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PERMUTATIONALLY CONVERGENT MATRICES
PIOTR ANTOSIK

Some necessary and sufficient conditions are established for the following relations

lim,__ lim vy, =limy_ imy o oxg,—=lim; X, to hold.

1. By a permutationally convergent matrix we mean any matrix {x,;} (/,j¢ V)
such that all limits in the equalities
(1) lim limx;; lim lim x,;=lim x;

i—00 j—yoo Jj0o i—eo i,j—0o
exist and the equalities hold.

We establish some necessary and sufficient conditions for the permutation-
al convergence of matrices. It turns out that a matrix is permutationally con-
vergent if for each subsequence of columns there exists a subsequence such
that sums of rows form a Cauchy sequence. The sufficient condition given
here derives the Banach theorem on equicontinuity of sequences of mappings.
It is noteworthy that in the Banach theorem the assumption on the complete-
ness of a normed space can be replaced by a weaker assumption that requires
any sequence tending to zero to have a subsequence that is summable. Other
sufficient conditions are concerned with the permutation of summation and
limits and with the equality of iterated sums (see Theorems 5 and 6).

At first our results are established for number matrices and next they are
extended to matrices of elements from a quasi-normed group and an Abelian
group endowed with a family of quasi-norms.

2. Throughout this and next sections we deal with square infinite matri-
ces {x,;}, i, j¢ N, whose elements are numbers.

We say that a matrix {x,;} is separately convergent iff its rows and co-
lumns are convergent, i. e.

limx,/ xniEN) limx,, Vi j(“v

J—ro0 i
We recall the Diagonal Theorem (for non-negative matrices) proved in [1].
Diagonal Theorem (fornon-negative matrices). /f {x;}, i, j¢ N, is a se-
parately convergent to zero matrix and its diagonal tends to zero, i. e.
lim x;—0,i¢ N, 1lim X 0,7€N, and lim x;,=0,

J=400 {—y00

then there exists an infinite set I, IC N, such that
) Xij<<
LJ€r
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PERMUTATIONALLY CONVERGENT MATRICES 293

Hence, the elements of I can be arranged into an increasing sequence
\p:} such that

lim .l'x,,l,,,j 0 and lim X x,

i—co j=1 J—oo i=1

0.

lpj

By using the Diagonal Theorem we prove the following
Theorem 1. If {2} ., j¢ N, is a separately convergent to zero matrix, i.e.

(A) lim z,;- 0, i€ N, and lim z;;- 0, j¢ N,
J—oo i—00
then the following conditions are equivalent :
(Ay) for each infinite increasing sequence {m;} there exists a
subsequence {n;} such that lim {232, | 1=j=oco}|i—co}—0;
(Ay) limz,0;

(A, there exists an infinite set 1, ICN, such that 2| z; i, jel}<co.
Proof.Let x; |z, fori:jand x;;—0. Then lim; . x; -0, lim;,.x,;; -0

and lim; .. x;; 0. Thus, by the Diagonal Theorem there exists a sequence {p,}

of positive integers such that

(1) lim >x,  —0.

i—ooj=1 by

If (A,) holds, then there exists a subsequence lq;} of {p.} such that

2) lim £ 2,5 0.

i—o0j=1

Since a = at+b +|b| and | Z{b; 1—=j=co} <X {|b; |1=j<co}, wecanwrite
= —
/':xzq"('! +/il 2”!"’/“ 2 qu,,j '

Hence, we have

oo oo

| Y N -
'1512":"/‘ : +,: Xaie; =%, ;

From (1) and (2) it follows that lim; e 24,4,=0. Hence we get that from each
subsequence of {z,,} we can select a subsequence tending to zero. As the con-
vergence of number sequences is an Uryshon convergence, that is if each
subsequence of a sequence possesses a subsequence tending to x then the
sequence is tending to x, we have lim; . 2,;—0. This shows that (A,) implies
(A,). From the Diagonal Theorem it follows that if (A,) holds, then also (A;)
holds. Evidently (A;) implies (A,). Thus the proof is complete.

Any separately convergent to zero matrix satisfying one of the conditions
from (A,) to (A,) is called a vanishing matrix.

Theorem 2. Let |xy), i,j€N, be a matrix such that
(B) lim, X, Xp d€N, liM0 X, X and columns are Cauchy sequences.
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Then the following conditions are equivalent :
(B) for any sequences |{m,} and {n;} of positive integers the
matrix {)c,,,l.+l gy —Xmp T Xmp Xmyn, Y, i, J€N, is vanishing ;

(By) all limits in the equality lim;,..x; lim; ;,.x;
exist and the equality holds;

(By)  for any mcreasmg sequences {m} and {n;} of positive integers the

matrix lx,,,‘ c1nj 1 Xmyyny o] - Xm; njig—Xm; "j+1}’ [,jeN,is vanishing
(By) lim; ;. X,y exists;
(B;) lim, ,..x,;;— x; uaniformly in i on N.

Proof. At first we note that the rows are convergent sequences. Assume
that (B,) holds and let {,} and {n;} be increasing sequences of positive integers.
Since lim ;.. x;;-—x; and lim;_ e X; —lim;,. lim,,.. X,;= X, there exists an incre-
asing sequence {p,} of positive integers such that

(3) !Tl Xy g, X

z N | . or i,j from N. ) 1s
Let z,; Xm, S x,,,p‘_+ln~x,,,p x’"p",,, for 4,/ N. Then {z,} is a
vanishing matrix and consequently lim; .z, —0. Hence, by (3) we see that

lim; oo Xmpy X This implies that lim; ;... x;;  x. Therefore (B,) holds.

Next assume that (B,) holds and let {m;} and {n,} be any increasing se-
quences of positive integers and let

z[/:xmi 1M1 xm,-‘_l/xj,é_;,’f'xmlrx/} xm nip i _[EN

For columns that are Cauchy sequences (see (B)) we have x,, "
as {— ~o, j€ N, and X ynjps — Xmpny o —0 as i > oo, j¢ N. Consequently, we
have lim;_...2;; 0, j¢ N. This shows that the matrix {z,;} is separately convergent
to zero. Besides we have lim,,.z,,=0. This proves that the matrix {z,} is
vanishing. This means that (B,) implies (Bs).

That (B;) implies (B,) is evident from the fact that for any increasing
sequences {m;} and {n;} of positive integers there exists an increasing sequence
{p,} of positive integers such that

—'xm‘nj+l —0

—x and lim Xm,, X.

lim x
m "pi (Pv2

{00 : {00
[t is clear that (B,) implies (Bj).

Assume (B;) and let {m;} and {n;} be increasing sequences of positive in-
tegers and let

2i X;nnj+|'“Xml ,+xm.—x,.. npp lj(N
From (B) it follows that {z,} is a separately convergent to zero matrix. Since
lim; ... x; exists and lim; .. x,; x; uniformly in i on N, we have lim,,. (x,,
X”'Irl) 0 and hn]; oox'm‘ 1741 hm: yoo X i llm, soo Xjo HLnCe lim Ziq 0

and consequently {z,} is a vanishing matrix. Thlb proves that (B;) implies (B))
and completes the proof.
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Any matrix {xg;}, i, j€ N, satisfying (B) and one of the conditions from (B,)
to (B;) is called I;-vanishing. The matrix is said to be ;-vanishing iff it is
d;-vanishing after changing columns with rows.

Theorem 3. Let {x;}, i,j¢ N, be a separately convergent matrix
such that

(©) lim x;; X, (€N, and lim x;;=y;, j € N.

J—oo f—o0

Then the following conditions are equivalent :

C) {x;j} is A;-vanishing matrix ;

(Cy) all limits in the equalities lim; ,. x;— lim;_ .. y;=lim, ;.. x;;
exist and the equalities hold ;

(Cy) {x.;} is Ajvanishing matrix;

(C)) lim? ; .. x;; exists;

(C.) lim, . x;y=x; uniformly in i on N,

lim; ... x;j=yy uniformly in j on N.

Proof. Assume (C,)) and let {n;} be an increasing sequence of positive
integers such that Iim,-_.m(x,.j_j——y,):ro. Hence, from (B,) it follows that (C,)
holds.

That (C,) implies (C,) is evident from the fact that (B,) implies (B,) after
changing the columns with the rows in the matrix {x;). For the similar rea-
sons (Cy) implies (C,). Evidently (C,) implies (C;).

From (C) and (C;) it follows that the matrix {x;,} satisfies the conditions
(B) and (B;) which means that {x;} is ,-vanishing. Therefore (C;) implies (C,).
This completes the proof.

Any matrix {x;}, i, j¢ N, which satisfies (C) and one of the conditions
from (C)) to (C;), is said to be a permutationally convergent matrix.

3. In this section some sufficient conditions for the permutational conver-
gence of matrices are proved and some applications of the results of the paper
are discussed.

Theorem 4. Let {x,,}, i, j¢ N, be a separately convergent matrix such
that lim, ,..xy - x,, (€N, and lim;,.x,=x. If for each increasing sequence {n,}
of positive integers, there exists a subsequence {p;} such that

[ 3 (xp, —x)), i=1,2
l/—zl lpj. l),y 3 &y 0y
is a Cauchy sequence, then all limits in the equalities

lim lim x,;; lim lim x,; lim x,;

Jreo [0 =00 jpwo i,J-r00

exist and the equalitics hold, i.e. the matrix \x,;} is permutationally convergent.

Proof. Let {m,; and {n,} be increasing sequences of positive integers
and let
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Z,-/ me_ln/-!l_xm‘-+l+xm‘-_xm‘-n/fly t’jeN'

Let {p;} be an increasing sequence of positive integers. By the hypothesis there
exists a subsequence {r;} of {p;} such that {Z72(x,, —x,)}, i=1,2,..., Is a
Cauchy sequence with qj=ms 1. This implies that ’

lim Xz, , =0
iy

i—co j=1

and consequently {z,;} is a vanishing matrix. For lim,L.x;, X, {x;} 1is d;-va-
nishing. Thus {x;;} is permutationally convergent and by (C,) we obtained our
assertion.

Let X be a metrizable vector space satisfying the following condition:
(K) for any sequence {x,} tending to zero there exists a sub-

sequence {X, } and an element x such that x=3{x,, [l 7 oo}

As a simple consequence of the Theorem 4 we have the following:

If {f,} is a sequence of additive and continuous mappings on X which
possesses the property (K) and f(x) lim, . fa(x), x€X, then [ is additive
and continuous.

This statement is equivalent to the Banach theorem on equicontinuity
when X is a complete metric space.

If m and n are positive integers and m< n, then the set of all integers
p such that m_p n is called a segment of positive integers. A sequence {/,}
of segments of positive integers is said to be increasing iff each element of
/, is less than any element of /4.

Theorem 5. Let {x,), i, j¢ N, be a separately convergent matrix such
that the limit lim {Z{x,; 1--j oo} i o} exists. If for any increasing sequ-
ence of segments {l;} of integers there exists a subsequence {[, /} of {/;}
such that

ls s

YOS oxy i 1,20,
1 k€L

1

L

7
is a Cauchy sequence, then all limits in the equalities

o J
lim 2 x,;- 2 limx;-— lim X x,
{00 j=1 J=1 i—0co =00 k=1

exist and the equalities hold.

Proofi. Let s, 3ix,,| 1 ~k=Jj}, i,j¢ N. For {x;} is separately conver-
gent and sums {x,; 1=/-—eo}, i¢ N, exist, we infer that {s,;} is a separately
convergent matrix. Thus (C) holds for {s;;}. We shall prove that {s,;} is 1,-va-
nishing. In fact, let {m,) and {n,} be any increasing sequences of positive inte-
gers and let

:Ilzs"'u.l njyi —s,,,w,n”,-%b,.” njy2 S”’, njiL A N.

We note that z,=X{xm, i« k€ l}—2{Xmrl k€L with [,=[n,.1, npp0]  Let
| p:} be an arbitrary increasing sequence of positive integers. By the hypothesis
there exists a subsequence {r,} of {p;} such that
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o
(2 X xp), i -1,2,...,
J=1kel,

J

is a Cauchy sequence. This implies that

lim Xz, , 0
iaoo j=1 '/
and consequently |s;j is .I;-vanishing. Hence, for {s,,} is separately convergent,
{s;;) is a permutationally convergent matrix. Thus by (C,) all limits in the
equalities
lim lim s;;— lim lim s; — lim s
i—00 j—00 J—0 i—co ! i,J—co
exist and the equalities hold which is equivalent to our assertion. This com-

pletes the proof of the theorem.
Let X be a collection of sets satisfying the following condition:

(K) for any disjoint sequence {£,} of sets in X there exists
a subsequence {£, } of {E,} such that U{Em, 1=n=oj¢X

An additive set function x on X is said to be countable additive iff
Sz (Ep) = w(Un-1E,) provided {E,) is a disjoint sequence of sets and (J -, ¢.X.
Let {£)} be a disjoint sequence of sets in X" and let u, be a sequence of
countable additive set functions on X such that u(E)=lim, . u, (E) for each E
in X. The matrix x;=u,(E;) satisfies the conditions of the Theorem 5, if

E-  Un-1E, and E¢ X. Consequently, we have
w(E) - Z u(E)

which means that « is a countable additive set function. This theorem is usu-
ally proved under the assumption that X is a o-ring of sets.
Theorem 6. Let {x;;} be a matrix such that the limits

lim X' x;; and lim X xy

i—yo0 j=I1 J i=1
exist. If for any increasing sequence {l;} of segments of positive integers
there exists a subsequence {l,) such that
o
>3 3 xu)hi=1,2,...,
=] A=

1le ,
J

is a Cauchy sequence, then all sums in the equalities
X Ixy- 2 Sxy=2 xy
i=1j=1 J=1i=1 {,/=1

J=1

exist and the equalities hold. _
Proof. To prove the theorem we take the matrix |s,;} such that

(i J
Sij== & 2 Xm
k=l l=1
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for i, j from N. Similarly, as in the proof of the theorem 5, we obtain

2ij 2 XXu
kEllJEI/.
with /;=[n;1, n; 2] and Ji=[m;, m;.1]. Let {p,} be an increasing sequence of

positive integers. By the hypothesis there exists a subsequence {r;} of {p,}
such that

i
v ¥
> 2 x,,‘},l 1,2,...,
1 k=11€1,
J

f
\
J

lsg

|

is a Cauchy sequence. This implies that
lim Xz, , =0,
i j=1 '/
and consequently (s} is 1,-vanishing. Hence, for |s,;} is separately convergent,
we see that {s,' is permutationally convergent. Thus by (C,) all limits in the
equalities
lim lim s;y—=1lim Jim s;; = lim s,
i—c0 j-3c0 Jj—00 {—00 i,J—o0
exist and the equalities hold. These equalities are equivalent to our assertion.

4. One could observe that in all the previous considerations we used
only group properties of the real number system and the properties of the
module, —x x, x+y - x + y. We did not need the property of com-
pleteness of the real line. This observation enables us to generalize all conside-
rations to matrices whose elements are in a guasi-normed group X and to
matrices whose elements are in an Abelian group endowed with a family of
quasi-norms.

By a quasi-normed group we mean any Abelian group endowed with a
functional (called a quasi-norm) on X such that | x — x and xt+y  |x
4y . A sequence {x,} of elements from a quasi-normed group is Cauchy iff
for any sequence {p,} of positive integers X, ,—X, —0 as n-— co.

If X is an Abelian group endowed with a family Q of quasi-norms on X,
then a sequence in X is convergent to x if it converges to x with respect to
each norm in Q, and it is a Cauchy sequence if it is a Cauchy sequence with
respect to each norm. Each topological group can be considered as a group
endowed with a family of quasi-norms.
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