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PHASE SPACE AND THE WIGNER EQUATION
A. JANNUSSIS, N. PATARGIAS, G. BRODIMAS

This paper is concerned with the Wigner equation, through the theory of the Quantum-
Mechinical foundation of F. Bopp in the phase space. The Wigner equation is similar to the
Quantum Statistical equation of von Neumann and its solutions can be expressed in a similar
way. For the case of the stationary distribution the solution of the Wigner equation is given
in form of a power series in terms of (h/2)%.

1. Introduction. Apart of the known representations p and ¢ of Quantum-
Mechanics in the configuration space, F. Bopp [l] gave a new quantum-me-
chanical description in the phase space, i.e. the space of 6V coordinates. That
is there exists a function f(g, p, {) — average density of distributions from which
one can form the averages of all the observable quantities. This distribution
is different from the probability density of Classical Mechanics and even more
it accepts negative values. Bopp stated 16 requests, which must be fulfilied
by the average density of distribution f(p, g, f). The results of his whole theory
[2] are separated in two basic parts.

First, for the function f(p, ¢,f) the following differential equation holds

(1.1) i hof ot —{H(P, Q)—H(P*, Q*)} f,

where - p—(ih/2)0/dq, Q- q+(it/2)d/dp, P* Q* are the complex conjugates
of P, Q, and H(P, Q) is the Hamiltonian operator.

Second, a series of rules and formulas is used which in their greater part
are due to Wigner [3] and the results obtained correspond to the usual
results of Quantum-Mechanics (¥-functions). Equation (1.1) is called Wigner
equation and for h— 0 coincides with the Liouville’s equation in classica
Statistical Mechanics, which is

(1.2) of 0t —{H, f).

Also, when the operator of Hamilton consists of quadratic expressions of
¢, p, the Wigner equation coincides with the Liouville’s equation.

Here we study general properties of the Wigner equation (I1.1), bacause
it is similar to the von Neumann equation and its solution can be expressed
in a similar way. We also find approximately the everage stationary distri-
bution, i. e. the time independent one, expressed in power series of (h/2)%

2. Remarks on the Wigner equation. We note first that the new Ha-
milton’s operator (P, Q) through a transformation [4] can be reduced to an
equivalent Schrodinger operator in the p or ¢ representation and then the
eigenvalues of the operator /(P Q) coincide with those of Schrodinger.

Through the known solution of the motion equation of von Neumann
Jf ot =(1/ih)|H, f], which is of the form f-=exp|iHt/h] f,exp|—iHt/h] we ob-
tain a similar solution of the Wigner equation (1.1), i. e.

SERDICA Bulgaricae mathematicae publicationes. Vol. 3, 1977, p. 288—291.



288 A. JANNUSSIS, N. PATAGRIAS, G. BRODIMAS

2.1) f=exp |5 (H(P, Q—H(P, Q) fo’

where f,(p, ¢)=f(p, ¢, 0) is an initial distribution.
The solution (2.1), for h — 0, gives the known solution of the Liouville’s
equation [5], i. e.

(P, 48 exPL—Hspir auto) —antey 3oy /PO 9(0)).

3. Connection between the equations of Wigner and Schrodinger. The
Wigner equation (1.1) has the structure of a Schrédinger equation, but instead
of having Hamilton’s operator in it one has the Wigner’s operator

(3.1 H(P, Q) ~H(P*, Q%)= Wy, p, 0/dq, 9]dp)

and the number of independent variables has been doubled [6].

For the Wigner propagator we take the initial condition f(g, p; ¢/, p’, 0)
=38(q—q)o(p—p’), and then the Wigner propagator can be expressed in the
following form:

(p.a: @, P, 0= 2o, (g p')exp [— i@ —w)tly (g, P)

where ;- E;h are the eigenvalues of the operator (3.1) and ¢:,(q, p) its
eigenfunctions, coinciding to the phase space eigenfunctions [7]. Because of
the above correspondence we can apply the well-known procedures for the
Schrodinger equation [8] and we can determine the Wigner propagator in se-
veral known expressions of Hamilton’s operator. Further more, we are also
able to transform the Wigner equation (1.1) to an integral one, which for
the operator H—=Hy+H, is

t
(3:2) flg,p; ¢, P O=fq,p; ¢, P, t)—"f ar[fog, p; q", p", t—0)[H(P, Q)

’—H(I)*' Q*)]f((/”’ p”; ‘]’v P', t')dlf'dp”»
where fo(q,p; ¢, p’.t) represents the Wigner propagator of the operator
Wo=H,(P, Q)— H,(P*, Q*). The last term of (3.2) is small if /, is small and
it is a correction term to the approximate equation f~f, If the correction
term is small we can use an approximate f in order to have a better appro-
ximation for f. Proceeding in that way, we get finally the following result for
the Wigner propagator :

!
flg,ps ¢, P 0 fog,ps 4P 1) M‘!'dt'qu"dp”fo(q, p:q,p,

t"t’) lfil(,)lll Q") HI(P."' Qm’)].f(l(‘l"» p”; l]'. P’- t’) ‘}‘ et

The above series may be used in several cases, when the operator /7, is con
sidered as perturbation.

4. Approximate solution to the Wigner equation in form of power
series of (h/2)%. The sufficient and necessary condition for a system to be in
Quantum-Statistical equilibrium is [/, f] =0, or, equivalently,

(4.1 Jf /ot 0.
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The last equation means that the mean values of the quantities, which deter-
mine the ensemble are necessarily time independent.

If we apply condition (4.1) to the Wigner equation, we may say that
the average density distribution f(g, p) is time-independent and that the en-
semble is in equilibrium or we may say that we will have a stationary distri-
bution, which for h—0 tends to the classical one.

The Wigner’s equation (1.1) for the stationary distribution df/df=0 is
written as

42 |Hp="y g a+'y 5)—H(p+'5 50 -5 )| P D=0

The above equation by expansion of the operators in terms of (h/2)?, when

& p?
H(P, Q) % on +VAQu Q- - -, Qu),
J=1
is written as

{_,l_p .vq‘f‘*l' ) (ih‘,‘2)nl+"2""‘""k‘l
m 2”1' Pysveeitly

(T Yy e
n!ng! ... ny ! R, S R AN, [
2! k aqlu)q?z .quk dpl 10p22...0pkk1

For simplicity we consider here the case £#—=1 and the last expression takes
the form

1 Vo (h)1l &V n 1 gl gl
{ dq+0q op ( ‘)3! o opst (=D ( ) @n+ 1)1 gg2a+igpinti =0.

If for the solution of the above equation we set f(g, p)=Z7(t/2)*"f,.(q, p)
then for the calculation of the new functions f,,(g, p) we are lead to the fol-
lowing partial differential system of first order:

_F dfo oV df,
“m aq +dq op i

pof. V. 1 BV,

" m dq +dq dp  3'0g¢% ops — =0

_.>1A_~02n+|Vd2n+|[') B 1 def’ i
(2n+1)! ()q2ll +1 dp2n+l -+ 31 dq‘ ops

P fan + dV()f-,,

" m dq '"dq odp -0

+(- 1)

The first equation of the above system coincides with the Liouville
equation (1.2) and accepts a solution f,(q, p)=F\(H), H~(2m)'p?-+ V(g)= const.
We can easily find the solution of the second equation, namely

1 J BV BF(H
fog, P)=—FoH) 5 [, H”dq o ‘of,(s ),
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Working similarly, we find that the function f.,(g, p) is given by the relation

op 1 [02"“Vd?”“F(H) 1 08V 3fan—1)

f‘.'n((]v p) 7F4'(H).’ oH ()q (Qn—f-l;' oqz,’,:*:f dpz"'H‘ + cte "L; oqd dp‘ ]

Using the same procedure, we find a solution of (4.2) in the following form

f S(h\". ap 1 "ty 9P HIF(H) 1 3Vo3fa(n—1)
flg, p) Fu(H’ll "(2) JOH 0q (2n+1)!| gp2nil  gpintd S +3!d{ji‘ op* |

which can be written in the following simpler form
h\2 1 dp OV OHF(H) h |4
1@, )~ FoltHy U= (5 ) 31 T o oo ((g))+ -

The above results verify that in fact a stationary solution of the Wigner
equation has been found, expressed in form of power series in terms of (h/2)"
One can extend these results to the phase space of 6/N-dimensions.

5. Wigner distribution for square forms. From [8, part 3] we have
that when one knows the propagator of the Wigner operator, the Wigner
distribution is given as f(¢, p, t)= [ [f(q, P, q', P’, )P(Q’, p')dq'dp’, where d(q’, p’)
is a distribution [6].

The propagator f(q, p; q’, P, ?) is expressed as a Fourier integral, namely

fap: @ity [expl BT TPty s 0@ G - o 0dTdT

n=1

where ¥ (q, p, £) is the corresponding Schrodinger’s propagator of the Hamil-
ton’s operator [9].

From the above one can easily study the case of quadratic forms, for
which the Wigner equation (1.1) coincides with the Liouville’s equation. For
all quadratic forms the propagators of Wigner are expressed through d-func-
tions and are independent of h.

In the case of free particles the Wigner distribution is of the form

(5.1) fiq.p,t) @(q—pt'mp).

Also in the case where a uniform electric field is presented, the Wigner
distribution is of the form

F
(5.2) f@ Pty (@ Pttt p—eF).

Finally, in the case of a spherical harmonic oscillator the Wigner distribution
is given by the relation -

(5.3) flq,p, f) P(qcoswt »”?” sin wt, maw q sin wt -+ p cos mt).

The Wigner equation for quadratic forms coincides with the Liouville’s
equation. Therefore, the following result stands [10].

For every quadratic form of the Hamilton operator, the Wigner dis-
tribution results at once from the function d(q,.p), if q, and p, are re-
placed by the initial values of the canonical variables, i. e. the solutions of
the canonical Hamilton’s equations.
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In the case of free particles we have the solutions q=q.+ p/m,p P,
and the distribution coincides with (5.1).

The same happens in the case when a uniform electric field is present.

Then the classical equations of motion are of the form dq/df-p/'m
dp/dt eF, which by integration become

eF o £ ) eF
p=eFt+py q=Qot g, B+ =Got+ o -5, 12

or
F
o=p eFt q, q—’:H—;mt-.

Consequenty, the distribution @(q,, p,) coincides with (5.2).
Also in the case of the simple harmonic oscilator, the solutions of the
equations of Hamilton are of the form

q q,coswt %—:3) sinwt, p = —mw q,sin wt +-p, cos wl,
form which the values of (q,, p,) result easily, that is
qo -q cos wf — ”':m sin wt, p,=p cos wt-+mw q sin wt.

So, the distribution, in the case of the simple harmonic oscillator, coin-
cdes with (5.3).
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