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A NON-STANDARD SUBTRACTION OF INTERVALS
SVETOSLAV M. MARKOV

A non-standard algebraical operation for subtraction of intervals is introduced in this
paper. Then the properties of the set of all compact intervals together with this operation and
the standard operations for addition and scalar multiplication are stedied in some detail.

1. Introduction. The four standard algebraic operations in the set /(R) of
all compact intervals on the real line R are defined by

(]) (a\b)l {aﬂ"easﬂeb}v *GH’: T /\/1/}

(The suffix s stands for “standard”.) These operations define an algebraic struc-
ture on /(R) called interval arithmetic [7; 10]. Although very simple interval
arithmetic finds numerous applications in various numerical problems. As a
typical example we shall mention the problem of finding the range of values
of a rational function ¢ («, 8,...,y) when the real variables «,f,...,y varyin
given intervals: a¢a, f€b,...,y€c, a,b,...,c¢/(R). In some cases interval
arithmetic gives a simple solution to this problem. Indeed, if we want to eva-
luate the set

F {ffj,f:uea, peb, yec, dedl
we can simply write F-(p/q)s, p=(a—b)s, ¢=(c—d)s, replacing thereby the
variables in the expression for ¢(«, /#,...) by the corresponding intervals, and
the operations in this expression by the corresponding operations (1) between
intervals.

However, if we try to compute the interval

Fol . ata, P’Eb}
l:( 8

we see that the above approach fails to work. In this case we can only state

that Fc(p'q)s, p (@a—b)s, ¢ (a+b)s.

More generally, ii some of the variables @, f,... occur more than once in
the computation of the rational function ¢ (a,p,...), then the result may not
be sharp; we obtain an inclusion relation, which is usually very rough.

The need of an extension of the interval arithmetic for achieving sharper
results for wider class of problems is already discussed by several authors.
Generalizations of the interval arithmetic on the base of the existing standard
operations (1) are proposed in [i; 4].

In [5] we proposed an extension of the standard interval arithmetic by
means of two new operations — a non standard subtraction and a non-standard
division of intervals. The algebraic structure thus obtained we called extended
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interval arithmetic. This arithmetic comprises the standard interval arithmetic.
To clarify this, suppose that a |a, a,] and b [b,,b,] are two itervals of non-
zero width. The interval (a=b)s, =¢{+, , <, 7|, is the largest interval de-
termined by the points «,, a,=b, a,, @, =b, oy —a,=b, and a,, ag=b,,
that is

(@« b)g=|minla,, oy, ao, a9}, Wax la,, a., a,, a,l]

Denote the end-points of this irterval by a, 55 (a= p)y |, p], a, B€ layy, oy
aq,, o). The remaining two points, say y, 8, where y, d¢ (ay, ., a,,, a,,} deter-
mine a shorter interval [y, d]. In applications we often need to express this
interval in order to achieve sharper results. This is not possible in the stan-
dard interval arithmetic, and is possible in the extended interval arithmetic.
In the notations of [5] we can state that extended interval arithmetic makes
use of the following operations: a+b, a+( b), axb, ax<(1'b), a—(—b), a—b,
a/(1'b) and a/b, whereas the standard interval arithmetic makes use only of the
first four of them: (@ +b); a+0b, (a—bs a+(—0b), (@a<b), ax<b and (a'b)s

a><(1'b) (which always produce the wider interval).

In this paper we restrict our attention to the properties of the non stan-
dard subtraction of intervals and to the algebraic structure of the space (/(R),
-+,0, ). The non-standard difference of the intervals a- |a,, a,,, b= (b, b,
is the interval with end-points a, &, and a,— b,. This subtraction has the im-
portant property that a@-—a=0 for every interval a. It produces in general a
narrower result than the standard subtraction. Both subtractions produce equal
results only if one of the intervals a, & is of zero width (a, - a, or b, =b,).
As we already mentioned the non-standard subtraction is very useful in inter-
val computations. This can be illustrated by the following examples:

X+ x2 x 0,

{at+a®:ac x| ) _ B
X -(—x?), X -—1/2;
X —Xx? x 12,

( 2ialx)
@ Aac {x F(—x?), x 0, x¢/(R).

Finally, we shall note that operations which are similar to the non-stan-
dard subtraction are already studied. Some properties of the operation

a©b la,-b,a,-b)

defined for a - [a,, a,|, b |b,, b,], such that w(a) w(b) (w(a) is the width of a)
are discussed in [2;9]. For a, b¢ /(R) such that w (a)< w (h) one can also define
a®'b |a,—b, a,—b, [2. p. 64]. The relation between this two operations and
the non-standard subtraction is:

ao b, if w(a) wb),

a a©’' b, if wu) <wb.
The differences a© b, a ©' b are known as Hukuhara-differences.

2. The space (/(R), +,0). The set of all compact intervals on the real
line R is denoted by /(R). Denote, as usual, the (standard) addition of
a la,a), b [b,b)cl(R) by
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(A) a+b-|a,+b, ay+b)
and the scalar multiplication of «¢ R and a=|a,, a,1¢ /(R) by

(SM) aoa=aa |min{aa,, aa,}, max {aa,, aay}|.

The product (—1)a is briefly denoted by —a, so that (—1)a= —a=[—a,,
—a,|. The interval [a, «] is denoted by a.

The operation (SM) is obviously a special case of the standard multiplica-
tion, wob=(a < b)s, a¢ R It is also easily seen that the standard subtraction (1)
can be written as (a—b); a-+(—b), that is, it is a composition of the opera-
tions (A) and (SM).

Denote the algebraic system consistirg of the set /(R) together with the
operations (A) and (SM) by /(R), +, o). Here are some well-known properties
of the space /(R), +,o0 (in relations (R1)- (R6) a, b, c,... denote arbitrary

intervals and «, f,... are arbitrary reals):

(R a+rb=bta and (a+b)+c a+(b+c), that is the set /(R)
is a commutative semigroup with respect to (A);

(R2) a(bic) ab+ac;

(R3) (et p)c actpc for ap 0

(R4) a(pc) (ap)c;

(R5) la-a;

(R6) Oa 0.

It is to be remarked that we shall nof denote the sum a-+(—¥b) by a—b
(as this is done in standard interval arithmetic). Thus we preserve the notation
a-—b for the non-standard subtraction which properties are to be studied next.

3. The space /(R), +, o0, — . For every two intervals a - [a,, a,}, b=(b,, b,]
the interval a —& is deiined by

(S) a-b [min{a,—-b,a,—b,), max{a,—b,, a;—b,j].

For example, {1, 3]—[1,3]=0 (but ([1,3]—[1, 3]s - [—2,2); [—1,1]—[-2,2]
= L1)but|-1,1] [—=2,2) [—3,3):[ 3,3]—[—-2,2] [-1,1]etc.

In general a—b& - a+(--b); the inclusion a -bca+(—0b) _holds true.

Our further aim is to study the properties of the algebraic system (/(R),
©,0,  consisting of the set /(R) together with the operations (A), (SM) and
(S). The following relations ((R7)—(R12)) hold true in {/(R), +,0, —) in addi-
tion to relations (R1)-—(R6):

Proposition 1. For every a, b¢l(R) it holds that

(R7) (—a)—b (—b)—a.

Verification. Assume first that w(b) .w(@) where w(b) denotes the
width of &. Denoting a |a,, a,), b=|b,, b,], this means that b,— b, - a,—a, or
that —a,—b, a, b, Therefore, we can write
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(—a)—b-(—a,, a)—[b,, bo]=[—as —a,|—1b,, b)] - [—a,—b,, —a,—b,]
=[—b, ay —by,—a] [—by, —b] [a,a)] (—b)—a.
In the case w(a)==w(b) we have —a,—by<—ay b, and hence
( a)—b [—ay —a] [b,b) [—a —by —a, b)]
(—b,—ay, —b,—a,] [—by —b)] la,,a5] ( b)—a.
Proposition 2. For every a,b¢I(R) and at¢R,
(R8) ala—b) aa—ab.
Verification. Let w(a) w(b) in which case w(aa) w(ab) holds as
well. Then for a« 0,
a(@—b) [a(a,—b)), ala, b)) [wa,—ab,, aa,—ab,]
laa,, aa ) [sb., ab,]| aa—ab.
In the case «<~0 we have
al@  b)=|ala,—by, ala, b)) [ea,—ob., ca, ab]
laa,, aa,] —[ab , ab || = aa —ub.

The case w(a)<w(b) is verified analogously, using again the definition of
non-standard subtraction-

Proposition 3. For every interval ¢ and reals a, f, such that a8--0
we have

(R9) (a t-B)c ac—( pc)y (if ap 0).

Verification. Leta 0, g 0. Then:

i) in the case «> g minding that e+ 0 and w(ac) ~w(—pc) we have
(a+B)c |(atB)e, (a+PB)c,|=|uc,+ Bey, acy+fec,| and, on the other side,
ac—(—pc) |acy, acy) [—Bey,  fc)) |ac, + Be, acy+ el

ii) in the case O a<" A having in view that «+ <20 and w(ac)< w(— pc)
we obtain (a+g)c (a4 p) s, (at B)c,| [ac,+ pey, ac,+pcy) and, on the other
hand, ac—( —#c) |acy, acy)—|—pc,, —Be,| |acg+ e, ac,+pBe|.  which verifies
the relation (R9) for @ 0, 8=0. In order to verify the relation for a0, #=0
it is enough to put « y, B —0o and to use the result just obtained.

Let us derive some simple corollaries from (R1)—(R9). Using relations
(R3) and (RY) we obtain that every a¢ /(R) satisfies a | 0 a,0+{a-a,a—-0 a,
0—a —a and a—a 0. The last equality is very important. For the standard
subtraction we have only a+(--a)30.

Properties (R3) and (R9) can be combined:

ac -+ fc, if ap.-0,

ac—(—pe), it af<0.
Relation (2) can be also written:

ac —fic, if ap 0,

(a=p)c {ac+(——ﬂ¢‘), it ap<0.

(2) (et p)c {
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Another useful relation is a —6- —(b—a). Indeed, by means of (R7) and
(R8) we obtain a—b (—b) (—a)=—(b—a). Relation (R7) can be also writ-
ten a—(-b6)=b —(—a).

In what follows we shall formulate three basic distributive relations as
regards the operations (A) and (S). These relations are formulated by means of
the width function w([a, a,]) a, a,.

We note first that w satisfies the following relations for arbitrary a¢R,
a,becl(R):

(W1) w(a) =0;

(W2) w(ra)=|a w(a);
(W3) w(a) +wb)=w(a+b);
(W4) w(a)—w(b) — wa—b).

The following notations are used for brevity in relations (R10)-—(R12):
W, = (@(a) - w(c)) (w(b)—w(d)), W, (w@(a) -w(b)) (w(c) —w(d)).

Then the three basic relations in (/(R), +,0, —) are:
Proposition 4. For every four intervals a, b, ¢, d¢cI(R) it holds
true that
' (a—c)+(b—a), if W, -0,
(R10) (aLb)—(cfd):{(a_c) (d—b), if W,<0.

Verification. Denote m—|m,, m,)—(a+b)—(c+d), n—[n, n,|]=(a—c)+
(6-d), p-|p.pil=(@a—c) (d b). o
Consider first the case W, -0. According to the definitions,
m,—min {(a, +b,)—(c,+d,), (@ +by) — (c2+d.)j,
n, min{a, c,a,—c}+min{b, —d,, by—d.},
m, -~ max {(a, + b,)—(cy +d,), (@ +b,) — (€, +dy)j,
n, - max{a,—c,, a,—c,}+max{b,—d, by—d,}.
Suppose that w(a)—w(c)=0, w(b)—w(d) 0. This implies a,—c,—~as—c,,

b, —d,~b,—-d, and consequently (a,—c,)+(b, fdl)s(ag-c._,)»i—(bz—dz), i. e.
(@,+b,) (c,+d)) (a,+b,)—(cy+d,). Using this we obtain:

n,(a, ¢)+(b, dy)—=(a+b)—(c,+d)=m,

ny (ay—cy)+ (b, dg) =(ag+b,)—(cy+dy) —my,
and hence m -n in this case. The subcase w(a)—w(c)--0, w(b) w(d)- 0 is
treated analogously.

Assume now that W, 0. Because of W =0it holds that either @w(a) -w(c),

w(b)- w(d) or w(a)- w(c), w(b) - w(d).
Let w(a) w(c) and w(b) —w(d), so that w(a)—w(c) 'w(d)—-gv(b). Hence
we have w(a) i w(b) ~w(c) | w(d) or w(a+b)-w(c+d). Therefore in this case
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m,=(a,+b)—(c,+d,), p=(ay,—c,)—(d,—b));
my '@, t-b,)—(cy+dy), py (a,—c))—(d, by,
so that m .
Let @(a) w(c) and w(b) > w(d). In this case w(c)—w(a) - w(b)—w(d), i. e.
w(c)-+wid) w(a) -w(b), and we obtain
m,=(a,+by)—(cy-t d,), py (ay—€,)—(dy—b));
my (a,+b)—(c,+d), p, (a,—c)—(d,—b)),

so that again m p. This completes the verification of (R10).
Proposition 5. For every a, b, ¢, d¢ [(R) it holds that :

(@ (—c¢c) b—(—a)), if W,<0, W, 0,
(R11) (a—b)+(c—d) (a—( o))+ ((—b—a), if W,<0, W, <0,
(a'c)—(b+a), if W, 0.
Proposition 6. For every a, b, ¢, d¢ I(?) it holds that:
l(a —c)—(b—d), if W 0, W, =0,
(R12) (a—b)—(c d; (a—c)t (—(b-a)y, if W, 0, W, <0,
'(a (o) (b dy, if W,<0.
We omit the veritications of relations (R11) and (R12), since they are
completely analogous to the verification of (R10).
Some simple corollaries of relations (R10) (R12) are in order.
Substituting ¢—d (—d)—(—c) in (R11) and (R12) we get immediately
(a—d)y+( (b-o)), it W, 0, W, -0,
(R11Y (a—b)i(c d) (a—d)—(b—o), it W, 0, W,<0,
(@t (—d)y—(b+( o), it W,—0;
(@ ( dy+((—b)—e), if W,<0, W, -0,
(R12y (a b)y—(c—d)y Yy(@a—( d)—wb—-( ¢y if W,<0, W,-0,
I(a +d) (b+0), if W, o0,
wherein W, (w(a)-—w(d)) (w(c)— w(b)).

Relations (R10)  (R12) give us many opportunities to rearranging terms
in algebraic expressions involving integrals. Consider for example the expressi-
ons (a b)+(c—d) and (a b)-(c—d) in the case W, -0. Using consecutively
(R11) and (R10), resp. (R12) and (R10), we can write:

(@a—d)t(c—b) it W, 0

(@ b)t(c-d) (atec)y-(d+0b) {(a d)— (b—c), it Wy<20,

resp.,
(@a—c) (b d), it W, 0,

(ll—b) (C d) (d t d) (b bc) (a -C) Q'(d b), if wlo
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Using (R10)—(R12) and the relation a—bca-(—»b) it is easily seen that
@+ b)y—(c+dyc(a—c)+(b—4d);

(a+c)—(d-+b), it W, 0,

(@ (—¢c)+((—b)—a), if W,<0;

(a+d)—(b+c), if W, -0,

(@a—(—d)+((—b) o), i W,<0.

Substituting & ¢ 0 in (R10) we obtain a4 (- d)=a—d iif w(a)w(d)=0,
showing that the non-standard subtraction (S) coincides with the standard sub-
traction if and only if at least one of the intervals is of zero width.

Substituting @ 0 in (R10)—(R12) we obtain:

(@ o)+b, ii wla) (c),
(@a—c)—( b), it w(a)<w(c);

m-w+u—MC{

(a—b)—(c d;c{

(31) (@atb)-c {

(@a+c)—b, if wa) wb),
(32) (a—b)+c {(u—( )+ (—0b), if w(a)<w(b), wla)<w(c),
(@—(—c)) b, if w@)<wb), wa)-—w(c);
(a—c) b, if wa) w(b), wla) w(c),
(33) (a—b) ¢ ((a—c)+(=0b), if wa@) w(b), w(c)<w(c),
(@t (—c)—0b, it wa)<wb).
Similarly from (R11)" and (R12) we obtain
'a (e b), if wa) w(b), wic)=wb),
a b0, if wa) wb), wic)wb),
|u — b+ (—0)), if wa)y<w(b);
la F((—b)—c), if wa)<w(b), w(c) w(b),
(35) (@—by—c ja (b (—o0), if wa)<wb), wic)<w(b),
la ~(b + ), if w(a) w(b).
Substituting ¢ ~a in (3,) we obtain

(3) (@ -b)y+c=

(4) (a+b)y—a b, for every a, bcl(R).

Similarly, if we put in (3,) (3;) respectively ¢ - a, ¢ @a, ¢ b and c— —b,
we obtain the following relations:

(4)) (@ b)-(—a)=—0b, if wa) w(b);

(4.) (a b)y—-a b, if w(a) w(b);

(1) (a—b)+b a, if w(a)-—w(b);

(4,) (@a—b) (—b) a, if w(a)  wb).

There is a cancellation law in (/(R), +,0) with respect to the operations
(A) and (SM), that is @ + x =a + y implies x=y and ax = ay implies
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x -y for every a, x, ye¢ /(R), a¢ R. However, the cancellation law does not
hold true as regards the subtraction (S), that is x —a  y —a does not imply
in general x y. Indeed, x a-y a is equivalent to (x a)+a=(y a)+a
which, according to (4;) implies x=y only in the case when (w(x)—w(a)) w(y)
—w@(a))- 0. For example, [9, 13]—[1, 4]=[10, 12]—|1, 4|, but [9, 13]-: [10, 12].

In some cases it is possible to transfer terms from ore side of an equality
to the other. In this respect the following proposition can be of some use:

Proposition 7. /f w(a)=—w(b), then the equalitiesa ~b+c and a—b - ¢
are equivalent. If wia)<w(b) and w(c) -w(b), then the equaliticsa b—c and
a b —c are equivalent.

Proofi. Suppose that w(a)- w(b). Then a—b- c is equivalent to (a—b)+b
—c+b, which in the case w(a)- w(b), according to (4,) is equivalent to
a c-+b.

Suppose that w(a) w(b) and w(c) -w(b). In this case a—b—=c is equiva-
lent to (b—a)—b=c b, which according to (4,), is equivalent to —a c¢—b,
that is a b ¢

As it is well-known, the equality a-l-x b, a,b¢ I(R), has a unique solu-
tion, if w(a) -w(b). In this case the solution is x=54 —a.

The following two propositions are concerned with the solutions of the
equalities a—x b and x--a=0b.

Proposition 8. The interval x a--(—0b) is a solution of the equality
a x b. In case that w(a) -w(b), this equality has one more solution :
x a b

Proposition 9. The interval x a+b is a solution of the equality
x—a=b. In case that w(a)- wb), the equality has one more solution :
x- a—(—0b).

4. Norm in /(R). Consider the function |- :/(R) [0, <o), defined for every
a |a,a)cl(R) by
|la| =max{ a,, a, |

This function is a norm in the sense of [6, p. 56|, that is

(N1) a 0, fora 0; 0 0,
(N2) aa =la | a,
(N3) a-tb a /b,

hold true for every a, b¢/(R), at R.
Moreover, it is easily seen that

(N4) la b| alt+ b .
The norm -  generates the Hausdorff distance
r(a, by max| a,—b,, |a, b,
between the intervals a |a,, a,, & [b, b,] as point sets in R, that is
a b =r(ab).

As it is well-known (/(R), r) is a complete metric space.
The neighbourhoods U (a, 8) of intervals are defined by
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Ua, o) {x:x€1(R), la—x <o}, acl(R), 6>0.

5. Basis of /(R). We shall call two intervals a, 6¢/(R) independent, if
aa—pb-—0, of= 0, a, f¢ R, imply a=pg= 0. We shall call every set of two inde-
pendent intervals a basis of /(R).

For example, the set {[0, 1], [—1,0]} is a basis of /(R), whereas the set
{{—1,2], [—2, 4]} is not.

Further, we shall show that if {a, b} is a basis of /(KR), then every x¢ I(R)
can be represented eitler as x- /a4 ub, Ju= 0 or as x=ia ub, 21 =0.

Let us first remark that this representation is not unique. More precisely
there are two such representations.

To clarify this, assume that, say, x- ia—ub, iu=0. Then we can find
another representation x — i’a— u'b, 2'1’=0, such that (#, ©')=-(4, u) in general.
Indeed, suppose that 1 (w(ia)— w@(ub))=0 (the converse case is treated similarly).
In this case we can write: x,=41ia,—ub,, x,—lay—ub..

Now we can find 7', u/, such that x—i'a—u'bd, 2''=0 and 2'(w(i'a)—
w(u'b))<<0. To this end it is enough to put x,—i'@y—u'by, x,='a, w'b, and
solve this system with respect to 2/ and u’. Since {a, b} is a basis, the system
gives such a solution for 2, «’. A comparison between the pairs (4, u) and
(4", ') produces

Poolpab, ab) (b b))/ [pla; - a)—(ab,—aby)),

where p - Alu, p' =2 /u.

In order to have a unique representation, we have to require an additional
assumption. For such an assumption one can use: i (w(ia)—w@(ub))=0.

Proposition 10. /f {a, b} is a basis of I(R), and x¢1(R), then there
exist a pair (i, u) of reals with iu—0, such that either x—iaiub or
X =Ala—ub.

Proof. Fix x=|x, x,] and then consider the system

X, aa,}j8b, x,=aa, ' pb,.

Since {a, b) is a basis, a,b, a,b, : 0 and hence the system has a unique solu-
tion (a, ). The inequality x, ~x, implies aa,+ b, aa,+pb,, that is a(ay—a,)
+B(b,—b,) -0, showing that the case a< 0, <0 is impossible. Therefore we
restrict our attention to the cases 1) a0, f=—0; 2) a--0, p:--0 and 3) a -0,
g=-0.
1) « 0, 8 -0. In this case we put 2 a, u—p We then have x -ia-} ub.
2) a0, 0. Now we let 1 a, u B. The pair (4, u) satisfies

X, Aa,—ub,, Xo— A@y—ub,,

and 2 -0, « 0. Moreover, x,=x, )ia,—ub, 'Aag——,u.b.2 ) Aw (a)\‘,{lw(b) Hw(la)
wiub) ) i(w(ia) — w(ub))=0. It is also easily verified that x= A_a.—;;b.
3) a 0, # 0. We let again 2 a, u - —p. The pair (4, u) satisfies

X, - Aa, —ub,, Xy—iag—ub,,

and 2 0, « 0, so that ix -0. Obviously x la—ub. It is also easily seen
that in this case the condition l(w().a)—w(,ub).) -0 holds true. >
Remark. The proof of proposition 10 gives a pair (4, ) w:thlthe desir-
ed properties. As we already mentioned, there is one more pair (&, u") with the
same properties. This second pair can be obtained by considering the system
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X, aa, pBb,, x, aa, — b,

and discussing the cases 1) « 0,8 0,2)a 0,8 0and 3) « 0,3 0, in
the same manner as we did above. We see that the pairs (4, «’) obtained in
cases 2) and 3) satisfy the inequality 2’'(w(i'a)—w(u'b))--0.

Consider now the basis {[0, 1], [ -1, 0],. In this case proposition 10 obtains
the form:

Proposition 11. For every interval x¢[(R) there are two pairs (i, u),
such that 1) iw 0 and 2) either x=7i[0, 1]—u| 1,0} or x [0, 1]+ u|—1,0].

Indeed, if x =[x, x,] HO, then we can write x x,[0, 1]—x,[—1, 0]

We can also write x x,[0, 1]—x,|—1, 0], showing that in the case 0§ x
we can choose for (4, u) either (x,, x,) or (x, x,).

In the case x =[x, x,]30 we can write x=x,(0, 1]+ (—-x,;)[—1,0] or
x=x,[0, 1]+ (—x,)[—1,0] showing that for (4, «) we can choose either (x,, —.x,)
or (x,, —x,). The requirement i(w(ia) w(ub))=0 leads in both cases (x3}O0
and x30) to unique representation.

Once more, if « and § are the endpoints of x¢/(R), then either x a[0,1)
—pl 1,0l or x a0, 1]+(—8)|—1, 0].

6. Interval spaces with non-standard subtraction. Algebraic spaces with
two operations 7+ “ and "o“, satisfying relations (R1)— (R6) are called quasi-
linear spaces (see for example [5;9]). Such speces arise not only in interval
mathematics, but also when considering special classes of convex sets [3]. In
this section we shall restrict our attention to the so-called interval spaces,
that is spaces of interval objects (such as intervals, interval sequences, interval
vectors and matrices, interval functions etc.).

By an interval space (cf. [5; 8; 9]) we shall understand the following.
Consider a set E={a, b, c,...} together with an addition “-+”, a scalar multi-
plication “o” over R {a, 3, 7,...} and a partial ordering “ ”, such that the
algebraic systems (£, !-,0), (£, ) are respectively a vector space over R and
a lattice; in addition we shall also require that the relation “ - satisfies for
every a b, a, b¢ L

at x=b+x for every x¢E,
xa ab for every a¢ R, a 0.

We shall briefly denote the system ‘£, 4,0, —) by E.

We denote every ordered pair of two elements a, v of E, a--b, by |a, b].
(We can also think of [a, 6] as: [a,b] {x:a x b, il a - b}). The pairs |a, b)
(such that a, be¢ E, a b) are called intervals in FE.

Denote the set of all intervals in £ by /(£). Define addition and scalar
multiplication in /(£) by

(A) la, b|+[c,d] |atec bid];

‘ " 1 |aa, ab), a 0,
1, b
(SM) aola, b] ala,b] [ab, aa), 0.

The algebraic structure (/(E), |, o0, is called an interval space (cf. |5; 9)).
It is a special case of quasilinear space, since relations (R1)- (Rb6) are satisfied.
It is to be noted that the cancellation law with respect to (A) and to (SM)
holds true as well [5;9].
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Our aim is to introduce a non-standard subtraction in the interval space,
which will give more algebraic structure. The following remark gives a hint
for the definition of this third operation.

Since (£, --) is a lattice, for every a, b¢ £ there exist inf(a, ) and sup (a, b)
defined by

. c—a, c=b;
¢ —inf(a, b)) d=a&d—b >d c:

a-c, b-c;
a-—-d&b -d-—c -d.

Then the definition of the operations (A) and (SM) may be written:

¢ sup(a, b)« {

(A) la, b]-+ e, d] [inf(a+c, b+d), sup (a+c,b+d));
(SM) ala, b= [inf (aa, ab), sup (aa, ab)).

This suggests the following definition of subtraction:
S) la, b]—[c, d]| - [int(a—c, b—d), sup(a—c, b—d)).

The reader may verify that the subtraction (S) satisfies relations
(R7)—(R9).
Further, consider the function w:/(E)-» E defined by

w ([a, b]) = b—a.

It is easily seen that w satisfies relations (W1)—-(W4). (In relation (W4) we
have w | =sup(w, —w)).

Further, relations (R10)—(R12) are satisfied (with the corresponding modi-
fications in the formulations). For instance, we have:

For every a, b, ¢, d ¢ £ such that w(a) w(c)or w(c) w(a)and w(b) ~w(d)
or w(d) -w(b) it holds that

w(a)=w(c) and w(b)—=w(d)

or w(c)=w(a) and w(d)=w(b),
w(a)=w(c) and w(d) w(b),
or w(c) w(a) and w(b): w(d).

We may call the algebraic structure (/(£), +,0, ) extended interval
space. An extended interval space is normed, if there is a function | . |[: /(E) R,
satisfying relations (NI1) —(N4).

The space (/(R), 4.0, —) with the norm @ ~max{a,, a,} is an ex-
ample of a normed extended interval space. Here are two other examples.

Example 1. Let £=R, where R, is the set of all real n-vectors
X (xy, Xy ..., X,) with operations x4y (X, +V, ..., XqtYn), ax—(ax,, ...,
ax,) and partial ordering “- "i(x|, x} ..., X,) (X[, x5, ..., x) if X=X for all
i1,...,n

/(R,) is the set of interval vectors: x [x’, x"] ~([x], x]], ..., [x), xJ]),
XL X"ER,.

For x', x"¢ R, we have

(@ ¢)+(b—d), if {
(R10) (a+b) (ctd)
(@a ¢yt (—(b—a)), it {
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inf(x’, x”) (min {x;, x}}, min{x}, x7'}, ..., min{x/, x"}),

”m

sup (x’, x”7)  (max {x], x|}, max {x}, x|, ..., max {x,, X\}}.

n

The subtraction in /(R,) can be written
x—y X, x| =¥,y linf(x'—y, x"—y"), sup(x'— ¥, x"—y")
(Imin ¢} — ¥, X7 —yyh max {x] —yi, x7 =y}l
ooy [min{x! —y, X —y}, max {x, —y,, x —y}]).

/(R,) satisfies relations (R1)—(R12). It can be normed by 'x ,- max, ;. , X, ,

where . is the norm in /(R).
Example 2. Let £ A, is the set of all real-valued functions defined on

some set . A, is a vector space under
(f F@Ux)=f(x) +g(x), x€2,f,8¢A,
(ef ) x) - afix), XE€Q, feA,, acR,

and a lattice under f “g( )fix) g(x) for every x¢ (.

As in example 1 we see that /(A,) is an interval space satisfying (R1)—
(R12). For every f=|f, ) & [g,& ¢ A, the function k2 f—g is defined at
X€L2 by

h(x) fix) gl [min{fi(x) —g(x), fAx)  &alx)j,

max {f(x)  &,(x), [oAx)—gu(x)]].
The interval space /(A.) can be normed by [l, supieo f(X)

where f(x)  max{ fi(x), fiJx)}, f [/n/o)
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