Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



AN INVARIANCE PRINCIPLE FOR REDUCED FAMILY TREES OF

CRITICAL SPATIALLY HOMOGENEOUS BRANCHING PROCESSES
(with discussion)*

KLAUS FLEISCHMANN, RAINER SIEGMUND-SCHULTZE

Consider a critical spatially homogeneous branching process (#,) starting at tinue n-0
with a single particle. A finer description can be given by means of family trees. Then to
each particle in thie n-th generation ¢, there corresponds an ancestry line, including the posi-
tions of the ancestors. The collections of all these ancestry lines is called reduced (family)
tree of the n-th generation. To each of these ancestry lines there corresponds a polygonal
function on the time interval [0, n] (just like a Donsker path of a random walk). Under suit-
able moment assumptions and coutractions of space and time (similarly to those in Donsker’s
invariance principle) the collection ¥, of all those polygonal functions given that ¥, is non-
empty, converges in distribution. Moreover, the limit has a very simple form. It corresponds
to a certain binary branching Brownian motion model defined by the following properties. All
particles living at the same moment #< 1 develop independently and independent of the past.
Each particle living at ¢ moves rilatively to its position according to a standard Brownian mo-
tion up to a time point uniformly distributed in the interval [z, 1]. Then it splits up into
exactly two particles.

That invariance principle is a refinement of the corresponding result in Flcischmann,
Siegmund-Schultze (1977) for critical Galton-Watson processes. It is distantly related
to a result of L. G. Gorostiza and A. R. Moncayo, where ancestry lines chosen at random
of the n-th generation of certain supercritical processes are investigated. Besides, the spatially
homogeneous branching model is so general that the branching random walk model in Eucli-
dean spaces s covered.

1. Introduction, Let [ be any fixed distribution of a cluster % i. e. a
random finite population y of particles with positions in any fixed d-dimension-
al Euclidean space R? The positions of particles in  need not have any
special properties as conditional independence or identical distributions for
given total number yzt of particles in y. Such D can be considered in the
following way as characteristic for a spatially homogeneous clus-
tering mechanism in discrete time. All particles develop independently
and independent of the past. If at time n any particle has position x then its
progeny x, at time n-+1 coincides in distribution with 7,y the population g
translated by x.

At time n- 0 we start with a single particle lying in the origin. Then D
yields according to the clustering mechanism described above a spatially
homogeneous branching process (®,), where &, is the n-th gene-
ration, i. e. the population of descendents at time n of the initial particle. But
for our purpose we need a finer description.

* Delivered at the “Wissenschaftliche Sitzung zur Stochastik”, Jena, 17, Nov. 1977, Prof
J. Mecke in the chair.
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112 K. FLEISCHMANN, R. SIEGMUND-SCHULTZE

Let be given the whole spatial family tree arising from the initial particle
by the spatially homogeneous clustering mechanism up to a fixed time point n.
Omitting in this tree all particles which do not have descendents at time n we
get the so-called reduced tree ot the n-th generation. This reduced tree
can also be identified with the collection of all ancestry lines of par-
ticles of the n-th generation.

To each such ancestry line there corresponds a polygonal function
on the interval [0, 7] with values in R4 Our aim is now to investigate the
asymptotic structure properties of the collection ¥/, of all polygonal functions
corresponding to the reduced tree of the n-th generation.

We assume that the Galton-Watson process (&,t) corresponding to
(4,) is critical and that its offspring distribution has a finite second moment.
If = is the position of a particle chosen “at random” of the population y, where
% with large total numbers x* are preferred proportionally to x, then we as-
sume that the expectation E: equals the zero vector and that the covariance
matrix Cov & equals the unit matrix. Moreover, we assume that the expectation
En exists where 5 is the position of a particle of y chosen “at random” by
preferring z proportionally to (;7)%. Note that by the other assumptions Ejy
always exists in the case of a branching random walk model, i e. if for given
z+, the positions of particles in y are independent ard have a common dis-
tribution i, independent of x*.

Let ¢, ¥, mean that ii all polygoral functions in ¥, the “time inter-
val” [0, 7] is contracted by the factor » ! and the space R’ is contracted by
the factor » 2 Qurmain result isnowthat @ %, given that //,is non-empty

converges in distribution. Moreover, the limit is independent of the choice of
D and coresponds to the following simple, temporarily inhomogeneous cluster-
ing model. At time /-0 a single initial particle starts with a standard Brow-
nian motion. In a time point t uniformly distributed in the interval [0,1] it
splits up into exactly two particies which move independently and, relatively
to their positions, again according to the standard Brownian motion. But their
(independent) live times are now uniformly distributed in the interval [Z, 1]
Then again two particles arise, etc. Of course, this branching model can be
obtained from the usual binary branching Brownian motion model
on [0, +-©) by a suitable transformation of space and time.

By the way, that invariance principle also remains true in the case of
critical Markovian spatially homogeneousbranchig proces-
ses in continuous time, i. e. if the semi-group | D"}, ;... of cluster
powers is replaced by suitably chosen spatially homogeneous semi-group
(D1}, ot critical cluster distributions.

That limit theorem is based on the following single effects.

The reduced tree of the n-th generation, given that it is non-empty, has
again a branching structure (proposition 3.3). More preciselly, it coincides in
distribution with a (non-reduced) family tree of a certain spatially homogeneous
clustering model on the “time set” {0,..., n} which is, however, inhomogene-
ous in time. In this model we can distinguish between clusters with at least
two particles the so-called source-bunches and those with exactly one
particle. Along any ancestry line the one-particle clusters between two follow-
ing source bunches are called traces. Consequently, the non-empty reduced
tree can be constructed by clustering alternatively sufficiently often tracesand
source bunches (proposition 6.4.).
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In the Galton-Watson case (if the offspring distribution is critical and
has a finite second moment) the source bunches bave in the limit exactly two
particles (cf. |3]), and in the spatial model these particles are lying at the
same position by the contractions (lemma 8.2.).

Again in the Galton-Watson case, the “length” of contracted traces is
distributed according to certain  uniform distributions (cf. [9; 3]). In
the spatial model, by the clustering mechanism, the traces form an inhomo-
genous random walk killed after an independent time. Hence, like in the inva-
riance principle of Donsker and Prohorov the contracted traces are in the li-
mit standard Brownian motions killed after a uniformly distributed time (lem-
ma 11.2))

Finally, by continuity properties of the clustering (proposition 2.1) the single
convergence assertions can be summarized to the desired convergence theo-
rem 7.1.

In saction 2 we outline the general description of particle systems in comp-
lete separable metric spaces A by counting measures . In this concept
clustering mechanisms are described by cluster fields. The continuity
proposition 2.1, says roughly spoken that in bounded spaces any clustered
distribution P, depends continuously on both P and the cluster field k. This
is a generalization of a continuity proposition in [6]. Moreover, a simple
prooi is given. Thus, it is of a certain independent interest although it is
only a rudiment for such continuity theorems in unbounded spaces.

A cluster y is called simple if there are not two particles in y having the
same position. If in a family tree of the n-th generation there is a non-simple
cluster than in general the collection %/, of polygonal functions does not con-
tain all information on family connections in the corresponding reduced tree,
for instance the information on the last common ancestor (“source particle”) of
the n-th generation. This situation could be changed if we would work addi-
tionally with suitable independent continuously distributed interpolation curves
instead of determined lines to connect the positions of corresponding particles.
These considerations led us to the point of view to define in section 5 a
cluster y directly as a random finite counting measureon the o-algebra 11, cor-
responding to the set A, of Rf-valued continuous functions a(f) on the inter-
val [0,1] “vanishing” in ¢ 0. With respect to the original problem we could
now assume without loss of generality that this y is simple almost surely. By
the way there is also another argument not to work directly with lines. The
random continuous functions (instead of lines) can be interpreted in many ways
as a given spatial motion of particles [4].

In order tn realize this concept, in section 5 the set A of killed func-
tionson|0,+ o) is introduced. In section 6 conditionally homogeneous
cluster fields are defined which are suitable to express the temporary
inhomogeneity in reduced trees. The main result is formulated in 7. The con-
vergence considerations for the proof follow in the last sections including a
proof for the “source time theorem” 11.1. simplier as earlier ones.

For notations and results in Galton-Watson theory, in the theory of weak
convergence, and in point process theory we refer o Sevastianov [I0],
Billingsley [1], and Kerstan, Matthes, Mecke [6], respectively.

/'t always denotes the set of all non-negative integers. For the conver-
gence of sequences in topological spaces we write for simplicity uniformly —
or more precisely .

n—oo
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2. A continuity theorem for clustering. Let A be any complete separable,
metric space and 11 the o-algebra of all its Borel subsets.

Let M be the set ofall counting measures onll,i. e. measures being
integer-valued on bounded Borel subsets. Each ¢ in M has a representation
as sum of Dirac measures o= 2,0,,, where (a;);es is an al most countable
family of elements in A [6, 1.1.2.l. Thus ¢ ran be interpreted asa population
of particles w!ich are placed in the state spac» A at the positions a;, i¢/.
(Note, some of the particles may have the same positions.) We write ¢+ for
the total number ¢(A) of particles in ¢.

Equipped with the vague topology, M is a Polish space (cf. [6], section
1.15.). The s-algebra of all Borel subsets of /I is denoted by Wi

Let P be the set of all distribuiions on ). Endowed with the weak topo-
logy, P is a Polish space (ci. [6], section 3.1.) Each P describes a random po-
pulation of particles placed in A. The c-algebra of Borel subsets of P is denot-
ed by P.

The mapping |y, ¢g] —~ ¢+, of the direct product A Al onto M is
continuous and transforms each distribution P, > P,, where P,, P,¢P, into a
distribution P, == P, on ), the convolution of P and P,. The operation : in
P is associative, commutative, continuous (cf. [b], 3.1.10) ‘and has unit element
d,, where o is the zero measure on 11.

Let A4’ be another siate space, i.e.any complete separable matric space (not
necessarily defferent from A), and let 11', M, etc. be the expressions correspond-
ing to this state space.

A measurable mapping a — k) ifrom A into P’ (measurable with respect
to 11 and P’) is called a cluster field from A into A (cf. [6], section
4.1.). Let A, be the (measurable) set of all @ in A where % is defined. If y,
is dlstnbuted by k@ then z, is interpreted as a cluster of particles placed
in A’ and generated by a particle placed in a. Thus % describes a very general
branching mechanism.

Now we assume in addition that A is bounded. Then all populations ¢
in M are finite and the vague topology in M coincides with the weak one.

Let M, be the set of all ¢ in M satisfying ¢(AN Ag)=0. It any ¢ in M,
has the form @=3,8,, then the finite convolution 74, , is denoted by 4,
The mapping ¢ — k() from .M into P’ is measurable (cf (6], 4.1.3.) k), descri-
bes the immediate progeny of the population ¢ if each p rticle in ¢
is clustered independently of the others according to 4.

For P in P with P(My)=1 we write

Py [ Pldy)ke) ().
The clustered distribution P, describes the immediate progeny of a ran-

dom population ¢ dlxtnbuud by 7 and cluetcred according to A.
Let k,, k,, ... be cluster fields from A into 4. We write &, &, if

(kn)m”) ” ’ (k())(n”)

whenever a,¢ A, , n¢ ', with a, - a,. Now, we have the following generali-
zation 4.7.1. in [6].

2.1. Proposition. Let k,, ky, ... be cluster fields from A into A’
satisfying k, > ko. Further suppose that P,, P,,... are distributions on W
such that
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P, — P, and P,(Mg) 1, n¢I't.
Then
(pn)k,, p— (l-)ﬂ)k\)

Remarks. a) The assumption “xl bouded" cannot be dropped, however it
can be weakened, cf. [6], section 4.7., where the case k, -k is treated.

b) Instead of clausters being counting measures we could work without
difficulties with clusters being Radon measures on 1.

Proof. Let y,¢ M, , n¢/ ", with ¢, —¢,. Then we have for some &
in /7 and almost all » the relation ¢ =¢; =k. Moreover, for these »n, there
exist representations @, X - 2d,, with a, —— a,;, n—oc, for each i. Thus,
k,——Fk, and the continuity of the convolution together yield
* (Rada,,) — ,'*/.- (Rodia,) »

. {
1=—ik Rl €

A e (Ru)r,) — (Ro(y, . Hence (cf. [5], A 4.2. and [l], theorem 5.5.) from
P,— P, it follows P, (k). ¢(.)) — P((ky)e(.)) in P, i. e. we have
[ Pudy) f((Ra).) —— [ Pold,) j((ks)iay) for each bounded continuous real func-
tion f on P. Setting f(P)= [ P(dx)h(z), ¢P’, where % is any bounded con-
tinuous real function on M, we obtain fP(dq~)j (Ra)o) (dx)h(z) —— [ Py(do)
X[ (Rod(dr)h(z), 1. e. | (P»:)A,,(dx)h(x) [ (Po)e(dn)a(x)-

3. A structure theorem for powers of homogeneous cluster fields. Let
k and o be cluster fields in 4 (that means cluster fields from A into A) such
that k) (M,) 1, ac¢A,. Then by a—~ (wok)a — (ka)., at A,, we get a new
cluster field wo k. The operation o is associative (cf. [6], 4.3.5.) such that if
ko k makes sense, we can define the powers k" of a cluster field 2byk”
=kok" ', n=1,2,.., where k° is the unit element (k°)4=0d,,, a¢A,.

Now we assume in addition that in the bounded complete separrble metric
space A an associative operation @ with zero element o is given. Moreover, the
maping |a,, a,| — a, © a, of the direct product 4> A4 onto A is assumed to
be continuous. It transforms the product measure » >», of any measures »,
v, on |1 into the convolution », -« »,. The convolution is associative and has
unit element §,. Moreover, tlhe convolution and addition of measures are dis-
tributive.

For each a in A we define a translation operator 7, inM by Ty

_fq(d_,)(),,@,(. ), @ ¢ M, and get the translation semi-group(7,)ae 4 With
unit element 7.: 7,7, T,,@,,, a, be¢ A. Now, the continuity of the addition
in A and theorem 5.5. in [1] yield (cf. [6], 6.1.1.).

3.1. The mapping |a, ¢] —~ To¢ of A M onto M is continuous.

A cluster field £ on A (i.e. a measurable mapping £ of Ainto P) is call-
ed homogeneous, if thereis a distribution 2 on W such that &k, D(7Tx6( )
acA holds. In this case we write £ [D].

The mapping D-—~[/)] of P onto the set oi all homogeneous cluster fields
(on A1) is one-to-one. Moreover, by 3.1. and theorem 5.5 in (1], we have
0D, D if and only if [D,] -~ [D].

If (D] and [G] are homogeneous cluster fields then [G]o D] is again ho-
mogeneous and we have |Glo[D|=[Dqg)).
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If » is any distribution on 9 then we write Q, for the distribution
S»(da)ss (.) of the population 4, consisting only of the particle with position
a is distributed according to ».

If (p))ies is a family of mnon-negative numbers such that X, p;- 1 and »,
for each / in /, a distribution on 9( then we have the simple identity

3.2. (Q')[Sp,l), ] ?PiQy.,i.

Proof. Obviously,
(Qspo | JQE@NIEPQ Jl -)

Inda)2p, Q. Jay= [Hda)E piQ, (Tayil - ))
- ‘\': P, f”(d‘l)fvl(dal )'s/‘a"a‘( : ): '\': pif”(da)f”i(da: )h"u®a ( ) )

}_-“pi_’.(y*"[)(da)(sda( . ): -\-:p: Qv v
If ¢ belongs to the interval [0, 1] then by a—~(1—¢)d, +cds , acA, we get
a certain homogeneous cluster field k.. Instead of ‘D"}' where P belongs to P,

we also write @.P and call @, the thinning operator with survival
probability ¢ (ci. [6], section 1.13.).

Let D be any distribution on ) different from &, For each n in /'t we
define D"l ([D]")), 2, D", x -0, and D~ (@: D)(-) xC). D"l can be
nterpreted as distribution of the n-th generation of descendants of
a parent particle which was placed in 0o and was »n times clustered homoge-
neously according to the cluster distribution /). The following proposition says
that those distributions D"l can also be obtained with the help of clustering
without extinction.

In generalization of [3], proposition 1.1., we have

3.3. Proposition. For each n in I'*,

Dinl ((J-):"dao)l.m o...0[,D

In particular, the conditional distributions D ~D"I(( - )|y ' 0) have again a
branching structure:

[ (['Dl O.... 0[/11)])(0)'

Proof. Obviously, the assertion is valid for » 0. If it is true for n,
then the identity

(D) =[(1 228 + 22D = [(@D:, Bs0) oy ]~ [Pl D 35, ]
yields
Dineti D[n(nl, U.un).,(o_.",.,,., :(‘D:,,D)m(n)l (“-)-“D)l.l)lo <. 0l,D)

We still have to show that (D,n[) (D, ds), 0. But ((D,"[))(z 0)  Zns1
and  (@D: DX( ) z'o0) ar1l), such that
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(D,,,D (1 —=2241)0+2n+1 ns1D (1 —=2a+1)%+ 2n 105, ), 10OV

and 3.3 holds by induction.

4, The space of Killed functions. Let A% d 1,be any fixed d-dimen-
sional Euclidean space. For each non-negative number 7, let A, be the set of
all continuous mappings a of the closed interval [0, 7] into R’ satisfying
a(0)+[0,..., 0], where [0,... O] denotes the origin in R? Now we will in-
troduce a metric ¢ in the set A [Js>0A; of killed functions. We have
the idea that acA, and bcA. are near one another if, on the one hand, s and ¢
are such and, on the other hand, a(x) and b(y) do not differ essentially if x
and y are neighbouring.

For a in A, and & in A, with s ¢ put ob, a) ela b)
max { supl Ca(x) -b(x)) |, sup | [s,a(s)]-|x, b(x)] }, where | - denotes the

XE[0, s xE€[s,2)
d- respectively (d- 1)-dimensional Euclidean norm. Now we will show that
o(a,, a)=e(a,, as)+elas, a,) for any a, in A, i=1, 2, 3. Without loss of ge-
nerality we may assume that 7. ¢, Let o(a, ay)-  a,(x) axx) for some
x=t. If x=t, then

L’(ap a,) al(-‘-) . a:i(x) + ay(x) —(l-_,(X) —da, 113) +o(as, a.),
whereas in the opposite case
ela, a)= [x,a,(x)] [x, axx)] - [x, a,(x)]—[ts ay(t,)]
+1 [ty ax(ty)]—[x, afx)] olay, az)+o(as ay).

Now let g(a,, @)~ |f,, a(t,))—[x, ax(x)] for some x with f#, x=f,. Then
distinguish again between x-<¢, and x>/, and estimate in a similar manner to
get that o is a metric.

Let ¢ be any fixed non-negative number. To each a in A; with 0-—s £
there corresponds an element a’ in A, defined by a’(x)- a(x) for 0—x--sand
a‘(x)- a(s) else. Thus, we have a mapping a—a‘ of the union A, ¢ of all
sets A;, 0--s=/, onto A,.

4.1. For any aiAs, < A0l 1, 2, we have

ola, ag): s, s, +o(ai al),
ela,, a,)=max{ s,—s, , ola}, aj)).
Proof. These are immediate consequences of the inequalities
[si ays)l—[x, ag(X)] = s, x|+ a(s)—ai(*)],
I8y ay(s) =1, ax(x)) (=max{ s, -x,  ay(s) -as(x) 1)

where s;=x s,
To each s in [0, ] there corresponds a killing operator K, on A4,
defined by
(Ksa)(x) —a(x) (acA, 0=x=35).

4.2. The mapping |s, a|~Ksa of the direct product [0, t]X As onto Ap, n
is continuous.
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(Of course, in [0, /] we use the Euclidean metric and in A, and A, the

metric o.)
Proof. Let s, > s and a, — a. Then by 4.1.

Q(K:nam Ksa)= s,—s _‘*‘Q((Ksnany’ (Ksa)).
For each v in the interval /, -[min{s,, s}, max{s,, s}| we have

(Ks, an\(v) (Ksa)(v) - sglp La (x)—a(x) + sxz[l) a(x)—a(y) .
X xyel,

n

Hence
L.(tK,na,,)’, (Ksa))  ola, a)+ sup al(x)—a(y) .
-\'-,VGI”

But the last term converges to zero as n tends to infinily because a is uni-
formly continuous.

4.3. The metric space [A, o] is separable and complete.

Proof. For the separability it is enough to show that all A, are sepa-
rable. But this follows from 4.2. because [0, f]>< A, is separable.

Let (a,) be any fundamental sequence in A. Then (a,) is such in Ay
for some £. Now 4.1. yelds that (a’) is also a fundamental sequence in A, and
has therefore a limit & in A,.

Each a, belongs to some A; and by 4.1. (s,) has a limit s in [0, ¢]. Ap-

plying 4.2. we obtain finally
a, K.a . Kb.

n-—sco

Let [a, b]cAs < A, for any s, £ 0. Setting (a®b)(x)=a(x) for O--x-=s and
(a®bi(x) a(s)+-b(x—s) for s x=s+f we get an element a®b in A,
Thus, we have an associative operation @ in A with zero element 0, where o
is the single element of A, Moreover,

4.4. The mapping |a, b]—~adDb of the direct product A XA onto A is
continuous.

Proof. LLet a, > acAs and b, — bcA,. Then we have a,,{AxH for some

sequence (s,) converging to s and
o(a,®b,, adb)<o(a,Db,, a,Db)+o(a, Db, a®b) ~o(b,, b)-+o'a, a) | s,—s
4sup{ b(x) O(y) :x, y€[0,¢8); x oyl s,—s|.

However, the last term tends to zero because & is uniformly continuous.

Let ¢ be in [0,1] and a be in A, for some ¢=0. Putting (C.a)(s)
Jea(c 's) for ¢>0 and 0 s=cf and Caa o0 for ¢=0 we get an element C.a
in A.. Thus, we have contraction operators C.in A satisfying C.a®b)
C.a®dC.b. Moreover

4.5. The mapping [c,al—~Cea of the direct product |0, 1]<A onto A is
continuous.

Proof. Let a, »>atA, and ¢, > c. If both ¢ and all ¢, are positive then
u(C,"a,., (,‘rna)- ‘o(@,, a) — 0. On the other side

e(C. a, Cea) o(Ve,ale,(-)), eale '(-))
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<o(alc}( - ) ale=(- N H-eleaale='(+)) Veale ().

The last term equals yc,—yc sup{ a(x)| :x¢[0, ]} and vanishes if n tends to
infinity. The other one can be estimated above by

—sup{la(x)—a(y) 0 -x,y=<t; | x—y|<t 1 -ce,]},

which also tends to zero as n — co.
In the case c=0 we get

o(Ce @n, 0)--\cao(an 0) — O.

Setting o4(a, b)=(1 +ola, b)) 'ela, b), a, bcA, we get a bounded complete
metric g, in A which defines the same topology as o. For the sake of abbre-
viation from now on the letter A always denotes this bounded complete se-
parable metric space [4, ¢4] in which we have defined a continuous and asso-
ciative operation @. Thus, the notations and results of the preceding sections
can be applied to this A.

The set V of all distributions » on 9 equipped with the weak topology
is a Polish space. In this space by Cor—=»(Cea(-)), cl0, 1], »cV,contraction
operators C. are defined.

In analogy to the definitions above we define for each ¢ in [0, 1]

Cer = [P(da)do(-),  oEM,
CP=P(Ceré(-)), PcP.

All those contraction operators have the following contiruity proper-
ties which follow immediately from 4.5 and [1], theorem 5.5.

4.6. The mappings (¢, v|~Ce» of [0, 11XV onto V, [c, ¢}~Cey of [0, 1jxM
onto M, and [c, P~C.P of [0, 1]XP onto P are continuous.

5. Trees. In the sections 2 and 3 we gave for elements in A, M, P, etc.
general interpretations. But now we use also more special interpretations as
follows.

Each a in A is considered as an ancestry line, as a branch, or as
a trace. According to the given definition, a® b can be interpreted as a
continuation of the ancestry line @ with the help of the branch b.

Each ¢ X4, in M can be considered as a (family) tree with its ances-
try lines @; or as bunch with the branches a; The tree 7,p appears if the
ancestry line a is continued with the help of the bunch ¢. Note that Ty
only consists of the original “ancestry line” 4, if =00, whereas T,p is the
empty tree o if the bunch ¢ is such, i.e. 0.

For each -0 the subset A, of A is closed and yields therefore again a
bounded complete separable metric space.Thus, we can form the correspond-
ing mathematical expressions M,, P,, etc, indicated by #, which can be con-
sidered as subsets of the non-indicated ones.

From now on let D be any fixed element in P, satisiying D(x* - 0)>0
and D(x+>1)>0. We interprete D as distribution of a bunch ¢ corresponding
to the first generation @, of the spatially homogeneous branching process ()
mentioned in the introduction (where the branches a in ¢ must not be lines).
Moreover, for any n in I't we interprete D" as distribution of the random
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reduced tree corresponding to the n-th generation @,. The term “reduced”
refers to the fact that during the successive clustering an empty bunch causes
that the corresponding preceding ancestry line vanishes. Thus, all ancestry li-
nes in a random reduced tree ¢, distributed according to D", have the
“length” n.

The structure theorem 3.3. says that the distribution of the reduced tree
@, can be obtained also by a certain clustering mechanism without empty
bunches.

6. The source structure of reduced trees. Let ( be a cluster field from
[0, + o] into A. Setting

G ()= Gu(Tow€(+)), acA, L0, +2)g

we get a cluster field G in A. Cluster fields in A of this form are called
conditionally homogeneous. (These cluster fields are in general diffe-
rent from homogeneous cluster fields in marked spaces used for instance in
[7) because the “mark” / may be changed by translations.) If even Gy=G
for some G in P and all non-negative ¢ then G/ coincides with the homoge-
neous cluster field [G] on A.

6.1. Let |G| and |H be conditionally homogeneous cluster fields in A
such that |H o G exists. Then H o!G is again a conditionally homoge-
neous cluster field F' in A, and we have

Fo—(Gao)n,
Proof. Let £ be in [0, +o); and a be in A, Then
( H]o| G ay— (UufTawt(- ) 111 [Goy(de) H (1,5)( )

[0, + o0)g.

Now
| H |74y 2 (H gy

2({x})>0
and, for x¢A,, £+ s8¢0, 4 co)py,
Hlaixy=Hiys(Tar xPe(+)) = | His .y oo Taxé( +))-

Hence
H |z w::}) .o(‘ Fl v o)™ D (Taae() = | Hus (o o Ta€()),

so that
(1H10]G =), (Tat(-))
Let D be as given in 5. and then ,D, n—1, 2,..., be the distributions
introduced in 3.
Let / and k& be in /'+ with [=k. We define

1 (L-.‘”k D@t 1))k—lD(z'>l),

where the mnon-defined expression oJ(x* >1) is understood as one. rj can be
interpreted as probability that the. trunk of the reduced tree ¢, distributed
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according to D™ has “length” /. Immediately from the definition it follows
6.2. We have rk:!'= . . D(x+=1)rf.

+1
Set

0i—k—t ' k=t —(i—1) 7
where the distributions », are defined by Q,":,,D(( Yyt =1, n=i1,42; 5
respectively », —d8,if \D(x*=1) =0, i. e. D(x*==1)=0, where 0 is that function,
in A, which is identically to zero. *W, can be interpreted as distribution of
a trunk of (the random) “length™ i of the subtree of the reduced tree gy,
distributed according to D®), where the subtree is started at time [/ and is
considered relatively to its “start point™.
6.3. For all natural numbers n,

"Wioy = aD(xt > 105, +aD(x* =1)(Q), ny -
Proof. By 3.2. and 6.2,

nD(x+ - 1)(QV,,) ny | = nD(Z+ =1) (Q'n)["_lw(o)]

“nD( - ])0_ ’,E‘ ';'—lQ',.z-('n—n e - eop—i—(i—1))

n—1

v v
= ’7+1Qv,,s= ce e p—1—(i—1) o r:.'Q,n, ceew¥p—(i—1)9
0—i=n-1 1=isn

from which the lemma follows immediately.

Setting ‘Suy=465, and *Syy=,D((-) z*>1), 0=I<k, we interprete
*S. as distribution of a source buach in the reduced iree ¢, distributed
by D® where the source bunch appears at time / and is considered relatively
to its “start point™.

W and "S are cluster fields from [0, + co) into A. Thus, the conditional-
ly homogeneous cluster fields * W/| and |*S| are well-defined. Now we
have in generalization of [2, 2.1], the following structure theorem.

6.4. Proposition. For all n in I'*

D =("Wo) ( ny | o 175 1yt

This proposition says that the non-empty reduced tree ¢, can be con-
structed by piecing together traces and source bunches alternatively at most n
times, where the spatially homogeneity is expressed by the conditionally homo-
geneous cluster fields "W and |*S|.

Proof. At first, "Wu="""Waisp "Sw=""'Sk+1, k=n. By 6.1,
("H'W o "*1S)"o|*+*'W  is again a conditionally homogeneous cluster field
| G| and we have

M 1 —(n
Gay=("+ W(”)U"“SUH.),Io."*‘"\r'(,_}_(_»‘)" ( W(O))( ns o AW |y

Obviously, the assertion in 6.4 is valid for n=0. If it is true for n then,
as just demonstrated, D™ — G, i. e.

[D™]ay = Gay(Tax €(-)), a€ A,.
This yields togetger with 3.3,
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D) = (1 D) pimy) = (n+1D) G -
Now

/1+ID n+ ID(Z'> 1)("0.) n+lg J_; ﬂ**lD(z+ - I)QV,H,]
so that

(n+lD)| G - n+1D(x'>l)((5a°)( ntly o |nt+lg yn+l
+ar1D(x* 1)((Qv"+1) n+1W )( nily o ntlg -

In the last expression we may substitute the power n by 71 because of
Q.,. (M) 1. But 6.3. yields now

Db (n-l-l W(O))( nily | o n+ls yrt s

and the structure theorem 6.4. holds by induction.

7. A binary branching Brownian motion. Let j be the distribution of
the d-dimensional standard Brownian motion on the time interval |o, 1]. We
consider g as distribution on .. For each ¢ in [0, 1), let 8, be the distribution

(1—t)! Lftdx [B(da)dx ol - )

on Y where K, are the killing operators on A4, introduced in 4. Consequently,
the distribution g, describes a Brownian motion killed in a uniformly distri-
buted time point. Now By, -(Q)% £€[0, 1), (in the sense of convolution po-
wers) yields a cluster field B from [0, + co) into A, so that B| is a conditional-
ly homogeneous cluster field in A. This cluster field B! describes the cluster
mechanism of the temporarily inhomogeneous binary branch-

ing Brownian motion mentioned already in the introduction.
Setting

f(x) -~ [D(dp)xx" (x €0, 1)),

then f is called the offspring probability generating function
corresponding to /). Let f/ and f” be the first and second derivatives of f,
respectively.

For each natural number m let A7 be the moment measure of order
m of D, i e.

m=[D(dp)p<™( .)
(powers in the sense of product measures). 1, ath), is called the inten-
sity measure of D.

To formulate our main result we colect all assumptions. /) was
assumed to be an element in P,. Let

(1 f(1—) 1 and 0<f"(1 =)<+ o0,
i. e. the Galton-Watson process corresponding to f is critical and has a finite
second moment. Furthermore, suppose that

(2) E 1)=10,...,0],Cova(l)=1, Ela <+ ~,
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where the expectation £ and the covariance Cov are formed with respect to
the distribution i, where I is the d-dimensional unit matrix, and where

a |=prsup | a(t), acA,.
0=1=1

Moreover, let
@) [23(A, X (da)) | a(1) | <+ ce.

By the way, in view of all other assumptions (3) is always fulfilled if D is
purely random (ci. [6, section 1.14.]), as it is in the branching random walk
case.

7.1. Theorem. For each k in I'*,

en—‘((nW(O))( nw | o |nS )k) ,,_.oo(Qﬂo)lB k.

Consequently, the “tree of the k-th source generation” converges in dis-
iribution to the tree of the k-th generation of that binary branching Brow-
nian motion.

8. The convergence of source bunches. Let [ be the distribution
(f"(0 =)' [D(dx) [ (da) [(x—34) (db)ds +5,( -)

on 9%, which has almost surely realizations with exactly two “points” in A,.
8.1. The distributions (D:D)((-)!z" >1), 0<c<1, converge in wvariation

to D as ¢ 0.
Proof. It suffices to demonstrate that the measures

He = ad(@:D) (x> 1)) HRD) (- ), 27 =2)
converge in variation to . Now
(@D:D) (x*>1)=1—(®R:D) (x* = 0)—(DcD) (x* — 1)

11— [D(dy) (1—c)y" — [D(dx) [x(dx)e(] - 1 - 1—f(1—c)—ef'(1—c)
and

(@D) (), 2+ —2) = [D(dx)2~" [ (da) [(x— 0a) (db)c*(1 — )" —2055+3,( - ).
Thus we can estimate the variation distance | H.—D| by

— D@ frda)[(x ~82)(db) x(1—c)y 2—(f"(1 )",

where x. 2 '¢?/[l —f(1—c)—¢f'(1- ¢)]. By L’'Hospital’s rule,
limxe ~ lim (f(1—€)) 1= (f"(1 =)

-0
Moreover,
lim(1—cpr™2=1, z+>1.
-0
Hence, the “integrand” - converges to zero. Moreover, it is bounded be-

cause of 0==(1 —¢)x" 21, x*>1. Finally,



124 K. FLEISCHMANN, R. SIEGMUND-SCHULTZE

TD(dx) [ (da) [(x—32)(db) = [D(dx)x (x" —1)=f"(1 )

is finite, such that by the bounded convergence theorem the integral con-
verges to zero.
Let &£ be any cluster field in A and ¢ be in (0, 1]. Setting

(Cck)ia)~ @c(k(a-,a)) (@€e{Cch: be AL)),

we obtain a new cluster field C.k, i. e. contraction operators (. for
cluster fields.
Let r be the following cluster field in A:

r(,,:rﬁgda, ac Alo'”:‘“o'u A,

8.2. We have ¢,—1 "S -t

Proof. For each natural number n, let a, be in A@ iins M Ajo.1y- Then
a, has the form

@p =Cn—1bn, ba€Ar, kn€{0,...,n—1}
Thus
"S cpap " Sl ="Swy (T, €())
=i, D(To € () 2" >D=(®@, , DY(Tpxe(-) x">1)

n

Hence
Cnpr"S )(a") Cn—1(|"S (C"an))
((D"n—ku— ID) ( TanC"—>lx ( ( : ) Z - '\) l)

Now we assume that a, >a,¢ Aj,. Then n -k, -1 tends to infinity as
n-—~ and we have z,—0 (cf. [10, theorem 2. 1. 4.]). Thus, by 8.1,

(@2 g D) (+) 27 >1) = D.
On the other side, by the continuity properties 3.1. and 4.6. from z, — ze¢ M,
with x+ =2 it follows
Ta C,,—l =+ TaCox 204,

so that by [1], theorem 5.5., the convergence relation in 8.2. holds.

9. The distributions »,. These distributions were introduced in 6. In the
following we exclude the particular case ;/)(x* —1) 0, where », was defined
formally by », - de.

For each natural number n,

na( * )- X+ l) f[)(dx)fz(da)zn- l(] —Zn- I)x ' ! 6":1( . )-

in particular
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WDt 1) =251 [D(@0)" (fn10) 1 =2n1 f'(fa-1(0)),
where fy(x)=x, fu(X)=f(fr(x)), x€[0,1]. Hence
v = (F(Fa1(0)) [ D(dz) (fua(0)* "2 +).

Now (f, 1(0)r"='=<1, z*>0, and (cf. [10, theorem 2.1.4]) fn(0)—1-2,—1,
so that f(f,(0))— 1. Consequently,
9.1. There is a sequence (c,) of numbers converging towards 1 such that

Y= C S D(dx) (fr1(0))" 12 - )= Cakp=—€ip

for some constant ¢ (except the case D(x*-1)=0, where fornally »,=38,)
These estimations yield
9.2. For all real functions h on A, integrable with respect to ip

Jv(da)h(a) — [Ap(da)k(a). ¢
Proof. We have

| [Ap(da)h(a)— [va(da)h(a) = (1 —ca)fip(da)h(a) + [(ciip  va)(da)| h(a)|.
Obviously, the first expression on the right-hand side of this inequality tends
to zero. The second one can be estimated by

¢, [ Ap(da) k(@) +m(ca 1)— [ iplda) k(a),
n(a) >m n—oo | h{a) | >m
where m is any natural number.

10. A version of the invariance principle of Donsker and Prohorov. The
aim of this section is to prove the following convergence to the Brownian
motion.

10. 1. Proposition. Let v, v, ... be the distributions introduced in
6. Then

@"---l(vn:? o *yl) — ﬁ-

To demonstrate this we need some notations and lemmas.

The usual addition and subtraction of functions in 4, are continuous ope-
rations which we denote with the help of the symbols+and—.

Puting a'(f) =ta(1), a ¢ A, t¢[0,1], we obtain a continuous mapping
a—~a' of A, into itself, a certain linearization of the functions in A,.

Writing »$=»y(a'—£Esa'€(.)), n=1,2,..., where the expectation E, is
formed with respect to »,, we start with the following version of a Linde-
berg codition.

10.2. For all >0,

La(e)= 4 ) v$(da)l a(l)!? — 0.
n(l)}ffe\/n il g
Proof. By definition,
L&) = S vi(da) | a(1)—E,a(1) |2
a()—E a(1) || >sVn
In virtue of 9.2. and (2)
\Ena(l) ||| [vdda)a(l) | — | [ ip(da)a(l)| =0.

Consequently we have for almost all »
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a(l)—£E,a(1) a(ly + Ea(l)y = a(l) +1
and hence in connection with 9.1. for those n
Lie) = [ wida)( a(l) +12 ¢ [ ipda)( a(l)|+1)%

va(ly '+1 eyn a(l) 1+1 en
But in view of (2) this expression tends to zero as n - co.

10.3. We have C,_ (»5 #---* »))—f.

Prooi. a) To each a in A; there corresponds a “reflected” a” in A,
defined by a’(¢)=a(l)—a(l-t), t¢[0,1]. This mapping a—.a” is continuous
and we have (a”) a. If a is linear, i. e. @’ —a, then even a”-—a holds. There-
fore, the distributions - are invariant with respect to that “reflection”. On the

other hand also g has this invariance property.
Counsequently, 10.3. is equivalent to

° 5 )
an df(-,,—l("; A ”:) D,

which we shall prove.

b) Let n be any natural number. We write ,# »n '[nt], £¢[0,]], where [x]
denotes the integer part of the real number x. Eor each 7 in [0,1] and ¢>0
we have for almost all »

(lrx( a(t)—a(,‘[) >£)<:i“‘)’[,,’|,1(:a >-l:‘\",ﬂ)
viarye1 (a(l) +1>en) < cip(la(l) +1>eyn).

Now the last term tends to zero as n — ~o. Thus, for all finite sequences
O0=ty<<---<t, 1, we have for all £>0

as([[a(ty), ..., atw))—lalt), ..., a(stm)] >¢) - 0,
(where . denotes here the md-dimensional Euclidean norm).
c) By the continuity of linear transformations, the desired convergence
assertion
ll,,(l(l(,.tl) sy (1(,,[,,,)] € ( . )) e ﬁ([a(tl) pe ey a‘trn)l € ( -))
is equivalent to
asla(nty)—a(uty), - -y @latm)—alutm_,)]€(.))
;T; /}(la(ntl)"—a(t()) LS a(tm)¥ a(tm l)] ( ( ‘))

But these vectors have independent components, so that this convergence
relation is equivalent to

an(@laty) a(at) € () — plalty)—alt)€(.)), 04 <l 1.

Now
ay(a(,ty)—a(,ty) € (. )

‘M.I,,rl] .1“' . .ly[g'l’._.l(n lz(al"’l] ' l(]) o o a'”’:l(l))t ( ))

= plalty—4) €(.))  pla(ty)—a(t) € ().
In fact, Lindenberg’s central limit theorem can be applied because of
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Ea,(1)-- 0, Cov ayl) i I, and 10.2,,
where £ and Cov are formed with respect to »§ and the covariances converge

because of 9.2.

Summarizing, we get together with b) the convergence of all finite-dimen-
sional distributions.

d) It remains to show that the sequence (a,) is relatively compact. For
this end it suffices to prove that for each j=1,..., d the sequence (a/)

~(a,(a’€(.)) has this property where a/ denotes the j-th component of a. In.
view of Prohorov’s theorem we are going to demonstrate the tightness of (a/).

In order to get a contradiction we assume now that there is an &>0 such
that for all »_>1 thare is a sequence (k,) of non-negative integers such that

limsup e, »(n) n “e,

n—oo

where
een(n) =vi > - - X, (max a ()+---+aj (1) wn) (keI

1==i=n
Applying [1], formula 10.7, we get for all £ and n
Crn(n) =205 (@ (D e (1) =nn—2 s,
where
Sea (S Var al (D).
By 9.2. and (2), l n_ )
Var a) (1) —= [ Aplda)(a’(1))?*-1,

so that sg, ryn for some constant r, which does not depend on % and n.
Hence

Cppaln) = 20y Xm0 R (D () =2
Applying again Lindeberg’s theorem we obtain for all sufficiently large »
limsup ey, .. (n)-28( a/(1) | =n—12r)

2(}]——\/5 r) ® [ B(da) a’/(1) *<n %,

which contradicts the assumption above. Consequently, for all ¢>-0 there is an
n>1 and an n,¢ '+ such that for all & in /"* and all n= n,

e, n(n)<<n .

But this .yelds (cf. [1], theorem 8.4.) the desired tightness.
If » is any distribution on 11, then we write » »(a’€(.)).

10.4. We have
@ty * e V) B,
Prooif. In view of 10.3. we have only to show that
J€, 104 - % ¥) (daja—0.

Because of



128 K. FLEISCHMANN, R. SIEGMUND-SCHULTZE

[C, (¥ - % v (da)a! =n'? X [ vdda)a(l)
1

: " no=i--
it suffices to prove that | [ »/(da)a(l) =O(n ", n >.o, or, for any j-th
component a’/ of a,
[ valdaaX(l) =O(n Y), n—» .
In virtue of 9.1. we obtain

[vaci(daya’ (), ¢ [ D(dx)(7,0) ' [ x(da)a/(1) .
Writing formally
E(x)= X x*¥ 1 [ Ddy) [ z(da)a’/(1)

k0 2 =k
we get a power series F satisfying in view of (2)

F(1)= [ ipldaya/(1) -0,
so that F converges for x¢(0,1]. By assumption (3)

[ 13, (A, X (da)a’(1)

makes sense and coincides with

I Dz [ ddaya/(1)— [ D(dx)(x" —1) f x(daja’(1)
= X (k=D [ Didy) [ rdaj@(1).
z =k

Therefore (cf. for instance [11, 4.3.8.8°]) the left-hand derivative of F in x-1
exists. Hance F(1—x)- O(x), x —0. Consequently

I DUdz) (fa0)):" ' | dda)a’(1) |
= X (JA0) ! [ D) f ddajal()
-0 =k
=F(1—2,) O(zp)- O(x '), n— .
In fact, (1) yields (cf. [10, theorem 1.9.1]) 2,=O(,~"), n— oo-
Proof of proposition 10.1. If » is any distribution on 9, then
»  wa—a'c(.)) is the distribution of the error of the linearization. Because of
10.4. it suffices to show that for any &¢>0

C, 402 - W) (l|@]|>e)

n

converges to zero as n--oo. Clearly this expression can be estimated
from above by

-'\7:\-1 Caa(0d * - x A)( ) sup. la(t)||>¢)
n =i € [n—1t/n, n—i+1/n)
X W(lal>efn).
n=izl
Using la—a'|- @ +|a' =2/a , a¢A,, and 9.1. we can continue with
Y w2l a|>eln) cnip (2 al >en)

n izl
—cnip(d4e? @ *>n)-cde? ) iplda)la *,
4 2<‘n1|’ >n

which tends to zero by (2) as n — oo,
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11. The convergence of traces. We start with the following “source time
theorem” for critical Galton-Watson processes (cf. [9; 3]).

11.1. For all & in |0,1)

-\-: r’l:l — E£.
m=|en) R—co

Consequently, the “length” of the trunk of the reduced tree ¢, distributed by
D™ is nearly equidistributed on {0,..., n} if n is large.

Proof. At first 6.2. yields for any natural number 7

rn= 11 Dpt=1)rilenl=1 0 len]|<<m=n.

nztzn—(en] Se—gont—1 *

Hence
q"=at )1 11 iD(1+:l).
[en)]<m=n n=iz=n—|en)
Clearly,
Dt =1)=(D:,_, D)(x* =1|x*+0)
=(1— [ D(dn)(1—2i_))" )" [ D(dy) [ f(dx)zi_y(1 — 2z )"
‘—‘Z,-_' 2i—1 ['(fi-1(0))
and

F'(fi=10) = (fi0)— 1 i—1(0) (S (JdO) — f (fi—1(0)))
=(2;1—2)" (2 Zi1),
which yield together
Dgr =)<zt EE

Thus

qn < z""ll"]—l Zl— zn+l
4 z
n

a—[sn]—1 "% n—[en)
Using f(1—x)=1—x+2"'f"(1—)x2+0(x?), x—04, we obtain for n— oo
2,—2Zpir = [(1—2n) —(1—2,)= 271 f"(1 —)22+0(22),
which implies now
I"s zn—lml—l__ - 2—],.:“_)2: +o(zi) i
z, 2~ g )2 _(om)—1+ Oz’ n—[en}—1)
But (cf. [10, theorem 2.2.4])

zn(zn-—lml—l )_l r’ l—‘E,

Yoo

so that
limsup ¢"<1—¢.

On the other side f'(/,(0)=(f(0)—=f,—,(0)) " (f(f(0)—f (f,—,(0)), which
yields on a similar way
lim inf ¢" -1 —¢.

n—oe
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Let B8,, £¢[0,1), be the distributions introduced in 7. Then the conditionally
homogeneous cluster field | Qg , | in A makes sense.
11.2. We have
cC "Wo— Qg -

Proof. For each natural number », let @, te in Ac wwi N Ape,1 con-
r—1 |

n—11

verging to some ao¢ A, Ap,1). Using the same notations as in the proof of
8.2., we obtain

"W (C"an) . ‘ IIW ‘(b”): "“,/(",,)(Tbn X E ( . ))
> r:'_kﬂ (61:,, * Vp—p, ¥ X V'I—Ak“—(t—l))(dde ()
U=iz=n—k
- n
Therefore we have
(©, "W )(a”)—k",,wl( W a)

nn

N n—~k 5
= » r; n (()a * _)()' * ook vl)) Op
0 in-k, n n n—R, ( K, *

La €0,

H—{
where 1\”_1”"',) are killing operators on A, introduced in 4.
For each n,

rkn = DR ™ 3,

ot |
Osi=n—k, (&, +1)

is a distribution on the interval [n~'%k,, 1]. Moreover, by 11.1.,, the sequence
(/*a) converges weakly to the uniform distribution «, on the interval [¢, 1].

In view of 10.1. and 4.6.
o o red
Yn atC n—1 (V,, ky *CC * Vl) (& \—n lk,,L (n-rrkn)*l(y"—k” * e oo ek yl)

converges to ¢, B BK, ,ac(.)).
Applying those two convergence relations, 3.1, and 4.2. (and the separa-
bility of A) we are able to conclude that

(©C—1 "W Xa, = (’"‘k"x(‘sﬂn * 7n) (Oxa € ()
N (uex (6‘,0 %°C,_.8) Bk at (-))
(4 % B) Ok ay@n, € () =X B) (Tadi, ga€ () Qs (Tag €())

12, Proof of theorem 7.1. By 11.2. the convergence relation is valid for
k-—0. We assume that is true for &, i. e.

Py atC,— (("W/(o) ("wio|"s)*) — (Qso) 5% -
By 82. ¢, | "S| —»candbyl1.2.C . "W|-—[Qp , |, and we have [Q; |
or |B|. Hence, applying two times theorem 2.1., we obtain
Pn,kol ((Pn.k)@n 18| )C)n"’ |nw|
—= (Qeo) 5 ®) 5, (Qap) a1
and 7.1. holds by induction.
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Appendix. Condition (3) can be dropped. To demonstrate this we
prove lemma 10.4. without using (3) as follows.

In view of 10.3. we have only to show that
fe, 1 (* =---x »l)(da)ya — 0.
Because of
| fCpa Oy -+ % ¥)(da)a | s 77 I | S »i(da)a(1) |
it suffices to prove that for any j-th component a’/ of a
n12 3 l [ viza1(da)a/(1) | — 0.

nziz

Setting for all natural numbers %
= J D(dy) j 2da)a/(1)

2=k
and in a usual way c¢,=c¢}—cy; and writing formally

F(lx)= X cx*!
k>0

we get a power series F satisifying by (2)
R(1)= fip(da)a’(1)=0,
so that F converges absolutely for x¢(0, 1]. Thus, the expressions
F.(x)= k§1 (1 —xk1h), F (x)= kill cr(I—x*1), x¢(0, 1]
make sense and we have F—F _ —/F,. Then
| F(x)| = k‘_\'l [cp (1 —x*") = 4lU(x), x€(0, 1].
Now 9.1. yields for each natural number /

[ris(daai(1) ¢ | [D(dz)( f,(0)**~ [ r(da)al(1)
¢ | F(f(0)) | =cG(f(0))

and it suffices to prove that
n X GUA0) 0.
nzizl

By (1) there is a constant m=1 (cf. [10, theorem 2.2.4.]) such that iz;=<<m
holds for all natural numbers /. Hence f,(0)=~1—z,>1—i"'m and by the
monotony of G

KOS G(1—i~'m), i~
Thus G(f(0)=d(1—i"'m), i=m.

X G(fo)= XX (e |1 —(1—iTtm)r),

n=>i_-m im k>
By (1 —i-'my*'=1—(k—1)i~'m the last inequality can be continued with
X |eni(k j—1 >
(10 lex (B 1)i m+‘;‘lc,, ).

d

= s
nziz=m
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Now
Y lerl(k—1)= ¥ |eaxlmin{k—1,i}—i X ¢,
V<R i 1<k k>i
and by m =1 we can further continue with

<m X 'Y |ep min{k—1,8i=m ¥ ' X SEPN

n=i=m 1<k n_=iz=m 1=l=i 1<k

It suifices to show that the last expression is an o(n'?) as n — cc.
We have

( I}‘k [cel)? ;(1»\_:; +f D(dy) [ x(da) | a/(1) )?

z =R

(| Ddn)fdda)|a(l) )~ [ Didx)fx(da) a(l) ? +f D(dx)rt-
+ >l

x P bt

The last integral can be estimated from above by

Y Didx)(xt)
2t>t

which by (1) is an o(/~') as [ — oo, so that by (2) we finally have
X olcg|=0(717), I — oco.
1<k

If (d;) is any sequence of non-negative numbers satisfying d, - o(/~?) as
— oo then

Y ody=o( X 1), i co.
1= I=7 1=si<i

Since

S e (i N
Isi=i

we are able to conclude that

Y di—o(i'?).
1=1=i

Applying this argument two times we find

2 i! z z 'C.|:0(n|n)' n — oo,
nzizm 1od=i 1<k
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Discussion.

J.F. C. Kingman (Oxford): The interesting results of K. Fleisch-
mann and R. Siegmund-Schultze for critical branching processes lead
me to wonder whether similar features are exhibited by another model of con-
siderable biological interest. In a critical branching process the expected total
number in each generation is constant, but the actual total fluctuates consider-
ably, and eventually vanishes. But in many situations it makes more sense
to think of the population size as being determined by external factors rather
than by individual reproductive propensities.

As a simple illustration, consider a process in which each generation has
fixed size N. The family structure is defined by supposing that the probabi-
lity that the N particles in a particular generation have respectively d,, d,,
..., dy daughters in the next generation is given by a multinomial formula
NIN-Nd,\d,!...dy), d,+dy+ ... +dy=N. This determines a family tree
resembling a critical branching process in some respects, but different in
others. For example, the probability that all the particles in a given genera-
tion have a single common ancestor ¢ generations back is near 1 when ¢/Nis
large, lying in fact between 1—3(1—N-¥) and 1—(1—-N—").

The problem of spatial distribution of successive generations, when a
daughter particle is randomly displaced from its parent, has been studied by
P.A.P. Moran (and more recently by myself, see Proc. Roy. Soc. A, 351,
1976, 19—31). It might well be possible to apply the methods of the present
paper to give deep results for this model, which in some biological contexts
is less unrealistic than the branching process model.

P. Mandl (Prague): The results of the paper are of interest for practic-
al applications. Hence it would be useful to write a version using an intui-
tive process description instead of measure constructions. Such a treatment
would also be welcome for probabilists. The limit process, the binary branch-
ing Brownian motion on [0, 1), in view of the results of K. Fleischmann
and R. Siegmund-Schultze, is an important stochastic model. It seems
that its investigation in detail is not yet done. For this aim perhaps,the prov-
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ed invariance principle could be used to go over to the limit starting with
more simple processes.

C. J. Mode (Philadelphia): A rather large number of interesting limit
theorems, conditioned on nonextinction, are associated with the critical Gal-
ton-Watson process. In the simple Galton-Watson process, an exponential law
appears; while in critical spatially homogeneous branching processes, diffusion
processes appear under suitable contractions of space and time. The authors,
using an invariance principle combined with advanced analysis, show that a
certain binary branching Brownian motion model arises, a model that is of
some interest in its own right. Throughout the paper the authors demonstate
admirable mathematical expertise.

Potential applications of the theory become conspicuous, however, by their
absence. The model is sufficiently general to include random walks as a spe-
cial case. Consequently, the potential for application seems large. Yet, the pa-
per does not contain one example of demonstrable interest in physics, biology
or the social sciences. It is the opinion of this reviewer that the inclusion of
well thought out applications of the theory in the paper would have greatly
increased its intrinsic interest.



