Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



SOME PROPERTIES OF GENERALIZED THERMAL POTENTIALS
IN A NON-CYLINDRICAL DOMAIN

A. BORZYMOWSKI, P. OLSZEWSKI

Properties of generalized thermal potentials in non-cylindrical domains were examined by
A. Piskorek (7; 8;9), L. J. Kamynin [5; 6], E. A. Baderko [I] and A. Borzymo-
ws ki [2]. In this paper we investigate some further properties of such potentials. An appli-
cation of our results to a boundary value problem is given in [3].

1. Introduction. Let D, be a non-cylindrical domain in the space-time of
the points (X, f), where X(x,,..., X, ¢Enn=2, and £¢[0, 7] with 7 being a
finite positive number. The boundary of D, consists of domains 2, and Q,
placed in the planes £—0 and 7/~ T respectively, and of a n-dimensional late-
ral surface o, included in the layer 0=/ 7. We denote by S, the intersection
of o, and the plane ¢ -1, 7€[0, 7], by (2, the n-dimensional domain of the
plane /=1t bounded by S, (in particular, for =0 and - 7 we have the afore-
said domains @, and ¢, respectively) and by o, the product ¢,N[0, 1].

Consider the normal parabolic equation

’.' o= ) n 0 I d
(1) X a(X, 1) (,;rn;‘x; b (X 0 &"}_c (X, tyu— % o,

whose coefficients a.5 b, and ¢ are defined in a closed bounded cylinder

Dgy: =0Q,%[0, T| containing the set J,Uos;, and satisfy Holder’s condition with
respect to X (exponent %¢ (0, 1]). Moreover, we assume that a.; satisfy Holder’s
condition with respect to 7 (exponent A'¢ (0, 1]) and that the characteristic

form 30 ;-1 a4 (X, t)i.iy is positively definite in D.,.
We shall examine the following integrals

@) U, ) [ [T(X, t; Q1) 9 (Q, )dQd

Us,

(the potential of single layer with respect to equation (1));

@ VX, f)=f [I(X, 5 V. 9o (Y, ) dYdr

0 Q
(the potential of spatial charge with respect to (1));
(4) J(X, t)y [I'(X, ¢ Y,0)0f(Y)dY
o

(the Fourier-Poisson integral with respect to (1)).
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4 A. BORZYMOWSKI, P. OLSZEWSKI

Here /' is the fundamental solution of equation (1), constructed by W.
Pogorzelski [10; 11, p. 379].
2. Regular continuity of the potential of single layer. We assume that
satisfies Lapunov’s conditions [11, p. 231], one of which is of the form

) (Np,, No,)=C( PQ ™ +[t—1%)

where C>0, »¢(0,1), i=1,2, and (Np, No,) is the angle formed by the inward
normals to o, at its points P,— (P, t) and Q,-(Q, 7).

Further we assume that the orientation of oy with respect to equation (1)
is time-like (i. e. that the tangent plane to o, is nowhere perpendicular to
the Z-axis).

We also assume that
(6) 2 (Qr) =My, (Q7)€07)
holds for M, >0, u,¢[0, 1).

A. Piskorek obtained some estimates of the potential U(X, ¢) and its
first-order derivatives U, (X, ?) [8, theorem 1].

We shall prove that U(X, f) and U, (x, ?) satisfy Holder’s conditions.

Theorem 1. Under the aforegoing assumptions on oy and ¢, the ine-
qualities

(7 U(X, H)—U(Xy, t) | < const My £ 4D (| XX, [+ (8, — )" "),
8) |Us, (X, t) =const My XP [ 73 ¢ ~late=h),
9) Ux (X, )~ U (X}, 1)

<const My XP|=(=2u,+h) y~ugtu =0 ( xx Huct (b —2)?)

are wvalid, where const is a positive constant independent of ¢; (X, 1), (X,,t)
¢ Dy with t<t,; P and P, are two points on S, and S, respectively, such
that | XP|—inf{|XQ :Q¢€¢S;} and | X\P; = inf{XlezQeS,l} (we assume that
| XP|<| X\P, ), and the exponents uq, ..., h, satisfy
(10) (14+hp)/2 <pe<l, 0<hy<l1, 1/2<u<l, (1+h,)/2<u,<1, 0<h,<l.
Inequality (8) is analogous to inequality (16) in [8] but is sharper.
To prove theorem 1 we shall need the following.

Lemma 1. If ¢ and o satisfy the assumptions of theorem I, then for
9€[0,1) and a - 1,2,...,n the estimate

(1) HX, by [ [ XQ I fX, £ Q1) | 0(Q, 7) | Qs
5'

- const Mw"Xpl—(2-—2;4+0)t—(u¢ +u—1)
is walid, where (1+9)/2<u<l.

Proof of lemma 1. Let 4 be the Lapunov constant for o, and let ¢ =4/3
be a sufficiently small positive constant. The proof, being similar but easier in
the case &=t 7, will be given only for 0<</<d".

‘We shall base inour reasoning on some concepts of paper [8]. Accordingly,
let P denote a point of S, such that | XP —inf{(XQ|:Q¢S,}, let W(P, ) be
an n-dimensional cylinder of radius &’ and of axis np (the normal to S, at P)
and let, finally, 3% be the part of S, placed inside W (P,#). We can write
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(12) HOX 0= [ [1XQ ™ I (X, £: Q1) 19(Q, )| dQas

T

Ff JXQ T (Xt Q) (Qu) | dQds = FH(X, )+ HuX, B,

T T

Evidently, the integral H,(X, {) is bounded.
In the evaluation of H,(X, ) we use the estimate

(13) Is (X, £5 Q,7) |=const (t—1) """ exp[—c  XQ #/(t—1)],
c>0, proved in [4, p. 24], and the inequality
(14) XP = XP + PP|=const( XP|+t—r),

Q¢ =7, where P denotes the intersection of S, and the orthogonal projection o
the axis 7, (normal to S; at P) on the plane /==
We obtain

(15) Hy (X, B

= —@=2u)y {,—u D2 e 22 —d __ci)(();2

—const M, | XP| {fr™ " (t—1) [ XP| XQ "Vexp|—-——.—|dQdr
0 +w0

t : ) - P
+Jt—u¢ (t—g)— DR+ C) XQ ~’exp [ _C;_{_?F}de, — Hy(X, )+ Hy(X, ),

where u is arbitrary in (O, 1).‘
In order to estimate i';,(X. t) above let us note that
(16) 1| XQ 1= XQ|=1| XQ | =u|PQ

(21, 22>>0) holds, where Q’ is the orthogonal projection of Q(.‘.‘? on the plane
I1, tangent to S, at P.

Basing on (15), introducing the polar coordinates system in I7, (with the
pole at P) and making the substitution

(17) | PQ" | =z ((t—7)/cxn)'?,
we have

Ty ~xoo 2 4 — -
(18)  Fh(X, f)=const M, | XP|~®20 [ "7 ¢~ dz [x "o (t—v) '~ "dr
0 0

—~const M, | XP|—C—2 £y + 20 4D/2—2)

for 1/2<u<1 —8/4.
In a similar way we arrive at the inequalities

* ~ —~ ¢ ~ g D
(19) H,(X, f)=const M, XPB|~C-2 [yt (g~ 1+0D XP“"exp[—%’_‘—f‘—’]dx
0

“const /M’ XP —(2—2) f—(@+ ut0/2—1)
or ¢, >0, 1/2<u<1—9/2,
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Relations (12), (15), (18) and (19) yield (11), which completes the proof
of lemma 1.

Proof of theorem 1. Inequality (8) follows directly from lemma 1. We
shall prove inequality (9) (the assertion of (7) is similar but much easier), con-
fining ourselves to the harder case, when XX, >0. We shall also assume in
the proof that the inequalities XX, <#'/2, (£, —#)"?<4' and ¢, =2f are valid
because, if they were not, (9) would result from (8).

Let K(.X,2 XX, ) be an n-dimensional ball with centre X and radius
2 XX, |, placed in the plane f=r. We can write

(20) Ux,,('\’» [)— UX,‘(/YH ty) - /.f ’K I'X,,(/\’lv ly; Q1) g (Q: 1) ‘de'
s
t too
+[ [ I'e (X, 65 Q, 1) Q1) dQdr+[ | 1',,‘(/\’1, t; Q) ¢(Q, 1) dQdr
0 tg oK
¢
—rf Il l'_,,u(/\", tQ, ’)'[-'n(X’ t;Q,1) ¢(Q,v) dQdr=1,+ -1,
0 ”SK

with S¥ S.nK and S,.—S¥ SAK.
From the inequalities

(21) XQ 2 XX, X|,Q -3XX,,
Q ¢ SX and from lemma 1 it follows that
(22) I,<const M, XP G2t bugtie=l (XX b (¢ —£)r-?)

i 1,2, where (1-+hA.)2<u,<l.
For the integral /; in (20), by basing on (13) and on applying an inequa-
lity analogical to (14) we can write

: ° . —(n-1)/1
/s -const M'rXP —(2 _2‘“).,t "o (t,—1) (n-+-1) Zd‘l
t

X{ f‘ le, "’“"’"’exp{—-
S
o[ty
s*
where P,¢S, and X,P, inf{ X;Q :Q¢S.); P, is the point of intersection
of S. and the axis np normal to S, at P, (X,P, inf{ X,Q :Q¢S},
Qq is the orthogonal projection of Q¢S. on the plane 7/, tangent to S, at
P,and S, and S, are defined by S;: (S, —S5NW, and S.": (5, —S%/w,
respectively, with W, denoting an (n— 1)-dimensional cylinder of axis mp, and
radius o'.
Hence, by an argument similar to that in the prove of (18) and (19)
we obtain

(23) I, const M, | XP| C2) ¢~ mbm=Dg g
where (1-+4Ay)/2<u,<l1.

cotX,f:lf] exp| P2 ‘dQ
1= L

ti—=

|

c XiQ 2 dQJ ,

WP 4Q+ [ exp| 1Y
S

ty—1
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Proceeding to the examination of integral /, in (20), we consider the
following cases:

(a) (t,—t)P<2 XX,, (b) (t,—6)2>2 XX,|.

In case (a) we use the definition of I'(X, ¢; Q, ) (see [11 p. 379]) and we
break the integral considered into two integrals by

(24) L—1+1,

where /, and /, denote the integrals generated by the functions

e =03 (X 1; Q1) — o, (X, £ Q, 1) €20 = [0 (Xy, £y QD) —we (X, 85 "Q 7))
respectively, with w5 (Z, 5; M, ¢) denoting the well known gquasi-solution of
equation (1) and w(Z, &; M, () being given by the formula

(25) 2.5 Q=L [0™ (2,53 M) D (M, 5 Q, 1) dMdg,

@ is the solution of an integral equation (see [11,p. 382]).

For the integral 1; above, by applying to e, the mean-value theorem and
by using the inequality

(26) 2 XX, =(t,—H)'\?= XQ|,
Q¢S,—SX we can write

. N
1,~ const M, { XX, [ [ e (,—1 "D X,Q ™ exp [—“’—t‘:"'—f"’]de:
S, -

¢
(4 ——t)h' 2ofsft—u¢ (t,— t)_("+l)/2' XQ “"‘exp[—%{—?lf] de'} ,

where /<<t ,<t, and %,€(0, 1).
Hence (see the assertion of (18) and (19) above) we obtain

(27) I, <const M, XP[~C et fatn D XX, M 4 (8, — 1)),

where «, is a parameter chosen as in (22).

Now, we shall consider the integral /, in (24).
To this end we make the decomposition

ey [0 (X 13 Qu ) — e (X, 15 Q, D]+ [0 (Xiy 113 Q1) —wr (Xyy £5 Q, D) =€} +e].

In order to examine the expression e) above we consider again the ball

K(X,2 XX,|) and we break the domain £, into two sets 2,NK and 2,|K.
Hence we can write

t
(28) el =[ | K(;w;,“-:(X,,t;M, 0 M X MDD (ML Q, v)dMdg
T n.ﬁ - «
H f' I K(U}‘,"‘(/\’h’iM, OD—oMiX, t; M, ) | PM, ; Q, v)dMd; = E\ + E,.

v Ug—
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The member =, in (28) is estimated by using the inequalities XM —2|XX,,
XM <3 XX,,Mc0Q,nK, and with the help of [4, formula (4.15) on p. 16
and lemma 3 on p. 15] we get

(29) I, const XX, "(t—r) T exp—cr? (E—1))
(

c>0,k,¢(0, 1), A, min(k, 2k), where r=min(XQ , X,Q).

In the evaluation of =, we apply the mean value theorem, the result of
this evaluation being identical with the estimate of =, above.

Hence also the expression e} satisfies an inequality analogical to (29).

By a similar argument, on introducing the ball K(X,, (t,—t)" ?) and on sub”
sequent breaking the integrals in e2, we arrive at the following inequality

(30) e;- const (¢, ty2{(t,—v)wexp[—cy X;Q2 (£, —1)]
+(t,—1) rexp[—c, X,Q Yt 1)+ (E—1)7 exp[—c, X,Q (=)},

where t<<t.<t, h,¢(0,1) and a (n+1-+h,—hy)/2. _
From the foregoing results, it follows that integral /, (see (24)) satisfies

(31) I, —constM, iXP ~C il D (X0 M (8 —£)"7)

with (1-+Ae—h,) 2<u,<1.

Hence (see (27) and (31)) we can assert that in the case (a), the integral
/, in (20) satisfies an inequality analogous to (27).

In the case (b) ((£,—t)>4 XX, * the reasoning does not differ essentially
irom that presented above and is based on the consideration of the ball

K(X,, (t,—1t)'?), on \breaking the domain S,—S* (see (20)) into the sets

SAENSK and S\ S¥ and on subsequent use of lemma 1.

On joining all the results obtained above we arrive at the thesis (9).

3. The oblique derivatives of the potential of single layer. Define on
op a vector field {/,} attaching to each point (P,#)¢o, a vector [, placed in
the plane ¢ const. For (x, ) § o, we have

d d

4
(32) UX ty=[ [+ I'X, t; Q 1o (Q, dQdr.
‘up 0 S ‘“p

The following theorem is valid.
Theorem 2. If ¢ is continuous on o\, satisfies inequality (6) and

the inequality
(33) 0 (Q 1) — 9 (Q, 1) kv " QQ, "7,

where k, >0, h, ¢ (0, 1], then the oblique derivative d‘:p U(X, t) satisfies

. ( , [ 2)" cos d
(34) lim L UK, b= — QX 80D (P, )4 - UP, 8)
Xopdip 20(P, t)Jdet a®(P, t) P
with
(35) w (P, )= 3 a,5(P, t)cos(np, Xa) COS(Np, Xs)
a, A==

A=
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(np is the inward normal to S, at P), the singular integral ‘;P U(P, t) being

understood in the sense of Cauchy's principal value (c. f. [2, 195]).

Proof. Let us consider at (P, ) a local rectangular coordinates system
P, ...P:, with Pz,—np and the axes Pgy, ..., Prs—1 placed in the plane 17,
tangent to S, at P.

We can write

U

U , nlou d
0.!‘; (/\l ,) l'il d:i (X, t) cos (Ci: xa)+d':n (X’ t) Ccos (”P’ xa)

a-1,2,...,n and using the definition of the transversal derivative :){J' (X, 0)
P
[11], we have

1 (d

0
. UX, t)= oA X 6 \dT U(X, 1)

n n—I1
— X aq.s (X, t)z; Zl_j- (X, t) cos (£, Xa) cOS (np, x,,)} .
a,f=1 i= S

Hence, by basing on the formula
d r o0
i, U(X, t):afl 3 U(X, t) cos (I py Xa)

and on applying [7, theorem 1] and [2, theorem 3] we arrive at thesis (39).
(The said theorems were proved for u,—0. Their extension on the case
0<u,<1 is straightforward).

Theorem 3. Under the assumptions of the preceding theorem, the fol-
lowing inequality

(36) UD€ Mot Ch) o
P
is valid with C, and C, being positive constants independent of ¢. More-
over, if the vector field {lp} satisfies
(37) (Up Lp)<ki( PP, "4 t,—t["),

(P, )eS, (P, t)€S:,, k>0, h€(0, 1], then

(38) | UPut)— gt U, 0| (CoMy-Coka) £72(PP 7 =t ™),

t<t,, holds true where
(39)  k,—min (ke, & min (k, 24, x, hy)), x,—min (h, 2k’, 3x/2, 3he/2, 3k;/2),

» min (%, %,), # and & are arbitrary constants in (0, 1), and C; and C, are
positive constants independent of ¢.

The proof of theorem 3 rests upon two lemmas.

Lemma 2. If {l,) and o satisfy the assumptions of theorem 3 with
g 0, then (36), (37) hold true (with u,—0).
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Proof of lemma 2 is analogous to that of [2, theorem 3|, with the neces-
sary modifications due to the replacement of the tangential derivative Zij (P 1)
P

(see [2, p. 195]) by the oblique derivative d‘ll U(P, t).
P

Lemma 3. If |l,} and ¢ satisfy the assumptions of theorem 3, then for
each point (P, t)¢o\.S, the inequalities

(40) LU (P ) < (C Myt Coky) 1,
P

(41) (:;li; U\U- ) (pl! tl) —d([jp L”U' t")(P, t) = (CaM:p"_ C‘kq?)t_,lq‘ ( Pp|;;r + tl—t ”I/’* 3
d

hold, where t,—=1t/2, - U*“(X, &), (with X=P,, P; §  t,, t),denotes integral (32)
X

with the integration being performed over oy\ o, and the remaining symbols
are understood analogously as in (36)—(39).

Proof of lemma 3 is similar to that of lemma 2 above, with the approp-
riate modifications caused by the unboundedness of ¢.

Proof of theorem 3. The validity of theorem 3 follows immediately from
the decomposition

d d | d (to, 1) d g r(te O
iy, UPs )~ 4 UP, =g U Pry )= U (P, h

d (0, 2,) d 0, £,) ’
la, VPP )= U P 1),
t,—t/2, and from lemmas 2 and 3.
4. The potential of spatial charge and the Fourier-Poisson integral.
In this section will be assumed that -1 (c. f. condition (5)). .
Let us consider the potential of spatial charge (3) assuming that ¢ is inte-
grable in each closed subdomain of D, and that

(42) o(Y,7) - Myx %[ YQy 7

holds, where M,>0, u, ¢ [0, 1), p€[0,1) and Q, is a point on the surface S
such that | YQ, |=inf{ YQ!: Q¢ S}

Theorem 4. Under the aforegoing assumptions on o and or, the ine-
qualities

(43) WX, t)— V(X t) =const Mt "o(| XX, |+t t [,
(43) Ve (X, t) Ve (X, t)| = const M,t " XX, "+t —t [,

0<h,<1, 0<h,<1—p, 0<hy<1—max(p, w), are valid, where V. (Z, %)
— Viz,&) (z X, X; & t,t), and (X, tyand (X,, t,) are arbitrary points of

:dxa
D/, such that 0<t-_t, T.

Proof of theorem 4 is similar to that of theorem 1 with some parts of
the reasoning being based on the concepts of [8].
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We shall end this paper with the following theorem concerning the Fourier-
Poisson integral (4).

Theorem 5. If the function f(Y) is defined and continuous in £, and
satisfies

Y)Y =My [YQy ™,

M;>0, g€[0, 1), where Qy is a point of S, such that | YQ, =inf{ XQ :Q¢S,},
then integral (4) and its first-order derivatives satisfy

(X, ) —J(X, t) =const Mgt " (XX, |+ t,—t "),
e (X t)—Je (X, 1) =const Mpt” "7 (| XX, Tyt =),

where (1-q)2<us<1, and hy and ﬁ/ are in (0, 1—q).
Proof of theorem 5 is similar to that of theorem 4, but much easier.
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