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LINEAR OPTIMAL CONTROL SYSTEM WITH SINGULAR PERTURBATION
AND CONVEX PERFORMANCE INDEX

TODOR R. GICEV. ASEN L. DONTCHEV

In this paper a linear control system with a small parameter in the derivatives of a part
of the state is considered. The behaviour of the solutions of two classical optimal control
problems with convex costs for the small parameter tending toward zero is investigated. The
presented approach uses some properties of the state equation and the geometrical theory of
the attainable set. It gives a method for a qualitative analysis of a broad class of optimal
control problems.

1. Consider for 7¢[f,, 7| an optimal corntrol system described by the
following state equations

(L1) x Ap(t)x+ Ay +Bi(t, iy Ay(t)x+Aylt) y -+ Byt

with the initial conditions x(¢,) —x° y(f,) ~y°, where x¢R", veR™ (x(t), y(f))
is a state variable, u(f)¢ R is a control, ¢, and 7 are finite constants, /,<T.
We assume that the real matrices A,,(¢), B,(f) are continuous in [¢,, T |.

The small parameter i¢|[0,.1] provides a singular perturbation. Letting
i 0 one gets a “low-order system”

(1.2a) X Ay(Hx+ Aty + B (tu,
(1.2b) 0 Ay (H)x-+A,(t) y-+Byltu

with the same initial conditions, where the equation (1.2b) is defined in (¢,, 7).
The two following performance functionals are considered:

v
(1.3) J(uy A)=="[ [ f(x,t, )+ h(u, t))dt,
,U

(1.4) lu, 2y c(x(T), i)+ Ju, i),

where the functions f (x, ¢, ), A(u, t), ¢(v, 4) are continuous; the function f(x, ¢,4)
is convex and differentiable with respect to x for (¢ 1) fixed and its deriva-
tive is continuous; the function A(u, f) is strictly convex with respect to u for
¢ fixed. It is assumed that f(x, ¢ 4) 0O and there exist positive constants a,
p>1, so that a(u,t) -a u » for every f¢[f,, T]. For notational convinience
we use the same symbol - for the norms of all spaces, leaving to the con-
text to fix the respective meaning.

The following basic assumptions are made:

H1. The eigenvalues of the malrix Ay(t) have negative real parts for
telt,, T) '

H2. The matrix

,
(1.5) M, [ DT, )B(OBOD(T, t)dl
ty
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is nonsingular, where Bo(t)=31(t)—A1r_;(t)Az—gl (£)Bo(t); Dy(t, 1) is the fundamen-
tal solution of the equation x-— Ay(t)x, where Ao(t):Al,(t)—A,,(t)A{gl(t)Ag,(t).
Here A’ denotes the transpose of the matrix A.
This paper deals with qualitative effects due to reducing the order of the
system. Part 2 contains auxiliar results, which help to determine the behaviour
of the solution of optimal control problems when 4 tends to zero.

Let AT¢R" be given. We call the control u¢L\(¢,, T) feasible for
2€(0, 4] if the corresponding state, determined by (1.1) with fixed initial con-
dition satisfies x{T)=x7. Let us recall that the system (1.1) is controllable
with respect to x if for every x7¢ R" and every initial condition there exists
a feasible control for ¢ (0, A]. The system (1.2ab) is controllable if for every
x7 and every initial condition there exists a feasible control for 2=0. In part 3
it is shown that if the hypothesis H1 holds and the system (1.2ab) is controll-
able, then for sufficiently small 2 the system (1.1) is controllable with res-
pect to x.

The optimal control problems to determine the feasible control u(¢, 1) for
4 €(0, A] and the feasible control uy(f) for i- 0, which minimize the perfor-
mance index (1.3) are considered in part 4. It is proved that under the basic
assumptions the optimal control at 7—0 is an uniformly continuous function of
the parameter Z.

In part 5 a different optimal control problem is analysed, that is to mini-

mize (1.4)overu¢ L) (¢,, T), where the state satisfies (1.1) or (1.2ab). An exis-
tence theorem for the optimal control based on the properties of the function
c(x(T), 7) is presented. Similar results for the continuity of the optimal solu-
tion with respect to 4 are obtained. In part 6 the method is applied to inves-
tigate an optimal control system which is uncontrollable at 1-0.

The behaviour of the solution of a differential equation with a small pa-
rameter in the derivative was broadly investigated by A. Tichonov [1].
A general study of singular perturbation techniques can be found in [2;3]. Pro-
bably, P. Kokotovi¢ and P. Sannuti were the first to formulate an opti-
mal control problem with singular perturbations. Recently, an extensive biblio-
graphy on such problems can be obtained — see the overview [5]. The re-
search work has been confined mostly to linear dynamics with quadratic costs
and has made use of explicit formulae for the optimal control applying
the technique of the Riccati equation [6]. Different approaches are given in
[7:8], where a constrained control problem is studied and the performance index
is a linear form of the final state. In [9:10] singularly perturbated infinite-di-
wensional optimal control problems are analysed. In [11;12;13] problems simi-
lar to the ones presented here are discussed, but with regular perturbations.

2. Everywhere in this section it is assumed that hypothesis H1 holds. We
shall denote by {4,)° the sequence of numbers Z,¢ (0, A).

Lemma 1. Suppose that the sequence {i,);, lim 2,—0 is given and the
sequence {g,(t)}° of continuous functions g,(f) is uniformly converging in
|to, T to the function g\(t). Let y,(t) be the solution of the equation

Ly Apty+gult), yto)=y".

Then, for every t*¢(t,, T
lim  max = yu(f)+ ARl (g, () | 0.
SIST

koo %l
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Lemma 2. Suppose that the sequence {iz};>, limi, 0 is given. Let us

denote by (v,(t), w,(t)) the solution of the equation

v=A,(ty + 4 A(f)w, ot)=0,

W Agy(H)v + ik ' Agg(t)w, W(ty) =1";
and by v,(t) the solution of the equation

v Aglt)r, Uty — — Anlte) Az (b)w,
where Aft)— A,(8) — A,(t) Az (£)Ag,(£). Then for every t*¢(t,, T)|

lim ( maxT v,(8) —v,() —+—”rgztn_<r w,(?) )=0.

k—oo  t*=t
The sequences (v, (t)}, {wi(t)}; are uniformly bounded in [t,, T
Lemma 3. Suppose that the sequence {ix};°,limi,—0 is given. Let us
denote by ®(t,t,4,) the fundamental solution of the equation

2=A,(bz,

Ay (2) At Dyt 1, 4y) Diolt, T, 2y)
) (I’(t) T, A.'k) .
At An(l) 2,71 An(9) Dyy(t, T, in) Paolt, 7, Ay)

Suppose that t* is a fixed point in (¢,, T). Then:

(i) The sequences {D(t,t*, An)}, {D(t*, v, ), {47 Pralt™, v, Apl7 are uni-
formly bounded for t¢(t,, t*] and t¢[t*, T];

(ii)y The following relations hold uniformly for t¢[t,, t*] and te(ts, T):

lim @,,(t% 1, ig) = Do(t*, v),  lim @,y (2, 1%, 3) = Do(t, £%);
k—ro0 k—ro0

lim @y,(t*, v, 4,)=0, lim @, t*, 1,)=0;

k00 R—00

(iii) Let ©, € [ty, t*), ¢, € (t* T| be arbitrarily chosen. Then, uniformly for
t€lt,, v,) and teft,, T]
lim A, 1Dy, (1%, 1,08) = — Dy (1%, 7) A”(t)A"Q',_, (1),
k00
lim 2,7V, (t, £*,4,) =— Py (2, t*) Aya (t*) A NEY),

k—yo0

lim @,,(£%, 1, 4y) — — A (t*) Ag () Dy(t*, 7),
k00

lim @, (4, £*, 4,) — — An' () Ay (EyDy(t, 1%),
ko0

llm (I)gg(t*, T, lk) — 0) llm ¢n‘t) t*l 'i'k) =0'
k roo 00

Lemma 4. Suppose that the sequence (i)~ , limi, O and the sequen-
ces (i), (@) of functions [€L{Nty, T), gu€ L™(t,, T), which are
weakly converging to the functions folt), golt) are given. Let us denote by
Xx(), ya(t) the solutions of the equations
X Aplt)x+ Aty y+Ht),  x(t)  x°,

(2.1) .
Ay = Ay (t)x + Agg(t) y+8ut),  Yto) =Y.
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Then the sequence {x,(t)}; is uniformly bounded in (t,, T'| and for every
te[t()’ T]

lim xy(t)=x,(2),

k—co
where x,(f) is the solution of the equation
(2.2) x - Ag()X +folt) — Ara() Az (g (2), x(to) = x°.

Corollary 1. If the functions g, in lemma 4 are continuous and the
sequence {g,};> is uniformly bounded in [t,, T| then the sequence {yu is
also uniformly bounded in [t,, T )

Lemma 5. Suppose that the sequences {i,;, limi,—0, {fe(®)}; and
{gu(t)};> of continuous functions are given. Suppose that the sequence {f(t)};
is uniformly bounded in t,, T| and converging to the continous function
folt) for every t¢l|t,, T|. The sequence {g,(t)}y is uniformly convergingto the
function g\(t) in [t,, T). Let us denote by x,(f), y.t) the solution of the
equations (2.1) and by x(t) the solution of the equation (2.2); for t¢ [y, T|
we denote yy(t) — —ARNE) (Ayi(E)xo(t) +gol2)).

Then for every t*¢(t,, T]

lim (max || x,(£) — xo(f) | +max  y,(£)—y,(¢) |)=0.
kR—oo ty t=T t¥=t=1

We omit the somewhat lengthly proofs of the presented lemmas, which
will be published elsewhere.

3. Controllability. According to assumption Hl the system (1.2) can be
written in the form of

(3.1) X = Ag(O)x+ Bo(t)ua,  x(to)=x°,
where Ay(f), By(f) are defined in the assumption H2. Actually H2 is the well-
known controllability condition [14] for the system (3.1).

Theorem 1. Let us assume that hypothesis HI1 holds. Then if the
system (3.1) is controllable (hypothesis H?2 holds) then there exists A*¢ (0, A]
so that for every i¢ (0, .1%| the system (1.1) is conlrollable for x.

Proof. Let us denote U (¢, 2)— D, (T, t, 2)B,(£) + i—1®Do(T, £, 2)By(t). Accord-
ing to lemma 3 we obtain that for every 7*¢|[{,, 7) and for every sequence
{ar}y, lim 2, -0

(3.2) lim U (¢, ix) = Bo( T, YBy(t) - U,(t)

k—ro0

uniformly in [, 7*] and {U(¢, 44)};° is uniformly bounded in [f,, 7] Let us
T

introduce the matrix M(2) - [ U(¢, 2)U'(¢, A)dt. From (3.2) lim M(i,) — M,, where
t,

M, is defined in (1.5). We show that for sufficiently small i the matrix M(%)
is invertible. On the contrary, let us assume that for every i¢(0, .1] there
exists £¢ R" so that ¥M(A)¢ 0. We can choose sequences {i4;°, lim 2,=0
and {&)7, | & | -1, k=1,2... so that §M@w)é, 0 for k=1,2,.... Thus,
there exists a converging subsequence {E,i}r, Iims,,'_=5(,. ||& | =1 and
lime, &6, MAL)E,, & MoSo, i. e. M, is singular. Hence, for sufficiently large %

the matrix M(4,) is nonsingular.
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Now we prove that the system (1.1) is controllable for x, when 1=4,.
Suppose x° x7¢R"; y°¢ R™ are arbitrarily chosen and u,(f) is a feasible con-
trol for 1 0. Let us choose u,(f)=uy(t)+ Au,(t), where

Au(ty= —U'(t, i) M (4,) [(2(T, Lo, i) —Do(T, t,))x°
T
+ DT, toyh) Y° + ’f (U(t, ix) — Uo()uo(t)dt].

If we set u,(f) in Cauchy’s formula, ‘we get
T
XA T)=D, (T, ty, ix)x°+P1o(T, Lo, lk)J’o%‘tf UL, 2y) (uo(f) + A, (2))dt

T
DT, to)x"+ | Usltyug(t)dt=x".
t,

Hence, the system (1.1) is controllable with respect to x.

Coroliary 2. Suppose that the initial condition (x°, y°) and the final
condition x? are fixed. Then for every control u(f) feasible for i —0 and a
sequence {i,y, limi,—0 there exists  sequence of controls {u t)} %, ux(?)
is feasible for i 1, so that {u b))y is uniformly bounded in |t,, T| and
for every tc|t,, T) we have limy ... ux(t) —Uo(t). The corresponding trajectory
(x(t), ya(t)) is uniformly bounded in [t,, T'] and for every tc[ty, T
(3.3) klim xr(t)=x,(1),
where X,(t) corresponds to the control uy(t).

Proof. Let us choose u,(t) as in theorem 1. Then, accordingto lemma 3
the sequence {u(f)};” is uniformly bounded in [£,, T] and converging to u,(f)
for every t¢[ty, T). Hence, the sequence (g} is weakly converging to uy(t)
in L;”(to, 7) and, applying lemma 4 we obtain (3.3).

4. Convergence. Let us fix the initial in condition (x", y°) and the final
state x7. In this part we assume that hypotheses H1 and H2 hold and
1€[0, .1%], where A* is determined in theorem 1. Consider the optimal control
problems to determine a feasible control for 4¢(0, 1*) and a feasible control
for A=0, which minimize the performance index (1.3). According to theorem 1
and the properties of the functional (1.3), there exists unique optimal control
u(t, 2) for the system (1.1) and unique optimal control u,(f) for the system
(1.2ab). Let us denote by J(1), /, the optimal values of the performance index
(1.3) and by (x(t, 4), y(¢, 4)), (xo(2), yo(t)) the corresponding optimal states.

Theorem 2. For every ¢>0 and t¢[t,, T| there exists d¢(0, 1% so
that for every i¢(0, 4|
(4.1) J(A)—Jo +| x(t 2)—x0(2) || <e
and x(t, 1) is bounded on i, T)< (0, A*).

Proof. Let the sequence {4,);>, lim, 0 be arbitrarily chosen. According
to corollary 2 there exists a control u,(t) feasible for i--1, so that for every
t¢|t,, T)lim @y(t)=u,(f) and the corresponding optimal state lim xXalt) = xo(t)
for telt,, T, {xx(t))7" is uniformly bounded. Then
(4.2) lim sup J(/l,,)~i_klim J (g, 2y)~Jy

ko0
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and the sequence {J(4,)}; is bounded. Because of the assumption for the func-
tion h(u, t) the sequence {u(f, 4,)}; is bounded in L;:r)(t"’ T), i. e. a subsequence
{u(t, 2,)}y can be chosen, denoted in the same way and converged weakly to

u(t). We prove that u(f) is a feasible control for z=0. Using the notation
of theorem 1 we have

T T .
lim [ U (¢t Anult, i)dt= [ U tu(t)dt
t,

R—o0 1,

due to the inequality

T —
[ (U (8, Ap)ult, 2,)—Uytu(®)dt |
&

T T T
([ U 2)—Usfty ditya( [ lu(t, 4x) Pdt)\? +| [ Utyu(t, i)—u(t))dt |.
I t 1,

Hence, using lemma 3 we get
xT— lim Xy(T)- lim [@,y(T, by, A)x°+Po(T, by, 4) y°
k—oo k-0

T T .
+ J U dguit, a)dt]=Dy(T, t)x"+ [ Ug(bu(t)dt,
1, to

that is u(¢) is a feasible control for i=0. In [14, p. 227] it is proved that
the functional J(u, 2) is weakly lower semicontinous with respect to u. Then,
using (4.2) and lemma 4 we have

Jo-J(m,0)- lim inf J(4x)=— lim sup J(&,) /.
k—00 k—o0

Thus, from the uniqueness of uy(f) there is only one weak limit point u.(f) of
the sequence {u(f, Zx)};°. According to lemma 4 the sequence {x(Z, Z,)}" is con-
verging to x,(f) for every f¢[t,, 7] and it is uniformly bounded in [£,, T].

Summarizing, if we assume the contrary of (4.1) and choose a sequence
{Aef7>. lim 2,=0 we come to a contradiction. Thus the proof is completed.

Let us denote by
D()={z|z€ Rm+m+\ z—(Nu, 2), X(T, u, i), W(T,u, 1)), uc L, T)}

the attainable sef for the problem (1.1),(1.3)(see [14]). It is known that d(2)=(J(4),
x7, (T, 7)) belongs to the boundary of D(i).Let N (i) denote the set of the nor-
med vectors p(i), orthogonal to the set (1), at point d(2), p(2) = (8(2), q(2), S(2)).
From the transversality conditions s(1)--s=0. Let D, be the attainable set for
the problem (3.1), (1.3), where d, belongs to the boundary of Dy, d,=(J,, x7);
N, is the set of normed vectors p,, orthogonal to D, at the point d,, p,
~(0,, ¢,). Let us denote py(4)-—(H(4), q(4)).

Lemma 6. For every &>0 there exists 6>0 so that if 2¢(0, 6] and
p(2) € N(A) we can choose p,¢ N, which satisfies p,(2)—p, <e.

Proof. Let us assume that on the contrary there exist >0 and a se-
quence {4}, lim4,—0 so that if pa— p,(4e)=(0(4), q(2:)), lim py.=p] then
min{|p,—p;|.: pL€Ns) . Hence there exists z]=(/(u* 0), x(7, 4", 0)) where
u*eL},’Nto. T) so that z,¢D, and (z,—d))p;=a>0. Let us denote d,(4,)
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(SR, (XT)5 2[(Ae) = (JW¥, Ay)y X(T, u¥, 2;)). According to theorem 1 lim d,(4,)—d,
and from lemma 5 lim z,(4,)—2,. Let us denote d(i,)~ (d, (i), WT, 4)s 2%(4)
—(24(4p), YT, u*, 4,)). From s(ix)=0 we obtain

(z;(’:k)_dl(ik)yplk: (2*%(4y) —d(28)) P(Ap) —~a/2>0
for a sufficiently large k. This inequality implies that p(4,) is not an orthogo-
nal vector to /)(i,), which contradicts the assumption.
Let us denote by (n(¢), w(f)) the adjoint variables [14]. Setting o(t)=y(t)/4
we obtain the following adjoint equation for the problem (1.1), (1.3):
: of .
(4.3) n=—nAy(t)—0Aqy () —N2) 5 (x(t 1), 4, 2),
jo ~ —nAp(t) —oA,(t),
n(T) g(2), o(T) s(2) -s=0,
where (6(2), ¢(4), s(4)) € N(2).
The adjoint equation for the problem (3.1), (1.3) has the form of

g
Ny — —noAo(t) — o % (x0(0), £,0), n(T) qo-
Denoting o,(¢) no(£)A 5(£)A3,'(f) the last equation can be thus written:
. a
(4'4) n=—noA, l(t)"’nAm(t)“"o dﬁ (x‘,(t), t,0),
0= —noAa(t) —0,An(?),
which can be obtained from (4.3) by setting 4i--0.

Lemma 7. Let us suppose that the sequence {A.}>, limi,=0 and the
sequence{ p(i,)\7 , P(Ay) — (1), q(A4),'s) € N (4,), lim (6(4,),9 (Az))—p, € N, are arbitra-
rily chosen. Let us denote by (na(t), o,(t)) the solution of the equation (4.3) for
d=1,; (no(?), 0,(t)) the solution of the equation (4.4). Then for every T ¢|t,, T)
(4.5) lim (m'a/xri () —mo(t) |+ max | al(t)—oe(t) ) -0

koo
and o t)7 is uniformly bounded in [t,, T). ‘
Proof. According to theorem 2 the sequence {x(¢, 4,)j{" is converging to
x,(t) everywhere in [f,, 7] and it is uniformly bounded. Then, applying Lem-

ma 5 in an appropriate way we get (45) . .
Let us denote by n(¢, 2), o(f, 4) the solution of the adjoint equation (4.3).
The optimal control u(¢, ) is defined by the maximum principle

Je(ult, 4), t, A)—max K(u, t, 4),
where Je(u, ¢, 2)=0(A)hu, )+ (n(t, 2)B,\(£)-+o(t, )B,(t))u. Similarly, the optimal con
trol u,(t) for -0 is defined by

J(uy(t), t, 0)— max J(u,t,0),

where Je(u, £, 0)  Bo/(u, 1) + (no(t)Bi(8)+00(O) By(E) 2. _
Theorem 3. For every ¢>0 and T*¢[ty, T) there exists 50 so that

for every 4¢(0,4]
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max | u(t, A)—uy(t) <e
ty= t=T*

and u(t, 2) is bounded in [t,, T|x(0, A*]

Proof. On the contrary, let us assume that there exists a positive num-
ber ¢,, a sequence {1,};°, limZ, =0 a sequence {p(4,)};, p(4)=(4), g4,
s) € N(4), lim (8(4,), g(2) =p, € N,, and a number 7*¢,, 7') so that

max | u(t, i,)—u?) £ -
to=t=T*#
Let us denote

G,(t, A,)=max X(u, t, 2,), Gy(t, v, 2x)=  max  K(u,t,1,),

|| a—uys) || ==
where ¢>0, r¢[f,, 7*| are arbitrarily chosen. The maximum in the last inequa-
lity is achieved for some u, ||#' <oc and due to the strict convexily of the
hamiltonian y(zr) — G,(zr, 0)— Uy, 7, 0)>0. From the uniform continuity of (»(Z, 2),
o(t, 2)) in [f,, T*] with respect to 2 and lemma 7 it follows that for every
uER”, u—uyr)l e
(46) ‘ Je(u: T O) o x(u; tn zk) !<7(t)/4,
where £¢ 4(zx), 4(r) denotes a neighbourhood of r and 4,¢ O,=[0, A(r)]. Using
(4.6) at u-—uy(r) we have for f¢ A(z), ix€ O,
(4.7) G, (t,7,) = max J(u,t,i)= I (u,r), ¢, 2,)= G, (1, 0) — y(x)/4.
Now we show that for 7¢A4(z), 1¢0,
(4.8) Gy(t, 7, ) < Gy(, 0)—(7)/2.
Let us assume that there exists 1, :;E—u,,(r)llze, so that
(4.9) (1, £, 2,) = Gy(r, 0)— 7(x)/2.

Let us denote u* —uy(r)+4 u*(@—uy(r)), u* ¢/ |4 u,(z)|. Then ||u*—uyr) |=¢
and from (4.8), (4.9) and the convexity of J(u, ¢, 1) we come to the following
contradiction:

Gy(z, 0)—9(v) = Gy, v, 0) — H(u*, v, 0) — I(u* t, 1,)—»(x)/4
w3, ¢, An)+ (1 — 1) I(u(x), 8,4,) —7(x)/ 4 — (G, (x, 0)—(x)/2) + (1 —u*) (Gy(z,0)
—9(1)/4)— (v)/4 = Gy(r,0) — (1 4+ ¥ /2)p(r)/2 = Gy(x, 0)—3»()/4.
From the covering JA(x)D|¢,, 7%] we can choose a finite subcovering

{A(x,)};. Let us denote Y- N30, if t¢(t,, T*), then there exists A(z) so
that /¢ A(r, ) and for sufficiently large & we have 4,¢ Y. From (4.7) and (4.8)
we have

JC(u(t, lk)’ t, AA') - max x(u’ t, ll) Gl(t' 1.)—02“, 'lo ’ lk)
(4.10) | a—tugleg) 1|2

G|(f, 0) - 7('/‘(,) /4— Gl(') 0) + 7(','0)/2 = 7(‘!’0)/4 >0,

hence | u(t, 2,) uo(v,) <e. Similarly, setting 1,=0 in (4.10), la()—uy(r;,) | <e.
Hence, for every f¢[4,, 7%

| alt, ) —uo(t) | = ity A)—uto(r;,) ||+ olr;y) —ug(t) || < 2e,

‘o

which contradicts the assumption.
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To prove the uniform boundedness of u(f, i) we assume that there exist
sequences {¢,|= lim¢, ~t*¢[¢,, T|; {447 ,limZ, =0 so that lim ... lu(f, 4,) = co.
Due to the inequatity JC(u, ¢, i, —a W4i,) w ”+4c¢, u , where ¢;> ey 2,)
B,(ty) +o(t,, 4,)By(t,) and using the uniform boundedness of the sequence
{((t,,, Az), olte, Ay)};° we obtain

lim JC(u(t,, iz), t., ‘)=  ©o.
k-sc0

Choose u(t) const — u. From the maximum principle 3(u, ¢, 4ip)—3(u(t,, 4,)
ty, 4,). Hence lim3C(u, ty, 4,) - —oo. But

oo lim 3e(u, t, i) Yoh(u, t¥) +no(t*)B, (t* )u+liminf o(t,, i,)B.(1,)u

k—300 ko0
and from the boundedness of o(f,, 1,) according to lemma 7 we come to a
contradiction. This completes the proof.

Theorem 4. For every ¢>0; t*, T%¢(t,, T), t*<T* there exists 6>0
so that for every 1¢(0, 9]

max  x(Z, i)—x,(¢) |+ max L, i) —ylt) <e
to—t=T 1*<<t<T+*
and y(t,1) is uniformly bounded in [t,, T|<(0, .1%].

Proof.In.[11] it is proved that the optimal control u(#, 2) is a continuous
function with respect to the time ¢ for Z¢ (0, A*]. From theorem 3 and lemma 5
it follows that y(¢, i) converges uniformly to y,(f) in [£*, 7*]. From the uniform
boundedness of w(f, ) and corollary 1 it follows that y(¢, 2) is uniformly bound-
ed in [y, T]<(0, 1%]. Then x(¢, i) satisfies x - A, (£)x+/*(¢, 1), x(t,) = x°, where
f5(t, 2) Aw(t) y(t, A)-+B\(tu(t, z) converges to fHt)=A,(t) yo(t)+ B, (t)uy(t) al-
most everywhere in [¢,, 7] and it is uniformly bounded. Hence x(Z,2) uni-
formly converges to x,(¢) in [f,, T].

5. On the problem with free final state. In this part we shall show that
the previous considerations can help to obtain similar results for the correct-
ness of the problem with fixed initial and free final state. The performance
index (1.4) is minimized. First we present an existence condition for the opti-
mal control.

Theorem 5. Let us suppose that there exists a compact set 1'C R"
and numbers b 0, v>p so that for every ic|0, A] and for every v{ 1’ the
function c(v, 1) satisfies
(5.1) c(v, i) —b v .

Then for every i¢|0, .| there exists an optimal control.

Proof. First we show that there exists a bounded set /", cR" and a
number a, >0 so that if 1¢(0, A}, u¢ L(¢,, T) and x(7, 4, A)¢ 1", then
(5.2) Ju, iy=a, x(T,u,i)l”.

From lemma 3 there exist constant y, y, so that for every A¢(0, |
yomax [ | Do(T, t)x" |, [[(T, by, DX+ P AT, b, 1)y,
s~ sup max|| BT, 0Byt) |, | DT, & DBO+ ) AT, 1, HBE) ||
t<T

71
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Using Cauchy’s formula and Holder inequality we obtain
. . z £ 1
ST,y )y end Tt 0e ) dt= o ([ ouy rae )"
7, \ 7o

Let us choose /', —{v v¢R", | v <2y). Then if x(7,u,2)§1, we get
x(T,u, 1) =2y+2y {u r,— X T, u, 7 2y, 111, =2y,(N(u, 1)/a)"P,
where the properties of the functions f, ¢ are used. Let us suppose that

4€]0, 4] is fixed. We prove now that /(u, 2) has a lower bound. Let us assume
that there exists a sequenc: {ux(f)!;, u, € LD, T) so that lim Au,, i)= —cc.
But from Ju,, 4)=0 we get lim x(7,ug, 4) =occo. Then for a sufficiently
large k& we have

Hug, 2)=c(x(T, ux, 2, )+ Hu,, )

b x(T,up 2)| " +a) X(T, 1, 2) 7 x(T,un2) "(—b+a, x(T,upi)|")>0
ar~1d we come to a contradiction. Hence we can choose a minimizing sequence
{u,}i". Let us choose u, arbitrarily in LY(¢,, 7). Then for e sufficiently large &
we have /(u,, 1) =lu,, ) and from (5.3) {x(7,u,, 2)}" is_bounded. Hence
from /(u,, ) a” w,, b x(T,u, 4) it follows that {z,}i° is bounded in
L(p"(to, T). Now we can easily complete the proof using the continuity of ¢
weak lower semicontinuity of J(uz, ) and the closeness of the attainable
set D(4).

The following result can be proved on the basis of this theorem.

Corollary 3 [14). If the function c(v, 1) is lower bounded or convex
then there exists an optimal control.

Let us assume that hypothesis HI from the introductory section and
condition (5.1) hold. Let us denote by (X(A)c L{(#,, T) the set of the optimal
controls for 4¢[0,.1};/(Z)is the optimal value of the performance index.

Theorem 6. For every «>0, tc(ty, T| there exists 5¢(0, A] so that if
4€(0, 8] and u(t, 2) €0XZ) there exists uy(t)c @D(0), thus if x(t, 1), xo(t) are the
corresponding optimal states, then 1(2) 1(0) + x(¢,i)—x,(t) <eand x(t,3)is
uniformly bounded in [t,, T (0, A].

Proof.Let us assume that there exist #,>>0, #*¢[fp, 7] a sequence {iz}
lima,—0 and a sequence {ux|{", u, € D(iy) thus for every u,¢@(0) the inequla-
}ity x(t*, i) —xo(t*) |+ HA)—10) - &, is satisfied. Let u,¢@(0). Then, using
emma 4

(5.4) lm:o sup /(i) *lim [ (g, iz) = 1(0).
This inequality implies that the sequence {v,}{*, v, x(7,4,) is bounded. Ap-
parently, on the contrary from (5.1) and (5.2) we get /() - —b| v, "+a, v »
>1(0) for a sufficiently large k. Moreover | .- a ' (lis) —b|vy|*)/»
hence we can choose a weakly converging to u* subsequence in LoXt,, T)
which we denote in the same way {u,};". From lemma 4 it follows ‘t’hat the
sequence of the corresponding states {x(£, 4,)|;* is converging to x*(£) - x(¢, u*, 0)

everywhere in [£,, 7| and it is uniformly bounded. But /(u, 4) is weakly lower
semicontinuous, hence



34 T. R. GICEV, A. L. DONTCHEV

[ (w* 0)= lim inf /(u,, )
k—o0
and due to (5.4) u*¢@(0), lim /(ig)=17(0), which contradicts the assumption.
Thus the proof is completed.

Theorem 7. Suppose that the function c(v, i) is convex with respect
to v for fixed i or the system (3.1) is controllable. Then for every £>0;
t, T*¢(t,, T), t*<T*there exists 8¢ (0, A] so that if 2¢(0, ] and u(t, 7)€ a(2)
we can choose uy(t) € M(0) thus

max | x(f, ) —x,(f)| + max | (¢, A)—y,(0) |+ max |u(t, i) —uyt)| <e

tye=t<T tet<T* ty t<T*
where (x(t,7), y(t, 1)), (xo(t), Y(t)) are the corresponding optimal states.

Prooi. If we assume the contrary, then using lemmas 1,4,5,7 and theo-
rem 6 as in the proof of lemma 6 and theorems 3, 4 we come to a contra-
diction. The continuity of the optimal control u(f, 7) with respect to ¢ for
4€|0, 2] which is used in theorem 4 can be easily proved on the basis of [11,
lemma 1].

Note. If the function c(v, i) is convex and continuously differentiable
with respect to v then from [14] the optimal control is uniquely defined and
satisfies the maximum principle, where

(T, 2) = i)~ —oe ((T, ), 7).

Hence, lemma 6 follows immediately.
6. An application. Finally we consider the control system

x— Ay (t)x+ Ay(t)y + ABy()u,
1y An(tx+ An(t)y +ABytu
with the following performance index

(6.2) L T )= ‘}' (f(x, t, 4) +w Q(tyu)dt.

Let us suppose that the initial state (x° y°) and the final state xT are
fixed, the matrices A;,(¢), B/(f) and the function f(x,¢, 4) satisfy the assump-
tion, given in the introductory section; the matrix A,(f) satisfies the assump-
tion H1; the matrix Q(f) is symmetric, continuous and positively definite. The
essential difference between the former and the latter case is that the behavi-
our of the optimal solution is investigated in a neighbourhood of 1--0 for a
system, which is uncontrollable for Z- 0.

Additionaly we introduce the control system

(6.3) x Ay(t)x + By(t)yv,  x(fo) = X",

where the matrices Ay(f), B,(f) are defined as before, and the following per-
formance index

(6.4) Jw)= [ v Q(tyt.

(6.1)

Let us denote by u(t, 1), x(¢, 1), Wt 4), J(4) the optimal solution of the problem
(6.1), (6,2) and by v,(f), x.(¢), J, the optimal solution of the problem (6.3),
(6.4); yo(t)=—A,,'(£) (Agy(1)xo(2) + Ba(t)vo(?)).
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Theorem 8. Let us suppose that the system (6.3) is controllable. Then
for a sufficiently small /. the system (6.1) is controllable with respect to
x and for every ¢>0; *, T*¢(t,, T), t*<<T%, there exists 6>0 so that

max x (¢, A)—x,(f) - max  y(, i)— yo(t)
te<t=T t*<t<T*

+ max | iu(t, i) —v() + 22JA)—T, <e

tyt=T*
if 2€(0, ).

Proof. If we set v -/iu then the first part of the theorem follows from theo-
rem 1. Let us consider the problem to optimize the system (6.1) with a con-
trol »—=7iu and the following performance index

K, i) =22J(v, i)+ [ (A3f(x, t, )+ Qt)v)dL.
9

Obviously, for 2>0 the solution (x(¢,4), y(¢,2)) of this problem is also
optimal for the problem (6.1), (6.2) and the optimal control u(f, 2)—o(¢, 2)/2
Therefore, we can use the results given in part 4 to complete the proof,
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