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THE RATE OF CONVERGENCE OF BERNSTEIN — VON MISES
APPROXIMATION FOR MARKOV PROCESSES

B. L. S. PRAKASA RAO

Estimates for the speed of convergence to the normal of posterior distribution for maxi-
mum contrast estimators in the case of Markov processes are given.

Since the appearence of the monograph of P. Billingsley [1] on statis-
tical inference for Markov processes in which consistency and asymptotic
normality were investigated, there has been considerable interest in further
development of large sample inference for Markov processes. Prakasa Rao
[11; 12] has studied the properties of maximum likelihood estimators under
regularity conditions similar to those in P. Huber [6], J. Pfanzagl [10], J.
Borwanker, G. Kallianpur and Prakasa Rao [2] extended to Markov
processes one of the fundamental results in the asymptotic theory of inference
viz., the approach of the posterior density to the normal. When the observa-
tions are independent and identically distributed, this result was obtained by
Le Cam [7], special cases of which were earlier obtained by Bernstein and
von Mises. Le Cam [8] discussed this problem extensively in the independent
and identically distributed case.

Our aim in this paper is to estimate the speed of convergence of the
posterior to the normal distribution. Results on the rate of convergence in the
independent and identically distributed case have recently been obtained by
C. Hipp and R. Michel [5] improving over earlier results of H. Strasser
[14]. Since methods and proofs are similar to those in [5] and [12], we do not
give detailed proofs and refer to this papers.

1. Introduction. Consider a measurable space (X, B) and for each 6¢ © let
P, be a probability measure on 4. Suppose that @ is an open set contained
in R* Let © denote the closure of @ in R* and % be the Borel o-fi Id over
6. For every ¢ © assume that [X,, »n -1} is a Markov process taking values
in the space (¥, #, P;) with stationary transition measures Py (&, A)= Py (X,
¢A X,=5). We assume that for each 0¢ 6, py(s, A) is a measurable function
of & for fixed A and a probability measure on s for fixed & Such a set of
transition measures along with an inintial probability measure give rise to a
Markov process, see Doob [3].

A family of A X #A-measurable functions f,: XXX — R, 0¢6 is said to be a
family of contrast functions for {P,, 6¢ @} if E,(f.) exists for all 6¢6© and
t€@ and if
(1.1) E, (fo)<Eo(f)

for all 6¢@©, r¢ O, O-+r. Let (x,,...,X,1) be an observation on the process.
Any A”"+l-measurable map 0,:¥"'!' —R* depending only on Xx,...,Xx,4 is
SERDICA Bulgaricae mathematicae publicationes. Vol. 4, 1978, p. 36—42.
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called an estimator. A minimum contrast estimator (MCE) is an estimator 6,
for which 6,(X"+*')c® and

) fan(xh Xip1) = int X fp(x; Xis1)-
i=1 6€6 i=1
It can be seen that maximum likelihood estimates (MLE) in the sense of P.
Billingsley [1] or Prakasa Rao [I1] are special cases of MCE. MCE’s
for Markov processes were introduced by Prakasa Rao[l12]and P. Gdnss-
ler [4) Prakasa Rao [12] studied the rates of convergence of distributions
of these estimators by obtaining Berry-Esseen type bounds and Ginssler [4]
studied measurability, consistency cnd asymptotic normality of these estimators.
Unless otherwise stated, we shall assume that the process {X,, n=1} satis-
fies for every ¢ ® Doeblin’s condition (Do) as given in [3]. This implies in
particular that there exist positive constants r,--1 and g;<<1 for any 6¢ © and
a stationary probability distribution p, (-) such that p{(&, E)—p, (E)|=rs o} for
all measurable sets E, for all £¢X and for every n=1. Here p{®(.,.) denotes

the n-step transition function. We shall suppose that the initial distribution is
the stationary distribution of the process under consideration. Then the process
{X,, n-1} will be a stationary Markov process for each 6¢©. Let P, denote
the measure on (X*, £=) determined by p, (.,.) and pg(.).

2. Main resultes. Let i be a prior measure on (0, 8). Assuming 4 has a
finite density o with respect to Lebesgue measure which is positive on © and
zero on ¢, define the probabllity measure

Ryx(B)= Jaexp(—Zf /o (xi *i, ) (oo

Jexp[—21, fulxiy %, )]0 (0)do

Be @,

for all those x¢ X7+! for which it is possible. Here $* denotes the o-field of
Borel sets of R* Note that, for the family of conrast functions f,(xy, X,)=
—log ps (x,, X5), where p,(x,, X,) is the transition density, R, . is the posterior
distribution of 6 given the observation x=(xy,..., x,+1) and the MCE 6, is
an MLE under some condition.

For those x¢ ¥"+! for which

noo0%fo(xg X5, q) |
v T “
(%)= ((;l R 1(,:%))

is positive definite, let Q. be the normal distribution centered at the minimum
contrast estimator 0,(x) with covariance matrix 77,(x)".

We shall show that R, . and Q.. are defined for all x in a set A, x¢ A1,
n=>1, with supsex Py (Anx)— O(n 1), where Kc 6 is compact. (For any set
A, Ac denotes complement of A.)

The following is the main theorem of the paper.

Theorem 2.1. Suppose the regularity conditions stated in section 4 are
satisfied. Then for every compact subset K © there exists a constant cx>0
such that

SUP, ¢ x Po {SUP, ¢ @t | Rux(B)— Qn o(B) | >cn12} =0 (n").

Before we give a proof of this theorem, we shall state and prove two
lemmas which will be used later. The first lemma is based on a vector ana-
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logue of (4, lemma 4.1] which is an extension to the Markov case of some
results in [9].

Lemma 2.1. Suppose that the regularity conditions (i)— (iv) and (x)
are fulfilled. Then

(a) for every e>0 and every compact KC @ there exists d>0 (depend-
ing on e and K) such that

k
sup Py | inf n ! X f (X}, Xis1) = Es[fo(X,, Xo)]+d}—=O(n")
AEK o—@ll==e i=1
and
(b) for every e>0 and every compact K¢ ©

supPy{ H,(X) B e} O(n ).
fEK

Proof. Let C- {(h,0) ¢ K<X@: 6—0c e}. Under the assumptions (i) —(iv),
it can be shown that given any (f,0)¢C there exists a compact neighbour-
hood C,, of # and an open neighbourhood V), of ¢ such that

(2.1) Es [fs)<Es 10,0

for all ¢ Cy, where y,,—inf{f,(.,.):z€ V,,}. Since {Cg_ox Vo, (6,0)€¢C} co-

vers a compact C (here A° denotes interior of A), there exists a finite sub-

cover of C determined by (8;,0)¢C, 1-=j=m. Let C,=C, ,,V,=V, , and
o . J 7 J 7

N N6 It is clear that if o¢ V; then for all (x,, x,)€ X <X

(2.2) fa (X1 X2) my(xy, Xa)
and for any H¢ Cy
(2.3) Ey[fol <Es [f4|<En [0}

The last inequality follows from (1.1) and (2.1). Since {C;X V), 1--j<-m} covers
C, for every (8, 0)¢ C there exists j, 1- j<m, such that

(2.4) n"lsl{r// (xi Xes1)—Ey (fﬂj)} n—! i% ]{fo (x4, Xi:1)—E5 (fo)}

in view of (2.2) and (2.3). Let a;=infycc {(Es(n:) Es(fs)}, 1 =j—m. Then a;>0,
. M . . J J . .

1=j--m by the lower semi-continuity of £E,(»,)—E; (fu/_) as a function of &

over compact C; and inequality (2.3). Let Y, min{a;/2, 1=, m}. Clearly

i"nf ) ”“'Izl{f‘a (X1, X 1) —Ey (fo)} = 7k

Ay n

implies that » ' X' {n, (x;, x, 1) — E, (ni)}==yx—ay for at least one j, 1<j<m
by (2.4). Hence

P, (infn'X f (x,xi1) E,(fo)+vg) .‘le,,(b)"n(l,f‘.?).
fe=a] J

where S, - n' X/ {n;(xsy Xi41) ~Es(ny)}. But, for 1= j<=m
Py (Sy=. —ay/2) . 4a;E,(S)): n"‘a/"’a(O)Eglnj(X,, X))
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by [12, lemma 3.2], where a(6)=[1+4r.?(1—0o!}?)~']. But a() is bounded for
6¢ K by assumption (x) and £, [»}(X,, X,)]?is bounded for 6¢K by assumption
(iv). Hence

sup Py ( int 7l X > f., (Xiy Xiv)=E5 (fo)+vx)=O0(n™).

AEK o—0| =€

Part (b) of the lemma follows from a vector analogue of [12, lemma 4.1]
or by an argument similar to the one given in [5].

Lemma 2.2. Suppose the regularity conditions (vi),(vii) and (x) are satis-
fied. Further suppose that for every e>0 and every compact KcC©

(2.5) sup (|| 8.(X)— 6! >e)=0(n"").
AEK
Then for every d>0 and every subset Kc©
gggpn( 'l”‘ “fA(X,,z\M% E; (f(X), X)) [|>d)=O(n™").

Remark. Proof of this lemma is based on vector analogue of
[12, lemma 4.2].
Proof. It is easy to see that for every compact KC© there exists e;>0

and a function %;:¥ X ¥ — R (both depending on K) such that

(2.6) Iy (X%, %) f" (x4, X2) =] O—0]| hg(x,, X))

for 6, o in K such that ||#—o |<<eg and for all x,, x5 in ¥. Let
rx=Supgex Eg [y (X, Xo))-

Assumption (vii) implies 7, that is finite. If 7,0 then the lemma holds trivially.
Suppose that rx>0. Then, for any 6¢ K,

" Var, (S0 by (X, Xp2 ) §) Var, h (X5, X
Po{E b (X, Xor)z2nrg) < 220t oalZe Sl 200 TR lPy 0

i=1 % nzrg(

by [12, lemma 3.2] in view of assumption (vii). The last term is uniformly of
the order O(n—1) for #¢ K by assumption (x). Let

E,={|n* f,,(X..X.“) Es (X, Xo) || >d},

i=

E, {E—?lh/\'(XnXiH) "rk’}'

Eq {‘”7771,-'}.21f;”(/\;' i) Eof3(Xy, X)) [>d)2},

E,-{| 6,—b|>d/2ry).

It is clear that E,NE, »E;UE, by (2.6). Hence P, (E,)=P,(E,NE3)+ Py(E,
N Ey)< Py (E3)+ Py(Es)+PoE,). We have shown above that P, (Ej)—O(n™?)
uniformly for 6¢ K. Assumption (2.4) of the lemma implies P, (E,)=0(n"1)
uniformly for 6¢ K. By arguments similar to those given above and in [12,
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lemma 4.1|. it can be shown that 7, (E;)= O(n—1')uniformly for 6¢ K by apply-
ing Chebyshev’s inequality and [12, lemma 3.2] in view of assumptions (vi)
and (x). This completes the proof.

3. Proof of Theorem 2.1. In view of lemmas 2.1 and 2.2 proved above:
the proof of theorem 2.1 is similar to that of [5] in the i. i. d. case. Hence we
shall only sketch it here. Siece for arbitrary % the method of proof is essential-
ly the same as in the one-dimensional case, we shall assume that g is a
scalar. Let K be a fixed compact subset of ~ and

n n
e | F7(%0 xes )V 0 if 2 7 (x4 Xi11)>0,
i=1 n i=] n

otherwise

rn,t("’) (27)1 2bn.x CXP[" [_:j‘lfﬂ(xi' x1'+l)

" E o, (X xii1)+loge (o) —loge (6)]

and H, (B)=R,,b, B +8,) [r,(0)do for all B¢ %, the,o-field of Borel sets of R.
Let ¢ denote the density of the strandard normal distribution.

We shall show that there exist sets A, x ¢ A", n 1, with sup,¢x Ps(Anx)
-O(n—') and a constant ¢, >0 such that R, . and Q, . are defined for x ¢ A, x»
n -1 and

sup  Hux(B)—N(B) = 5 cxn 2.
BedB
This will prove the required result since

sup | Ru v (B) Qui(B)|=2sup H,.(B)—N(B) .
Bed Bed
We shall write “for all x¢A” instead of “for all n 1 there exists a set

Ap € A" with supyexPo(Ank) O(rn ') such that for all x¢ A, x”. By lemma
2.1 R,. is defined for all x¢ A. Let

, 1. . v v " ,
(';1) A= 2 mnt E” [fu(\ 8} ‘\‘.’)l’ bl\' aK } sup EU [fo(xlo ‘\‘2)]‘
hEK neK
Cleary O< a,< b, <~ by condition (vi). In view of lemma 2.2, for all x¢ A
(3.2) (nag)'? b, (nbg)?

and hence Q, . is well defined for all x¢A Let dy_>0 be such that

K - {t¢R:6(r,K) dy} © 6. Here d(z, K)is the distance between r and compact
set K. Conditions (vii) and (ix) imply that there exist constants A, d,. >0 such

that for x¢ A, for all h¢ K and all r, 5¢ @ with -0 <d}y, d—H <d) one has

Elf:'u,.xfﬂ) [y (Xi X,40) | = Rby 10
and
logo(v)—loge (8) = t—0 hy.
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Let
(3.3) ex—(1-+2ag" b))~ min (dy, d}, a3?b ' *h'/4).

By lemma 2.1, for all x¢ A, 6,(x)—6|<eg. Since e,<dx for all x¢ A, b (x)eK’
and hence logo(6,)¢ R An application of (3.2) implies now that for all x¢ A,
rax(0) is defined for all o¢ ©. Let e) —2exbx where ex and bk are defined in

(3.1) and (3.3) and V,x - {0€ R: o <€, n'?}. Now

sup | H,. (B)—N(B)|
BedB

sup Hyx (BN V) - NBNV,ug) | +Hax(Vix) +N(Vak).

BeB

It can now be shown that for all x¢ A the first two terms on the right hand

side of this inequality are bounded by cxn—'2/6 for suitable cx>0 in view

of the fact that the minimum contrast estimator #6,(x) satisfies the relations

Xifo (X0 Xip ) =20 folx,, xiy ) forall6¢ 6,forall x € A and T, f) (x4 X;4,)=0»
- n

for all x¢ A. We omit the proof as it is similar to that given in [5]. It is

clear again that NV(Vy x)=—€x n—'?/6 for a suitably chosen constantcx >-0. The

proof ‘of the theorem is now complete.

4. Regularity conditions. We shall now list the reqularity conditions
assumed earlier.

(i) 8- P, is continuous in @ with respect to the supremum metric on
{P() . 96 8}.

(ii) For every pair x,, x,¢ ¥, 06— f;(x, X,) is continuous on @.

(iii) For every #¢ © there exists an open neighbourhood V) of 6 such that
SUp{E, f«(+»-) 2:0,1€ Vyj<oo.

(iv) For every (,7)¢ ©® <o, O-+1, there exists a neighbourhood-V,, of 6
and W,, of r such that for all neighbourhoods W of 1, Wc W,

sup{E,|inf fs (-»-)[*:0€ Vy, }< co.
SEW

(v) For every pair x,, Xo¢ ¥, H— f(xy, X,, 8) is twice differentiable in @
and for all 6¢ 6, E,(fs (X, X))/ X, |=0 a.s.

(vi) For every 6¢ @ there exists an open neighbourhood Vj of 8 such that

(a inf {4y(r) 1t € Vp} >0, where i,(r) is the smallest eigen value of
E[f"(-»-)) (Here fI"(-,-) denotes the matrix of second partial densities
evaluated at r) and

(b) SU{E. || 7 () [:2€ Vo< .

(vii) For every 6¢ @ there exists an open neighbourhood V, of 6 and a
measurable function 4,: ¥ <X — R such that

(a) for every z¢® there exists an open neighbourhood W, of r with
sup {E,h%:0¢ Wi} <oo and
(b) for all r, o€ Vi, Xy, Xo€ ¥

1%y X9) — f1(xy, X)) [ [ v—0 | By (x), X))
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_ (viii) The probability measure i on(R¥%, B*) has a finite Lebesgue density o
which is positive on @ and zero on @°-.

(ix) For every 6¢ @ there exists an open neighbourhood Vj of 6 and a
constant ¢, > 0 such that

logo(o)—loge(r) <|o—1 ¢4
for all o,7¢ V, .

(x) For every compact K¢ © there exist constants ag, By and ¢, such that

(a) SUppekrp =ap<<oo;
(b) SUpsex @y =Bp<<1;
(c) supgex {(es +V279)/(1+V2ry )} =< 1.

5. Remarks. Let us assume that 6 is a scalar parameter. Under condi-
tions stronger than those assumed above, specifically the existence of third
moments of f7(-,:), Prakasa Rao [12] has shown that Berry-Esseen type
bounds can be obtained for the distribution of MCE and hence, in particular,

for MLE, i.e., for every compact Kc @ there exists a constant cx > 0 such
that for all n 1

1/2 t
sup sup P, {,,”,ﬂ,,,:‘ﬂ<t}~(2n)—1 2fe=¥Pdy =cgxn'?
bEK ¢ B(6) -

for a suitable function A(Y) bounds on (8,—6,), where 6, is a sequence of
MLE and g, is a sequence of Bayes estimators for sufficiently smooth prior
and loss functions are given in [13] generalizing results of Strasser [14] in
the i. i. d. case and (2, theorem 4.1].
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