 1 “k-—-n.

It can be derived from (5.14) that R, (x)<<R,(y) if x and y are optimal of
the type ((a,»y), vi,. .., v,, (b, va 1) and (@, v)), V. ooy Vo o, Vi Vi Virtye - -,y
v,, (b, v, 1)) respectively. This fact and Theorem 3 imply the following refire-
ment of Karlin’s result [2] (see also [3]).

Corollary 3. Let the nodes x be optimal of the type ((a,»),1,...,1,

— —

(b, ) in the class K,a, b] (1 -p<~). Then M(x;-) , - M(y;-) , for all y

of the form y (@ Yi--os Yn f:, where |(v,--1) 2]+ - - [(va- 1)/2] ~m. The
Y, ¥ise ooy Yy
equality holds only for n m and v, --- v, L

The main result of this paper was announced in [11]. The method used in
the proof of Theorem 3 is a modification of the method employed by the
author in [12:13] to show the existence of optimal quadrature formulae of a

pre-assigned type in the classes W/[a, &] (1<<¢ - ).
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