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PARTIALLY ORDERED B*-EQUIVALENT BANACH ALGEBRAS
HRISTO N. BOYADZIEV

Let A be a complex unital Banach algebra with a continuous involution x — x*. Then A
is called symmetric, if x*x has non-negative spectrum for every €A, or what is equivalent,
if every self-adjoint element x--x*€ A has real spectrum. The algebra A is called B*-algebra,
it its norm .|| is a B*-norm, i e. satisfies the B* condition: | x*x | =/ x |2 for every x€ A.
It is called B*-equivalent, if a new norm |. can be introduced on A, which is a B*-norm and
equivalent to the original norm |.|.

If A is symmetric, the set K of all self-adjoint elements with non-negative spectrum is
a wedge, which induces a natural partial order in A. This wedge has some special properties—
it is closed, generating, the spectral radius is monotone increasing on it, etc. If A is B*-equi-
valent, K is a normal cone. Our aim is, when given a complex unital Banach algebra A, which
is a partially ordered linear space with wedge K, to give some necessary and sufficient con-
ditions for K under which A becomes symmetric or B*-equivalent with a suitable continuous
involution, such that K coincides with the wedge of all self-adjoint elements with non-nega-
tive spectrum.

This note contains the proofs of some results announced by BoyadZiev (1977).

Throughout with A we denote a complex Banach algebra with unit e,
norm . and spectral radius o(.). Let Kc Abea wedge (x+y¢K and ix¢ K
when x, y¢ K and 42 -0) inducing a partial order in A. We write x<y for x,
yeAif y-xeK.

The wedge K is called a-normal, if a positive constant « exists, such
that [[x |- @ x+y when x, y¢ K. The wedge K is called a-commutatively
normal, if positive constant a exists, such that | x |- a| x+y/ when x, y¢ K
and xy-—yx. Evidently, if K is a a-commutatively normal wedge, it is a cone
(KN —K={0}).

Denoting /- K—K — the real linear span of K, we consider the following
conditions:

A) The wedge A is generating, i. e. A H+4iH.

B) HniH {0}

C) If x¢H, then x*¢ K.

D) The wedge K is closed.

El) The spectral radius o(.) is monotone increasing on commuting ele-
ments of K, i. e. o(x) -o(x+y) when x, y¢ K and xy  yx.

E2) The wedge K is a-commutatively normal.

F) If x, y¢ H, then i(xy—yx)¢ H too.

G) If x, ye K and xy=yx, then xy¢ K too.

Lemma 1. Let in Ahold A), B), C). Then:

a) The set H is a real linear subspace of A and every x¢ A is uniquely
decomposed x-—a--ib with a, b¢ H. The correspondence x—a+ib— x*=a—ib,
a, b¢ H is a linear involution on A ((x*)*—x, (AX+uy)*=ix*+uy*) and H
coincides with the set of all self-adjoint elements x- x*¢A.

b) If x,y¢H and xy yx, then xy¢ H.
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PARTIALLY ORDERED BANACH ALGEBRAS 13

¢) The unit e belongs to K.

Proof. a) The proof is obvicus.

b) We have xy=[(x+y)?—(x y)?|/4¢ K—K=H.

c) Lete -a-+ibwith a, b¢ H. We have a-—ae—ea=a’+iab- a®--iba. Hence
ab  ba and as ab ¢ H and a—a?-—-iab, it follows from B) that a=a?¢ K and ab—0.
Also b-—eb - ab+ib2=ib2 so b=0. Now e—acK.

Lemma 2. Let in A hold A), B), C) and D). Then:

a) For every x¢ H we have — o(x)e=x=o(x)e.

b) The subspace H is closed.

¢) The linear involution x— x* introduced in a) of the previous lemma
is continuous.

Proof. a) Let x¢ A4 and 0<r<<o(x) ' (if o(x) =0, then g(x)"'= oc). There
exists y¢ A with y?—e—¢x and y=Ilim, p,({x), where p,(.) are polinoms with
real coeificients (2, 1. 8. 13]. So p, (£x)€ /{ for every n and hence pi(fix)¢ K
for every n. As K is closed, we obtain e—fx=y?*=1lim, p’(tx)¢ K. Letting now
t—o(x)"! we obtain o(x)e —x ¢ K. In the same way o(x)e--x¢K, so—g(x)e
<x-—g(x)e. As o(x)=< x| for every x¢A, we have also —| x e=—x=|x e
for every x¢ H.

b) Let x,¢/H and x,— x. For every k¢ we have xz|le+x,€K, so x|
+x¢K as | xxg — x| and K is closed. Now x=(x+ | x|e)—| x ecH.

c) Follows from the closed graph theorem [2, V.36. 1.].

Lemma 3. Let B be a complex algebra and VCB — a real linear sub-
space, such that

a) B-V+iV,

b) VniV-{0},

c) i(ab—ba) eV and ab+bacV, when a,beV.

Then the mapping x—a+ib— x*=a—ib, for a, b¢V, is an algebraic
involution (or only involution) on B ((x*)*=x, (Ax-+uy)*=ix*+uy*, 2,u¢€cC,
(xy)*=y* x* when x,y¢B) and V coincides with the set of self-adjoint ele-
ments.

For proof see [2,1.12.7].°

Theorem 1. Let A), B), C), D) and EI) hold in A. Then:

a) If x¢K, the element e + x is invertible and (e+x)"'¢K.

b) If x¢H, then its spectrum Sp(x) is real, and if x¢K, then Sp(x) is
non-negative (Sp(x) -0).

c) If x¢H and Sp(x) 0, then x¢K.

d) If x,y¢K and xy-—yx, then xy¢K (i.e. G) holds).

e) If A,C A is a commutative complex Banach subalgebra containing
the unit and self-adjoint (if x¢A,, then x*¢ A,) according to the continuous
linear involution x — x* on A (see Lemma 2, c)), then x — x* is an algebraic
involution on A,, the algebra A, is symmetric, H,—HnN A, is the set of
self-adjoint elements in A, and K,—{x x¢H,, Sp(x) 0}=KnA,.

Proof. a) Let x¢ K and 0<t<<g(x) '. Then y¢ / exists with y2-—e fx
(y is a limit of real polinoms of £x and / is closed), i.e. y*+ix=e. Ac-
cording to El) we obtain g(e—ix)=o(y*)=1<1+% Then o (1+47)le—#1
+8)-1x)-o((1+£)~-1y?)<1 and the element e—(1+42&) 'y2=e—[(1+£)Te—¢1
+t) x| -1+t Y(e+x) is invertiple. So e-+.x is invertible too. We have
(1) (e+x) ' =[e—( + W 1= 2Rl (1 4+~ p2) = Dl (WNTH ek,
(y/V1 -+t ¢ H). Hence (e+x) '¢ K.
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b) Let x¢ / and 0 Zi¢ R (the set of real numbers). Then 1 2x2¢ K and
e--43x%=/ (A% | x*) is invertible, so that y—(x2+72%) ! exists and e y(x?
+i%) - y(x-+iie)(x iie). Then x—ile is invertible, i. e. ii§ Sp(x). Let now
2 a+if with «,p¢ R and g+ 0. We have that x—ie-[(x—ae) ipe] is inver-
tible, because x—ae¢ H. So i Sp(x) and hence Sp(x)c R.

Let now x¢ K and .i<<0. Then —217'x¢ K and it follows from a) that the
element e -4 'x=1 !(ie—x) is invertible. So x —1e is invertible, hence i § Sp(x).
Thus Sp(x) 0.

c) Let x¢// and Sp(x)=0. For ¢>0 and z=x-+ee we have z¢ H and
Sp(z)=Sp(x)+&>0. Then there exists y¢/7/ with y? -z [3, 4.7.2]. Hence
x ~ee€ K and letting ¢ — O we obtain x¢ K.

d) Let A,C A be a commutative complex Banach subalgebra containing
x, y and e. As x and y have real spectrum, they have in A, the same spect-
rum as in A (i.e. — non-negative), according to [3, 1.6.13.]. As for every
z¢ A, we have for it’s spectrum in A;: Sp(z, A,) —{f(2) f — nonzero multi-
plicative and linear functional on A, }, we obtain that Sp(xy, 4,) 0. So Sp(xy)=0,
as Sp(xy) C Sp(xy, A,). According to lemmal, b), xv¢/, so it follows from
c) that xy¢ K.

e) It is obvious that /7, is the set of self-adjoint elements in A,. As A4,
is seli-adjoint, Ay~ f,-+iH,. As A, is commutative, if x, y¢ /1, theni(xy —yx)

0¢ H, and xy+yx--2xy¢ H, . Fvidently Ff,nifH,-{0}. Then x — x* is an
(algebraic) involution on A,, according to lemma 3.

As Sp(x)c R for every x¢/ (b)), then Sp(x, Ay)- Sp(x)cR for every
x¢H, (3, 1.6.13.], hence A, is symmetric. According to b) we have KN A, C K,
and according to ¢) KoC KN A,. Hence K, KnA,.

Theorem 2. Let A), B), C), D), EI) and F) hold in A,. Then the li-
near involution x — x* (see lemma 1, a) and lemma 2, c)) is algebraic on A
(i. e. (xy)* yv*x*), A is symmetric and K={x| x x*¢A, Sp(x) 0}.

Conwversely, if A is a symmetric unital Banach algebra with continuous
involution x — x* and we denote K- {x x=x*¢ A and Spx) 0} and H-—-K
— K, then the conditions A), B), C), D), F), hold in A and the spectral ra-
dius is monotone increasing on K, so that EI) holds too.

Proof. For x, y¢ H we have xy+ yx=|[(x+y)>—(x2+y?)]¢ . Then the
linear involution x — x* is algebraic, according to Lemma 3. Every x¢ / has
real spectrum (theorem 1, b), so Ais symmetric. The equality K= { x x=x*¢ 4,
Sp(x) -0} follows from b) and c) of the previous theorem.

Conversely, if A is a complex unital symmetric Banach algebra with con-
tinuons involution x-— x* and we denote K {x|x=x*¢A, Sp(x) -0} and
H - K—K, it is known from the existing theory [3, 4.7.10] that K is a gene-
rating wedge and /7 coincides with the set of all self-adjoint elements in A.
The wedge K is closed, according to a recent result of B. Aupetit [5] that
the spectrum is uniformly continuous on /7 (in the Hausdorff metric) when A.
is symmetric.

To show that o(.) is monotone increasing on K, we use the equality o(x)
—sup { f(x) feP} for every x¢/, true for symmetric algebras, where
P stands for the set of all positive linear functionals f on A with f(e)-—-1. If
f€P, f takes non-negative values on K [3, 4.7.3.], so o(x) —o(x--y) when x,
y¢ K. The theorem is proved.

Now we characterize B*-equivalent algebras, giving a conection between
the norm and the partial order in A.
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Theorem 3. Let A), B), C), D) and E2) hold in A. Then every complex
commutative self-adjoint and closed subalgebra A, A containing the unit
is B*-equivalent. Every x¢H has real spectrum and x| “(2a+1)o(x).

Proof. Let A,C A be a complex commutative Banach subalgebra con-
taining the unit e and self-adjoint according to the linear involution x — x*
(lemma 1, a)). As in theorem 1, e) we obtain that this linear involution is algeb-
raic on A, and H,=H N A, is the real linear subspace of seli-adjoint elements
in A,. As H and A, are closed (lemma 2, b)), H, is closed too. As xy¢H
when x, y¢ /4 and xy—=yx (lemma 1,b)), /, is a real commutative Banach
subalgebra of A, containing the unit.

In A, we consider the wedge N,- {x|x-2p_ x}, X, €Hy, n-1} and it’s
closure N. The wvedge N, (and therefore N) is generating A, (Ao- Hy+iH,
and if x€Hy, x—[(x+e)2—(x—e)?)/4 ¢ N, N, & H,). Also NC H,. Moreover,
if x, yeN, then xy¢N, too. Let x-—lim, x, and y=lim, v, X, Vi€ Ny.
Evidently x,y,€N,, hence xy=lim, x,yxtN.)

The wedge N induces in A, a partial order. We write x<y for x, yeA,
ii y— x¢N. Evidently, if x, y¢ A, and x<y, then x-y, too, as Ny, C K and
hence NC K (K is closed).

As in lemma 2, a) we obtain that — o(x)e<<x<lg(x)e for every x¢H,, so
that e is an order unit in /, and every x¢ /, is order bounded. For x¢H,
we denote x|--inf{i1 >0, —ie<<x<ie]. It is easy to see, that |. is a semi-
norm on /,, monotone increasing on V. Evidently | x —p(x)and — x e<x<— x e
for x¢ H,.

We shall show now that x2| —| x 2 for every x¢H.lI —e<x<e, i. e.
e+ x €N, then 0<x2<e because e x? ~(e—x) (e+X) ¢N. 1f now x¢ H, and
x 0, — x < x/ x<e and therefore 0<<x*x?<e. Hence X2 x|

We shall see now, that . and | .| are equivalent on F/,. Let x¢N.
From 0<x< | x e it follows that 0<~x<|x e and according to E2) we obtain
| x| =a/x. Let now x¢/,. We have [ x = X+ Xxe— xel=|x+ xle|
+ x <d x4+ x|e + x =(2a+1) x| In particular, 1t follows that .| is a
norm on /H,. From x|=o(x) we also obtain x = [x| for every Xx € H,. Finally
we have x | x |—=(2a+1) x for every x¢/H,.

It is easy to see that o(x)= x| for every x¢H,. Let x¢ H,. For every
integer £ <" we have [(2a—+ 1) 1]VF x® VA x* Vk< | x*|Vk Therefore the limit
I=1lim, x* /% exists and [=g(x). From |x*|= x *, i. e. [ x* V¥ |x] it follows
= x|. So o(x)— x|

For A,, N and H, all the conditions of theorem 2 hold and therefore A,
is symmetric. Hence every x¢ /4, has real spectrum.

As  x =(2a+ l)o(x) for every x¢H,, A, is B*-equivalent, according to a
well-known argument (see for example [4], [7, 8.4]), with |x ;- o(x*x)'? a B*-
norm on it, equivalent to ‘

As every x¢/ can be included in some closed commutative and self-ad-
joint subalgebra containing the unit, every such element x has real spectrum
and for it the inequality x| =(2a+ 1)e(x) holds. The theorem is proved.

Theorem 4. Let A), B),C), D), E2) and G) hold in A. Then besides the
results from the previous theorem we have .

a) If A,C A is a closed commutative self-adjoint subalgebra containing
the unit, then {x x¢HNAy, Sp(x)==0}=KnA, (and A, is B*-equivalent
accordig to the previous theorem).
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b) The spectral radius o.) is monotone increasing on K and on H it is
a norm equivalent to .. For every x¢H, o(x)=int{2A>0, —1e: x=ie}
and for every x¢K, |x =ao(x).

In particular, all the conditions of theorem 1 hold in A.

Proof. According to lemma 2, a) for every x¢// we denote x =inf
{1 2>0, Je=x Je}. It is easy to see that . is a norm on H (as K is a
cone, according to E2)), which monotone increases on K.

Let A,C A be a complex commutative self-adjoint Banach subalgebra con-
taining the unit and H,- /N A, be the set of self-adjoint elements in it. We
know from the previous theorem that A, is B*-equivalent and #, is a real
Banach subalgebra of A,. In A, we consider the cone K,—Kn 4,. It follows
from G) that if x, y ¢ K, , then xy¢ K, too. With the same method as in the previous
theorem we can see that [x2? - x2 for x¢F/, In the same way we
obtain | x/|—a|x for every x¢K,, |x | x <(2a-+-1) x| for every x¢H,
and therefore o(x)—=|x for every x¢H,.

As K, contains the generating cone N, defined in the previous theorem,
K, is generating for A, too. For A,, K, and /1, all the conditions of theorem 2
hold and so K, {x x¢H,, Sp(x) 0} (Sp(x, A;) -Sp(x) for every x¢H, as
this spectrum is real [3, 1.6.13]). Every element x¢ / can be included in some
complex commutative and self-adjoint Banach subalgebra of A containing the
unit, so o(x)— x and hence |x |=(2a+1)o(x). For x in K we have 'x
-~ ao(x). The proof is completed.

Theoremb.Let A), B), C), D), E2), F) hold in A. Then the linear involution
x> x* (see lemma 1, a)) is algebraic on A and with it A is B*-equivalent
(o(x*x)'2=x, for x¢ A'is a B*-norm on A equivalent to . ).

If G) also holds in A, then K={x x=x*¢A and Sp(x) -0}.

Conversely, if A is a B*-equivalent unital Banach algebra and we denote
K={x x- x*CA Sp(x)=0} and H-K—K, then H is the set of self-adjoint,
elements in A and for A, K and H the conditions A), B), C), D), F),
G) hold and K is a a-normal cone for some a>0, so that E2) holds too.

Proof. Just like in theorem 2 we obtain that x-->x* is an algebraic
involution on A. Theorem 3 implies that every x¢// has real spectrum and
x| (2a+1)e(x). Then A is B*-equivalent and | x,=—o(x*X)'?, x€ A, is a B*-
norm on A equivalent to |[. | [4], [7, 8.4.].

If G) holds in A, the spectral radius is monotone increasing on K accord-
ing to the previous theorem and all the conditions of theorem 2 hold in A,
so K={x|xH, Sp(x)=0}.

Conversely, let A be a B*-equivalent Banach algebra with involution
x> x* 1f we denote K- {x|x x*¢A and Sp(x) 0} and H=K-K, then
H={x x=x*¢A} and A), B),C),D) and F) hold (well-known in the theory
of B*-equivalent algebras).

To prove G) let x, y¢ K and xy- yx. Let A, be a complex commutative
Banach subalgebra of A containing X, y and the unit. Now we continue just
like in d) of theorem 1 to obtain xy¢ K.

To see that K is an a-normal cone for some a0, let ./ be a B*-norm on
A equivalent to | . |, i. e. B|lx s/|x |<y|x for every x¢ A and some positive
constants §, y. As .| is a B*norm, | x|=e(x) for every x¢ / (well-known for
B*-algebras), then theorem 2 implies that |. is monotone increasing on K
(every B*-algebra is symmetric). For x, yeK we have
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X~y x -y x4y yp~!' x+y . Take a=yp—1.

The proof is completed.

Some applications. With the help of theorem 5 we can obtain some results
about unital Banach star algebras.

Let A be a complex Banach algebra with unit ¢ and continuous involution
x—x* Let H=|x x x*¢A}.

In A we consider the wedge: Q {2z 2z 2} _ x,x,, X, ¢4, k=1,2,... n
n=1}. The following theorem holds:

Theorem 6. The following conditions are equivalent :

a) The algebra A is B*-equivalent.

b) The wedge Q is a-normal.

c) The wedge Q) (closure of Q) is a-commutatively normal.

d) The algebra A is symmetric and for some a>0 we have x* —a x2
+y?| for every x, y¢ H with x?y? - y2x2.

Proof. If A is B*-equivalent, Q coincides with the cone of all self-adjoint
elements with non-negative spectrum in A. Theorem 5 implies then that Q is
a-normal. So a) —b) is proved. The implication b) —c) is obvious — if Q is
a-normal, [Q] is a-normal too.

Now c¢) - a). As the involution x - x* is continuous, for the set /7 of
self-adjoint elements in 4 we have H=[Q].—|Q]. Now for A4, [Q], /7 we apply
theorem 5. ;

As every B*-equivalent algebra is symmetric, a) and b) imply d). Let now
d) hold. The set K of self-adjoint elements with non-negative spectrum in A
is a wedge and QC K [3, 4.7.10]. We shall prove that K is a-commutatively
normal.

Let x, ye¢K and xy=yx. For ¢>0 we have Sp(x+ee)>0 and Sp(y
+¢e)>0. Then there exist a, b¢ H with a2 x+ce, b2 y-+ee |3, 4.7.2]. Evi-
dently a?b?- b’a*. Now d) implies x +ee —a x+y+2ee . Letting ¢-0 we
obtain x ~—~a x4y . So K is a-commutatively normal. It is also closed (see
theorem 2). Therefore |Q]C K (in fact they coincide) and hence [Q] is a-com-
muiatively normal. The implication d) - c¢) is proved and with it the theo-
rem too.

Theorem 5 can also be applied to obtain the well-known theorem of Vi-
dav-Palmer.

Let A be a complex Banach algebra with unit e. We set: S={f f—a
continuous linear functional on A with f(e)- 1= f }. (The elements of
S are called normalized states.)

For x¢ A we denote V' (x)--{f(x) fe¢S}). The set V (x) is called numeri-
cal range of x.

The elements x¢ A for which V(x)c R are called Hermitian (in the sense
of Vidav). The set of Hermitian elements in /1 we denote with /7.

Theorem of Vidav-Palmer. /f A H-+-iH, then A is a B*-algebra with
continuous involution x > x*, such that H coincides with the set of all self-
adjoint elements in A-

Let A -H+iH. We denote with K the set of all Hermitian elements for
which the numerical range is non-negative.

In [6, 2.5.6.] it is shown that K is a closed a-normal cone for some a>0.

From the theory of Hermitian elements it is known that i(xy—yx)¢H,
when x, y¢/ [6, 2.5.4] and V(x) coSp(x) (convex hull) for every x¢/
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(Vidav’s lemma (6, 2.5.14.]). From this lemma it follows easily that x¢ /7 implies
x2¢ K (if x¢ H, then x2¢ H [6, 2.6.3.] and then use that every x¢ /f has real
spectrum and Sp(x*)=Sp*(x)). Evidently ec K and so K is generating — if x €/,
x=[(x+e)2—(x—e))/4¢ K—KC H, so H—K—K. Also HniH-{0} is obvious.
So for A, K, H we can apply theorem 5 to obtain that A is B*-equivalent
with a suitable involution, such that A coincides with the set of self-adjoint
elements in A.

With a standard consideration we can see that Ais a B*-algebra (using
(2.6.8 and 2.5.2 of [6]).
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