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THE EFFECT OF NUMERICAL INTEGRATION IN THE FINITE
ELEMENT APPROXIMATION OF HYPERBOLIC PROBLEMS

E. N. HOUSTIS

The effect of numerical integration in the finite element is analyzed for solving hyper-
bolic problems. A discrete Galerkin procedure is introduced and a priori error bounds are derived.

Introduction. A finite element method approximates the general problem
Lu f by a matrix problem of the X5 B,Dif F. The elements of the ma-
trices B; and the vector F involve integrals of basis functions and coefficients
of the operator L. Since these integrals generally cannot be evaluated exactly,
the integration is usually done by a numerical scheme. The goal of this paper
is to analyze the size of the error in the finite element approximation of hy-
perbolic problems introduced by the estimation of these integrals with nume-
rical quadrature methods. The effect of numerical integration in finite element
methods for solving elliptic problems has been analyzed by G. Strang [7],
G. Strang and G. Fix [8], P. Ciarlet and P. Raviart [2]. The case of
parabolic problems has been investigated by P. Raviart [6] and G. Fix [4].
The results in this paper are from the author’s thesis [5].

1. Hyperbolic problems. In this section we discuss the use of a Galerkin
type procedure “to discretize” the space variables in initial boundary value
problems for linear hyperbolic problems with time dependent coefficients. In
particular we consider the problem

(1.1) Diu— 3 Dy (agx, WD w)=f in 2X[0, T),

i, j=I
(1.2) u 0on I'<|0,T),
u(x,0) uy(x)e LAQ), Dulx,0)—u(x)eL2Q),
where (2 is a bounded polyhedral domain of R" with boundary I" and a, are
functions continuous over [0, 7']. Also, we assume that the second order
differential operator L{f) - — X ll)\/(a,,(x, I)D.i) satisfies the usual ellipticity
property, i. e. there exists a positive constant A such that E;'._,_la,-,-(x, b)E&s
KX &2 for all (x, )¢ 2x<[0, T] and ¢ R™
Let us define

a(t; u, v) S fa,lx, I)[)\,u(.\‘)D./t'(.'()d.\'

i j-10
for any u, v¢ H'(©2) where we recall that A7 is the collection of all real-
valued functions v(x)¢ L9(Q) with Div¢ L9«2) for all la —p.

SERDICA Bulgaricae mathematicae publicationes. Vol. 3, 1977, p. 371—380.



372 E. N. HOUSTIS

We use the notation « b ayt e ta,, DY [)::Df:j ce D;: and
Hr — Hr 2.

We say that u is a generalized solutionof (1.1) iff u(x, £)¢ L20, T HYy(2)),
u(x,0) wuy(x), Du(x,0) u(x) and
(1.3) (D, v) La(t; u,v)y (f,v), 0-¢t-T for all v¢ N 02).

Integrating by parts and using the Gronwall inequality we can prove the fol-
lowing result:

Theorem 1. If u is a classical solution of (1.1), (1.2) then it is a ge-
neralized solution.

Throughout we will assume that the generalized solution exists to (1.1)
and (1.2).

l(n o)rder to define a “semi-discrete Galerkin” approximation to the gene-
ralized solution u of (1.1)and(1.2), we construct a triangulation 7, of the do-
main 2 with finite elements K having diameters - -4. With this triangulation
we associate a finite dimensional subspace S, of H,({2) N C[£] which is spanned
by the basis functions {B,(x)}¥. Then the semi-discrete problem associating
with the space S, consists of finding an approximation u,(x, ) of the form
y(x, ) :iltl:lﬁ[(t’B,(x). The coefficients {#(f)}Y are determined by the follow-
ing system of ordinary differential equations

(1.4) (Diun, B)-+alt; un By ~(f, B),

1-7i N, forall £¢(0, T] and (u,(0), B)) (u, B,), (Du,0), B,) (uy, By, 1 —i-—n.
In order to compute the solution of (1.4) we must calculate the integrals

which appear in (1.4) and this is usually done by numerical integration scheme.

We denote by .‘.I'fj,m,_ &f(§1 k) the quadrature sum over K that approximates

[ kf(x)dx for some specified points & x and weights o, (€ R, 1- [ k.
Moreover, we define

&
(1.5) (7 ¥)n S‘ x M k9 (5/_ EL K-
KeFpt

et u, denote the solution of (1.4) when the problem is perturbed by nume-
rical integration, i. e. u, is the solution of the following Galerkin type problem

(1.6) (Ditn, V) - an(ts un, v)  (f, V)

for v¢S, and 0 -¢ 7. With initial conditions u,0) =u,, o ¢ Sh, Dun(0) = ttn,y € Su
and uy, l)fu,,e[.’(O, T: S, where 12,0, 7; S,) denotes the space of functions
t > o(t) which are L? on [0, 7] and 2(, #)|s, is finite. We now proceed to
examine the order of magnitude of the error 'u —u, .

2. Error estimates. In this section we derive a priori error bounds on
the ercor u wu, | for a specific choice of the subspace S, and the quadrature
schemes (1.5). The subspace S, is defined as follows:

1) we assume that for any function v¢.S, and any (closed) finite ¢lement
K¢, we have v x¢C*''(K) for some integer & 1;
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2) we assume that for any integer s with 2<s=4%+1 and any real number
g with 2 ¢ -+, there exists a linear operator € S(H9(2) N Hy? () Sh)
such that

¥ 7 Vg — s—m | o |
(~ TR 4 Hm"](l\')) Ch T HS9(0)?

KeFy,

0=m<s,

for all v¢ H9(2)n Hy?(«2), where the constant C is independent of A.

We present an example of a subspace S, whose abstract formulation and
its approximate properties have been studied by Raviart and Ciarlet in
[1; 2]. Let S, be a finite dimensional space of real functions defined in 2cR"
and spanned by ¢/, ..., ¢%, where the basis functions (or shape functions in
engineering terminology) are determined so that to each ¢ there is associated
a node z; and 4 'J'.(z,) 8i;yi—1,...,N. Assume that the basis functions q77 are
uniform to order ¢, that is there exists a constant Cs such that forall #,i and j:

max D"q*;?(x) - Csh—=
X€EK, a =5
for all s=¢.

Define =, -3, 1729y and suppose S, contains the set of polynomials
in x,...,x, of total degree less than k. Then the following theorem has
been proved (see Strang and Fix [8]).

Theorem 2. Suppose u(x,,...,X,) has k derivatives in the mean-
square sense and any derivative D* of order a -~ s<=gq. Suppose also that
k>n/2. Then

Af Deu(x) — Dopu(x) ?dx- Clh2—9 1y s

and

S 2 12 k—s
(S a—att ) Csh | gy
KE€TFpy

For the quadrature schemes we assume that if r is an integer with
0 r—k+1and ¢a real number with 2<¢g—occ, r—1—N/g>0 (that is H"~1%Q
c C(£2)) we have, for all u, v€S,, the following inequalities

-C ;o > ‘ n oy
(uv 'l’) ("v 1')/: ~Ch" l( :i u 7,’ rl.fl‘[())l (I( ) v *3{1% |(K,)l ’ ls O’I ’
KE€Fy K€eT )y

la(t; u,v) —aut: u,v) ~Ch max v'a,,(. ) O |, u.“,,lu‘?nuu_,) 2! oy
1=é,j: 1

it a ., )¢ HY (), 1<2i, j—N;
a(t; u,v)—an(t; u, v)

“ | )
: ’(‘h’ ! max N al/(‘ ’ ’) Hr l.“‘(!q( -‘7

vy S | 2 12
u 7/"0(:))) “« = ‘]'U!H"H(K))
AR KeFy KeFy

it a.,t)eH =), 1=i,j- N, 1=0,1;
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(fv z')-(f, 'U;,)‘ -~ Ch! f(- vt) ”r-—l.q(!')( z v E’l»I(K\)l 2
K

6'\7/!

it f(.,t)c H to¢2), | 0,1, where C is used as a generic constant indepen-
dent of A.

Lemma 2.1. Assume that there exists a constant y >0 independent of
h such that

(2.1) a,t;v,v) y v f,n(m

for all v¢S, and all t¢|0,T| and wc L*(H(Q)), f, Diu ¢ L2(Hr—1.9(12)),
a L (H "“=(2), 1 i,j~~N. Then the problem
(2.2 au(ts @ v)=(f—maDin, vin t€(0, T), v€ .Sy

has a unique solution w,¢ L*S,) such that
D 0);, ~— 9 Throl! 9 - 2 9 P o
‘.’.-;) Wy—Uu L2H () Ch u L2 () } I)lu LT Va9t t f L2HT—1. 90y

where C is independent of u, h, f.

Proof. First, we observe that the existence and uniqueness of the so-
lution w, is a consequence of the assumption (2.1). Using the fact that u is
a solution (1.1), we get that

ay(t; w, mu, vy=a(t; u mu, v) H(Diw - 7,Dm, 0)+a(t; au, v)—alt; 7,u, v)

’} (v"h Dfll, v) —(ﬂ;,[)?u, ‘z"h (fv U) (f1 v'/l

for all ¢ S,
We choose v w, -m,u and use assumption (2.1) to obtain, after inte-
gration with respect to ¢,

Wy —anll ey Cll u—anu Diu— 7,Diu

- . o \
L) 12 1% !

£ osup v

r
1 et T lalts g, v) —an(ts o, v))dt
vEL(S,) v

T T
b aDla, v) — (D, v)de 4 [, ©) - (f, vhlde ).
0 (L)

We use the properties of the space S, and error bounds for the quadrature
schemes to obtain

Wy —U 204000y, W= 7tpll l."'(ll'(s')){ Tl W 204000

. . 2
Chm M w2y + Dt e 1, lmax Qij por Vogy U

LYHT 90
ij N «

2
2 \
+ ! Diu LHr Vg o / L3 =N ol

Since

r
TS 2 2-( .
l.}’ (K(_ alt 7/’4141)) ”‘”l C u LE(HT9(12)
.
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and

-
” (,\E‘ w""Diu [t’l"""lq':))? thl” c D‘llu Lz(?i’—‘-‘l(m)'
() :h

as it follows easily from the properties of the S, space.
Now, in order to find a priori bounds for the @, u/|,2,s, Wwe assume
that the adjoint operator

N
[*=— X
i

D.\'I(a,[(v\‘r t)Dx})

1
satisfies the following regularity property
(2.4) v

for all v¢ HN )N HY©), t¢[0, T]. Notice that property (2.4) is satisfied if
a;j¢L=(H" () for 1 i,j -N.

Lemma 2.2. Consider f,u, Diu¢ L2(Hr>(£2)), ay¢ L=(H"=(£)) 1 4, j=N
where q is some real number with 2<g— +~, r—1—N ¢g>0. Assume that
hypotheses (2.1) and (24) hold.

Then the solution w, of the equation (2.2) satisfies

Ch™{ u

N -
H*() ¢ L 1%(0)

(25) w, u

9
2 9 L 7 ° + \
L3(L7(42)) LAHT90)) Diu L(HT9) f L3HT G 0)))

where the constant C is independent of h, u and f.

Proof. To prove (2.5) we use a generalization of the Aubin-Nitsche
duality argument. We have

T
(2.6) Wh 022 sup {| [(@n—u, @)dt ] g jzgz

o €122y V

Given ¢ ¢ L%(L*(¢2)) we consider the problem of finding ¥(x, f) such that L*¥
=@ in O, ¥ -0 on I Since L* satisfies property (2.4) we have Y ¢ L[2(H*()
nhﬁ'.(.'.))). Then (w, u,q¢) ait; w,—u,?). On the other hand, for any function
ve L3S, we use equation (2.2) to get

alt; w,—u,v) alt; e v)—ant; @ v)—(Diw, v) + (@Diu, v)u+ (f, V)= (f, O)ne
Therefore
(W, —u,q)=alt; w,—u, V) a(t; w, u, V—v)+alt; wy—u,v)—alt; w,—u,
W) ralt: we,v) -t @ ) — (D, v) @D, vt (f, 0 —(f, v

We choose v x,4 to obtain

.

¢ C - . v 9 2y

(2.7) [ (wh—u,q)dt <Clh| wi—u p2gpay Ve
U

7
+ “’1’" ’1"“3“ 2% v oy T br [a([;w,.—n,,u,n,,'{’)—ah(t;'w;.—n'.u,n;.,’)]dl
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r
T, ) —(f, w0 - ;[a(t a1, V) —a,(t; wu, V)t

From the convergence conditions of the quadrature schemes (1.4) we have the
following inequalities:

T
Sla(t; wn—a,u, 2, W)—an(t; wy—a,u, n,¥)\dt
0

thnilax . Aij| ooty @Wh T 2wy Y 2y
=4

r
Jla(t; =, M, ) —an(ts a,u, a,y)|de
0

~<Ch” max

. | 2 ) 9 9
(AX A e own L ey Y ey

T
(@, Diu, a,p) — (2,0, 2,y),|dt -~ Ch" | D’u

LHMwyy Y 2 0)

and
,
.'! [(/f, )= ([, 7,y),\dt <Ch" [ L2HT0p Y 2R 0)

where C is a generic constant independent of u, f, 4. The proof is then com-
pleted by observing that (2 5) follows from (2.6) and (2.7) along with these
inequalities.
Lemma 23. Consider u, D, e LA(H9(12)), Diu, f, D, f¢ L2H" 19(12)) and

a;j, Dya; € LX(H" " =(2), 1 i, j N, where g is some real number with2-q  +=

1 —N/g>0. Assume that (2.1) holds. Then the solution of equation (2. 2)
w, satisfies D,w, ¢ L*(Sy)
and
(2.8) Dy — D

. S Chr ! Y | -
L2(HY0)) Ch {u 129y T Du LE(H™9(0))

2 e ‘
t D /'-‘(H'»’Iu-))'*' Dy L5Hr '~‘ium+ ff/v'-'(//“l-tl(;,n)+ [)lf‘l‘-'u/r l,z/(,_.),}v

where the constant C is indzpendent of u, f, h.

Proof. We define, analogous to our previous definition of a(/; u, v) and
an(t; u,v),

N
@t wv) I [Da(x, D ux, DD, Wx, Hdx, u, v HI(8),
J "

3 <=

N
‘”M.l(( , : Il)lall(- ) ,)D\lul).\l'v) (bm.k). u, Uc \S‘h.

1 L)

a(t; u,v) X
K€T,
Clearly D,w), ¢ L*(S,). After differentiation of the equation (2.2) with res-
pect to ¢ we obtain au(t; Dwn v) (D, f—Dju, v), a,(t; wy, v) for all v¢S,.
Therefore we can write
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a,(t; Dw,—aDu, v)—a(t, Dau—a,Du, v)+a'(t; u—wy 0)
- (D’?u—::,, D'}u, v)-+a(t; nDu, v)—ait; mDu, v)+a'(t; w,—anl, v)

—a,(t; wy—mp, V)+a'(t; aul, v) —a,(t; :r,,u,v)+(n,,Dfu, )

— (Dt V) —(D, f, ©)+ (D, f, V)i
We choose ©- D,w,—=a,D,u and using hypothesis (2.1) and the inequality
Diwy—Dat 2y = | Di@n—aDt 24 )+ | Ditt —anDdt 20y
we obtain

D,w, D,u L2 0)) ‘C{ u—wy !L"(H‘(u)) 4 D aDu 12(H\©))

f 3 3
-+ D(ll —.‘ﬂ/,D( ul‘*_’( [_'_'(,,))-+- sup 4
g vEL(S),)

T
| (;'. la(t; 71xDu, v)—an(t; maDau, v))dt

T T
+ [la'(t: w,— 2, v)—a)(t; w,—mu,v)dt + [[a'(t; 7., v)—a,(t; au, v)ldt|
0 v

+ OfT[(NnD?u, o) — (Dl vylde + [1(Duf, 0) (D, f, )it 1,

where the constant C is independent of u, f, A.

By applying the hypotheses about the space S, and the quadrature for-
mulas we get the inequality (2.8) and complete the proof.

Lemma 24. Consider u, Du, Diu¢ L2H(Q)); Diu, Dif, f, Diu, D.f
¢ LAH9(2)) and a,,D,a,;, Diay¢ L2(H (), 1= i,j—N, where g is some
real number with 2~ gG— - ~, r—1—N g>0. Assume that (2.1) holds. Then
the solution of equation (2.2) w, satisfies

9« 27 2 . —1 4 Y
(2.9) || Diwy,— D 12H\ ) Ch'{ u L2(HT9(s) + | D LAHT9(2))
L Diu + Diu +| Diu e +{f] pzepr—t
[ t L"(Il'-‘/(s')) t I.."(H' fl.r/(! ) t I,‘(H"L’I(Q)) J U IAH W9(0))
2
. ) )2
+1 D f L3HT N9y Dif 1 zar—ra@m

where the constart C is independent of u, f, h. .
Proof. We define, again aralogous to previous definitions,

N , )
a’\t; u, v) Y [Dia(x, H)D. uD./'z'dx, u, ve H'(Q),
i j=10 ‘
M N
(I;’(f: u, v) > Y omir( = [)'l-’a,(. s I)D,’u[).j'm (Dm.x), u, 'U(Slt.
! I\'(.‘?‘,,""l ij=1

Cleacly Dlw,¢ LXS,). Aiter twice differentiating the equation (2.2) with res-
pect to £ we obtain
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at; Diw,, v)= (D7 f—Dlu, Va—2a,(t; Dy, v)  a)(t; wp, v)
for all v¢S,. Hence, we can write
a(t; Dww,— n,D; u, zf)-»:([)f f, ) ~~(fo, U+ (Dfu —anDiu, 'u)—{»(n,,D}‘u, )
— (2.D}u, V) talt; Diu—a,Diu, v)+ a(t; aDju, v)—a,t; Diu, v)
+a'"(t; u—wy, v)-a’(t; wy, v)- a,(t; wp, v)+2a'(t; Du— Dy, )

+2a'(t; Doy, v)—2a,(t; Dy, v).

If we choose ©v=Djw, =,0u and use hypothesis (2.1), and the inequality

2 2 — 2 2 2 2
Dlu'h‘—Dlu =3 thh—-"thu “,".'(,Il(.,,’)J.' D(ll——ﬂ;,[)tu L2(H (1)

L2(H\e))

we obtain the inequality

2 2 4
Diw, Diu Cl Du—Dwy | 2pn, b De(u— ) 220,

L2(H ()

t 2
v Di(u— au) 2oyt bW, L2(H ()

T r
sup v ",,,(, W@t wa, vy —a,(t; w, v)ldt - [|a'(t; w, v)
vEl “\h' 0 0

T T
—a,(t; wy, v)|dt ‘_'f [(D2f, v) —(D:f, v))dt ;Of [(2aD}u, VY-~ (7nlo}u, ©),ldtE ]},

where C is a constant independent of u, h, f. By applying the properties of
Sy as we have defined them and the hypotheses about quadrature formulas
we get the inequality (2.9) and complete the proof. Notice that with similar
arguments as in Lemma 2.2 we can find a priori bounds for

o |
[),u';, [),ll I;'(I."(!J))’ [)"‘(72'),—”) 1202y

Theorem 3. Assun.e that v ,- (v, v))*is a norm over S, and there
exists a constant 1 independent of h such that

(2.10) Voaopm g, for all v(S,.
Moreover, we assume the hypotheses of Lemma 24.
Then the unique solution uy, of the problem (1.5) satisfies
(210) Dlwp—w) 'wt-un w0 2pp, CUDdwy—uw,(0) e+ (10 ua)0) '\

2 1

I r-1f w m . N m . LN m . 1

RN Y Dra o, wiragy b = Dpu arr Vagy T =D - L))
m- 0 m=2 m 0

Proof. Since v} is a norm over S, the assumption (2.1) ensures that

the semi discrete problem (1.5) has a unique solution u,. Let ¢, u),—w,, where
wy, is defined by (2.2); then we have
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2 ) . . 2 2
(Dizny Din)n+anlts n Dizn) - (7Dt — Diwny, Dizn)n

or

b, 1 1 . Y4 2. |
; D, D+ D) Dyay(t; Cny Cn) = 2 a,(ty Cn &n) + (Dl — Dy, D Endns

1 9 : 2 2 2 2
2 Dt{ D/:h ;,+ah(t; :In :h)}<C:ah": :Iu Ch)"' -"thu'—Dlu'h Z:‘!H"{" Dl:h ;}-

Now apply Gronwall’'s lemma and integrate with respect to ¢ to obtain
Doy 3 +ants on 2n) = Digal- 5 0) +an(05 Cuy Cn)

2 2 2 2
- ﬂthuvDru l.."(L“'(i'))J‘- Dlu"‘Dtu’h L2(L3(2))

and
(2.12) Dinl} 71 tn e <! Dcal0) 7oy +C | tn(0) [

L 2 2 2 2
+ Dt =D 22+ Dt —Dewn| 220

We use the triangle inequality and assumption (2.10) to obtain

(2.13) Dy(un—u) n+ un—t |20 = Cn 2yt Ddnln
+1 Dl —0n) | 249 oy T B —Wh 1204002y

and, by the application of (2.12) and (2.13),

(2.14) D(up—u) -+ an—u 20,

=C{ Dfwn—un)(0) | 2, + (uh;u)(O) ey T+ anlDiu —D?a;'[zuzwn

2 2 |
' Diu— Dy wy 120 D((ll - 'll’h) 12(H (2) + l u— Wy | L2(H @)

4
)
Finally, the inequality (2.11) is a consequence of lemmas 2.4, 2.3, 2.1 and the
approximate properties of the space S,. This completes the proof of the theorem.

Notice that the //'-optimal estimates that we have obtained in Theorem 3
using a perturbed Galerkin procedure are the .same as those using a semi-
discrete Galerkin method, under the same smoothness assumptions and the
same subspace S,. For /{l-estimates of the (1.1), (1.2) in Galerkin procedure
see [3].

I3.I Collocation on lines. In this section we examine the relation between
the numerical integration methods and the collocation on lines methods. First,
we assume that the space S, associated with the partition &, of £ with fi-
nite elements K satisfies the following properties:

First, we assume

(i) S, is a finite dimensional subspace of H’(!.l)nH(',(!z):

(ii) For all v,¢ S, K¢ Fy vn x€ CYK).

Second, we choose the quadrature nodes &4 so that

(iii) s pcint (K), 1<21 L, for any K¢ Fa; ) :

(iv) a function ©,¢ S, is uniquely determined by its values at the points
Sy 10 L, KeFp
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Third, we assume that a,,(f)¢C'(«2), 1= i, j=n and choose for each u,,

Up € Shr

(3.1)

X
ap't; up, vy) X Z;m,_,((l.(t)unvh) (50.)-
KeT,l-

The problem find u, ¢S, such that

(Ditn V) +an(ts un,v)— (f, O for v¢ Sy, 0=t T,
u,,iO):u;,, 0, Druhfo):uh,l

can be stated equivalently as follows:

(3.2)

Find u,: [0, T'| > S, such that

{Diun+ Lty (zox) flEk)
11 /[,, K¢ T, Ilh(()) —Up,0, D,llh(()) .

Thus, we obtain a collocation on lines method with collocation points the

quadrature points & x, 1</ L, K¢ Ty

1. P
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