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ALGEBRAIC THEORY OF STOCHASTIC AUTOMATA —
A CATEGORICAL APPROACH

VLADIMIR V. TOPENCAROV, KETI G. PEEVA

Two categories of stochastic (S-) automata AS with morphisms — the homoniorphisms
of S-automata and (S with morphisms — the S-automata are constructed. The special proper
ties of the categories AS and S : special objects, special morphisms, limit constructions and
certain connections between AS and AP, the category of deterministic automata, are studied

It is proved that the functor L from AS to AP has a leit adjoint. The last part of the paper
treats certain technically important connections of S-automata, their properties, their relations

with certain universal constructions in AS, the structures of bicategory, of monojdal category
and double category which are induced and their categorical interpretation in AS and US.

The mathematical theory of automata, related to Logic, Algebra, Analysis
and other important fields of Mathematics, has developed rapidly in recent
decades.

In particular the algebraic theory oi automata, related to some classical
algebraic structures (semigroups, groups, veclor spaces, etc.) has reached a
high level of developement (see [2] and [8]) and completed one stage.

The pure algebraic approach could not however exhaust all the multitude
of automata results (mathematical machines) present. Due to this the intro-
duction of the categorical approach in the mathematical theory of automata
is a natural process. Effectively the Category Theory gives the basis for a
unified building of Mathematics and for a natural unification of different mathe-
matical methods on the subject of research.

From the first papers [3] and (4], devoted to this problem, important re-
sults have been achieved up till now. The inner structure of the class of
automata and their morphisms, and the study of automata as algebras in a
given, arbitrary in general, category, being the two clearly distinct currents
in the categorical theory of automata, are closely analyzed in our surveys [14]
and [15).

'While the problem of deterministic finite automata is solved in general
(see [1; 3; 6: 7)), it is not the same with the stochastic automata. Besides
the autor’s studies (see for ex. [11; 12; 15]), some results are Kknown,
which are cited in [I; 3; 6].

The aim of this paper is to construct the categories of stochastic auto-
mata, to study the principal inner properties of these categories and to apply
the results to the compositions of stochastic automata.

The terminology and the notations are as in [2] and [8] for the mathe-
matical automata, as in [10] for stochastic automata and as in (9] for Catego-
ries, with some complements, specified in the text.
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1. Stochastic automata — fundamental concepts. Stochastic automata
(abbreviated S-automata) have been introduced in 1948 by Shannon and
Weaver for the needs of the information theory, as models of information
charnels. As an independent part of the algebraic theory of mathematical auto-
mata, with their own subject and methods, S-automata began to develop in
the early ©0O-ies. They seem to have been “re-invented” in the field of the ge-
neral theory of automata, as a natural generalization for deterministic auto-
mata of different types.

We shall recnll some basic definitions of the classical well developed
theory of the S-automata, referring to [10].

Let P and P, be numerable sets, and [0, 1] —the closed interval of R,

Detinition L.Amappirgh: P, Py, —[0, 1]is a stochastic mapping if for
ea s element p P, the following condition X, eph(p, p')=1 is satisfied.

Every stochastic mapping can be represented by a | P, X | P, —matrix M*,
whose (i, j)-th element is m},=h(p;, p).

With the aid of the so introduced notion of stochastic mapping and using
analogies with deterministic automata, we can give a formal definition of the
intuitive notion of a stochastic automata:

Definition 2. An S-automaton is a quadruple A=(X, Q, Y, {A(y/x)}),
where X, Q, Y are finite or numerable sets, called inputs (internal) states
and outputs respectively, and [A(y'x), is the set of X X'Y| square ma-

D |

trices of order Q' such that ay(y/x)=0 for all iand jand Xy y.‘Ifjg1 a,(y/x)—1,

where A(y/x)=a, (y/x) .

We shall henceforth use for the stochastic mapping & the notation
hy: P,— P, such that hd p,)= (h(py, Pai), Ps;), Wwhere p, € P, and p,, ¢ P,. Obvious-
ly hg is not amapping butitis determined in the unique way by %: P, X Py — [0, 1]
and therefore we shall generally omit the index s.

Now let us consider the quadruple (X, Q, Y, k), where X, Q, Y are the
sets mentioned in Def. 2, and #: XX QX QxY —[0, 1] is the stochastic map-
ping in the form hA=h,: Py — P, for P,=XXQ and P,=QXY. Then the
above quadruple defines an S-automaton in an equivalent but not identical
with this of Def. 2 way. The verification of the equivalence could be done
directly.

One can see by the definition itself that the differences from determi-
nistic automata are due to the imposed conditions on the mapping 4. This
gives way to use the approach and terminology of [2] and to introduce dif-
ferent types of stochastic automata as well as to construct their classification.
Without entering into details, we shall only recall the definitions of the most
familiar and special kinds of automata, namely those of Moore and Mealy,
keeping the notations of [2] and [!0].

Definition 3. A Mealy-type S-automaton is a quintuple (X, Q, Y, 9, 1),
where X,Q, Yare asin Def.2, and é: X< Q= Q —[0,1] and i: XXQXY —[0, 1]
are stochastic mappings.— A Moore-type S-automaton is a quintuple (X, Q, Y, 6, B),
where X, Q, Y, 8 are as above and f: QY is a deterministic automata
mapping from Q to Y.

The relation of these notions between themselves as well as to the cor-
responding deterministic automata, is evident.

In practical and theoretical studies in the theory of automata one has
often to choose initial inner states depending on certain probabilistic
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conditions (initial distribution of probabilities). Thus, an initial stochastic
automaton is the ordered pair (A4,n), where Ais an S-automatonin the
sense of Def. 2, and the mapping =: {1} Q —[0, 1] is a stochastic one, called
initial distribution. The mapping = is called strict initial distri-
bution when (1, p)=1 for an arbitrary value (I, p) of the argument ( p¢ Q).

Let us denote by behj the behaviour (see [lO]) of a stochastic
automaton A with initial distribution =, and let A, and A, be two
S-automata with identical sets of inputs and outputs (X;=X, and Y;=Y,).
Two initial S-automata (A,, =,) and (A,, 7y) are equivalent if behj =beh%,

where 7,: [1}XQ,—[0,1] and =y: {1}XQ,—[1, 1] are (initial distributions.
If the set of behaviours of the S-automaton A, is a subset of the correspond-
ing set of the S-aulomaton A, we can say that the S-automaton A, covers
the S-automaton A, and write for this relation A,=A4,.

A number of theoretical and applied problems in the theory of S-automata
may be posed. The most important are:

a) among the initial S-automata equivalent in the sense of [10], to a given
initial S-automaton to find out an initial S-automaton with  minimal
number of states;

b) among the S-automata, equivalent (resp. strict equivalent) to a given
S-automaton, to find out a minimal S-automaton;

c) for a given S-automaton A to find out an S-automaton with fewer
number of states and satisfying the condition A= A(A’= A respectively).

While the second problem is always decidable (see [10]), neither the theory,
nor the constructive algorithms are advanced enough to solve the first or the
third problem.

Moreover, a number of problems for the automata theory cannot be con-
sidered as sufficiently solved for the case of S-automata. A special attention
has to be paid to the problems of inter-relations of stochastic, deterministic,
relational and partially defined (partial) automata; to the problems of minimi-
zation, of decomposition and connection of automata and the algebraic struc-
tures generated by these connections as composition laws in certain sets of
automata.

2. Categories of stochastic automata. Let us denote by Seto the uni-
versal set (universuum) and let Set be the corresponding full category of map-
pings. We write Ho for the set of the objects (identities) of a given category
H, H™ for the subcategory of the monomorphisms of H, H® for the subcate-
gory of the epimorphisms of H and H® for the subcategory of the bimor-
phisms of H, supposing that H is a small category [9]. Accordingly to the ge-
neral use, we denote by Vct the category of all vector spaces and by Vcts
the set of all vector spaces over Seto, identified with the set of the identical
homomorphisms of vector spaces (identical linear transformations).

Let K be a category with two objects: Ko=:{¢, €’} and one morphism
f: e—e'. We call (accordingly with [19] the ordered pair u,=(K,{f}) a struc-
tural diagram of an automaton (for short we shall henceforth speak
of a skech).

Definition 4. The functor F: K—Vctisan S-automaton if the following
conditions are satisfied for F:

Fle)= V(XX Q), F(e)= VY XQ), F(f)=h: VIXXQ)— V(¥YXQ),
where V(XX Q), (Y XQ)tVcto are free vector spaces with bases X< Q,
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YV <Q¢Sets respectively and h is a morphism of Vet such that its restric-
lion on XX Q, i. e. the mapping h/xxq: XX — V(Y XQ) is a stochastic
automata mapping . -\n. A-S-morphism is the natural transformation t: F > F
where F and F' are two functors, defining S-automata.

We identify the image of the 'category K by the functor-automaton
F: K—Vct with the automaton A (X, Q Y, %), given by the traditional nota-
tions and put Fu(K)=A. The natural transformation ¢ defines a homomorphism
of automata in the sense of [8]. The components of the homomorphism of
automata coincide with the components of .

The above definition of stochastic automaton and the notation of homo-
morphism from a stochastic automaton to another are identical to the clas-
sical one [10]. Let 4 (X, Q, Y, #) be an S-automaton defined by an input al-
phabet X, an output alphabet Y, a set of inner states Q and a stochastic
automata mapping /%; the ordered quadruple definesin a unique way a functor
F: K —»Vct, for which the conditions of Def. 4 are satisfied. Conversely, each
functor of the form of this in Def. 4definesthe sets X, (), ¥ having the mean-
ing of input alphabet, inner states and output alphabet respectively, and a
stochastic automata mapping, which, put together, define in a unique way an
S-automaton. In particular, if # is a mapping with constant value 0 for all
values of the argument except ore, for which it takes the value 1, we obtain
the notion of deterministic auotmaton. It is the same as representing % by a
set of values |0, 1} instead of by the interval [0, 1]. For the definition of such
an automaton by a functor it is enough the realiza‘ion of the skech u, to be
made in the category Set, i. e. by a functor F: K — Set. Obviously one can
speak of A-S-morphisms if the natural transformations defining them are bet-
ween functors of the form F: K- Vct, and of A-D-morphisms if the corres-
ponding natural transformations are between functors of the form F: K - Set.

Starting from Def. 4, one can construct two different categories of sto-
chastic automata over the sets of Set,: in the first case the morphisms of
the category are the A-S-morphisms and the objects are identified with the
identical A-S-morphisms, i. e. with the very S-automata, while in the second
case the morphisms are S-automata, and the objects are special classes of sto-
chastic automata.

Let us write Vet® - Funct(K, Vct) for the category of functors from K
to Vct, i. e. the category whose objects are the functors from K to Vet and
whose morphisms are the natural transformations between them. The set AS of
the A -S-morphisms is a subset of Vct¥.

Proposition 1. AS is a category (with respect to the induced from Vct<
into AS composition law), called the category of the A-S-morphisms, whose
morphisms are the A-S-morphisms ard whose objects — the S-automata over
elements of Sete, identified with the identical A-S-morphisms.

Let us denote by AP the categoy of A-/-morphisms in which the mor-
phisms are A-D-morphisms and the identical A-/)-morphisms are the unities
identified with the objects of the category [16].

Proposition 2. For the categories AP and A® the inclusions of th
following diagram take place:
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where the subcategories contain besides each morphism the related to it 0b-
jects source and target.

S . I" . .
Proof. The inclusion AS -VctK is a consequence of the construction
of the A-S-morphisms as natural transiormations between functors from K to
Vct; the second part oi the statement results from Def. 4. The inclusion

Ac .4s comes irom the fact that Set and Set, could be regarded as a sub-
category and a subset of Vet and Vct, respectively: each set can be re-
garded as vector space with trivial, i. e. empty operations. The inclusion Q
is obviously a result of the composition 770 7.

Corollary. AS is a category isomorphical to the subcategory of the
natural transformations of functors fron: K to Vet, satisfying the condition
of stochasticity in Def. 4.

Let us write 9(S for the set of S-automata, subset of Vcto.

Proposition 3. AS is a category under the induced from Vet in US
composition law. The niorphisms of WS are the S-automata over the elements
of Seto and the objects of AS are identified with the S-automata of the
form A;=(¥,Q, Y, left unity, and 'A (X, Q, X, 1), right unity, for the
S-automata-morphism A=(X, Q, Y, h). Here we denote by 1 the identical
mapping.

The categorial properties of (S do not present a real interest, particular-
ly from the practical point of view. According to that we shall not treat
this problem. Some other composition laws which may be defined in 9(S allow
a direct automata realization (even a technical one) and we shall return to
them in 4. The relation existing between the constructions in A% and A® bhas
a particular importance. By this relation some non standard constructions in
9(S are treated as universal constructions in AS. This problem has its own
special importance and will be the subject of a further paper.

3. Properties of the category AS. Some properties of AS are of imme-
diate interest for the theory of S-automata. By and by we shall discuss some
special morphisms and objects of AS, the existence and contents of the limits
in AS in the automata meaning and the properties of some functors related
to the category AS.

If F and F’ are functors-automata and ¢ F-»F’ is a natural transforma-
tion between them, we shall denote by A and A’ the correspendent auto-
mata and by £ A A’ the correspondent ‘to 7 A-S-morphism. Two statements
concerning the monics and epics in the category A®S hold:

Proposition 4. The morphism t: A— A' ¢ AS is a monomorphism in
AS iff t: F5F¢Veth is a monomorphism in Vct¥.

Proof. Let us suppose ¢ being a monomorphism in AS. Then for each
pair of A-S-morphisms ¢,0,: A— A, 100,~ 00, implies o,=o0,. According to
Def. 4 and to the rules for composition of natural transformation one have
too, tog,—too, too, but by o,=0, it follows o, oy and by the two
above implications we obtain the result:

TOO, 100G, )0, O,

Conversely, let t be a monomorphism in Vct¥; then for each pair of mor-
phisms o, 0,: F - F¢Vet™ such that Zoo, ~toos, one have o,=o0, By this
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and by Def. 4 one obtains the implication foa,~f0ay=)0o,=0,i. e 7 is a
monomorphism in AS. B

An automaton A¢ AS is a subautomaton of /A’ if the ordered pair (o, A)
is asubobject of A’ in AS.

Let 0,: A, — A and o,: A, >A be two subautomata of A. The intersec-
tion 13— AN Ay (Xa, Qg Yo hy), where Xy=X,NX,, Qu=Q,=Qy V3=Y1=Y,
and hk, h 0 hy defines a subautomaton fg: Ay-—> A for which the diagram of
Fig. 2 is a universal cartesian square, i. e. defines a fibered product of the
nalr (6, 0.). B

Proposition 5. 7The morphism o: A—> A ¢AS is an epimorphism in
AS jjf o: F > F ¢Vct< is an epimorphism in Vct¥.

The proof is obtained by analogy to this of Proposition 4.

An automaton A'eAg is a factor-auntomaton of the automaton

AcAS ii the ordered pair (A, o) is a quotient-object of A in the category AS.
By analogy with the case of subautomata and using the properties of the
direct sum of automata in AS, one can construct a co-cartesian square in AS,
i. e. a hibered sum of two morphisms.

It follows by Proposition 4 and Proposition 5.

Cotollary. The morphism o: 4 — A ¢ AS is a bimorphism in AS iff
o: F F ¢VetK s a bimorphism in Vct¥,

If, by the linear mapping %« Vct, the bases vectors of the vector space-
product, source of /, are transformed in the bases vectors of the vector
space — product, target of %4, one reaches the case of deterministic automata
and simultaneously the well known ([6; 7]) special morphisms in the category
AP of A-D-morphisms.

The existence of different types of limits in AS gives a categorical cha-
racterization for the S-automata as well as for the A-S-morphisms. A number
of results, similar to some groups of results for D-automata hold.

Theorem 1. The category AS is a category with finite products and
for each pair of A-S-morphisms with common source and target there exist
an equalizer.

Prooti The existence of finite products in AS results from their exis-
tence in Vet and from the fact that AS is a saturated subcategory of VetK. —
Each category HP, wlere P is a small category and H allows an equalizer for
each of the pairs of morphisms with common source and target, also allows
an equalizer for each such a pair. Vet is a category with equalizers and A®
is full in Vet and with finite products subcategory of VctX, AS allows an
equalizer for each pair of morphisms with common source and target.

Corollary (see [7)). The category AP is one with finite products and
with equalizers for each pair of morphisms with common source and target.

The automata meaning of the categorical product of automata in AS a
parallel simultaneous work of automata with separated inputs (components of
the product).

A dual to Theorem 1 is the following:

Theorem 2. There are in the category AS an initial object.

Proof. According to [9] there exists in Vet an initial object which be-
longs to the such subcategory of VetX, which is isomorphical to the subca-
legory AS of Vct <. According to the general theory (see [9] and [17]) it is an
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initial object. If for V¢t the object is also a final one, i. e. there exists a null
object in Vct, for VctX and for AS this object is however only an initial one.

The initial object of the category AS is an S-automaton /,— (@, 05, @, D)
(empty automaton).

:1// ~Na A XQ > k)/-\)'—-!;-~> 10,1}
- o 1 T' /
’
\Au 28 N Q'Y -
Fig. 2 Fig. 3

The relation between the category AP of A-D-morphisms and the cate-
gory AS of the A-S-morphisms assumes a clear categorical inferpretation by
the use of appropriate adjoint functors.

Let the forgetful functor p_,: Vet — Set be given and let us denote
by PX: Set< — VctK its left adjoint functor, whose existence and way of con-
struction are stated in [9]. Let also the functor V: AP — Set®¥ be given, which
is constructed so that if A=(X, Q, VY, k)¢ AS, then V(A)=h: XX Q—Qx V¢ Sets
and if o: A— A’¢ AP, then V(6)=o¢ Set< with o: (XxQ—"»Q?< V)= (X' X
Q’LQ’XY’) so that the diagram of Fig. 3 be commutative. Of course, al
ways when the composition of o, and o, is defined in AP, the following ex-
pression holds: V(o,00,) 0, 00,= V(s,) 0 Vig,).

Let now 4 (X, Q, Y, #) be an S-automaton, and o: A-> A’ bean /1-S-mor-
phism. We define 11: AS — Vct® as follows:

WA)=k: V(XXQ)—WYxXQ) ¢VctX, 1(o)=o¢ Vetk.

Here V(XX Q), V(Y X Q) are free vector spaces with bases XX Q, YxXQ
respectively and o:(V(X'XY) 2 (Y <X Q)—(V(X' X Q") LA V(Y < Q")) is a natural
transformation making the diagram of Fig. 4 commutative. The statement
(o, 0 0,) =0, 0 06,=11(0,) © 11(0,), always when the composition of ¢, and o, is-
defined in AS, holds.

By a certain analogy with the ordered pair of adjoint functors p¥_., px
we can construct the pair of functors ¢, as follows: Let ¢: A® -— AP be
defined so that FA(K)=A- (X, Q, Y,h)cAg, h: V(XX Q) V(YXQ)¢Vetk.
QFW(K))= Fi(K), h: V(XX Q)— V(Y<Q)¢Seto, i. e. juxtaposing to each
vector space its correspondent set.

_Let us in the end consider also the functor G: A® — AS, defined so that
®(A)— A, where A—(X,Q,Y,h)cAS, X, ¥, QcSeto, and 42: XX Q — Q
X YeSeth, A=(X, Q, Y, h)c AS, h: V(XX Q) — V(Y XQ)¢ Vety.

As the diagram of Fig. 5 shaws, the functors &, ¢, pS.,, P, V and 1 sa-
tisfy the condition p¥ o1l Vog.
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To state the basic result related to the so constructed functors, namely
the existence of an adjoint functor, we shall first prove some auxiliary results.
Proposition 6. The functor : AS — AP is a forgetful functor.

A

> AS = Vct*
h
V(X ¥ Q )——————= V() Q) 7/
® |/ ¥ P PYet
\ /
\
’ %
/ D ¥
VX ) e (1 ') A eSel
Fig. 4 Fig. 5

Proof. According to the way of its construction, the functor Py 18 2

forgetful functor and g, according to its definition, is a }'es'triction of the first
over a subcategory of VctX, namely AS. But the restriction of a forgetful
functor of some algebraic structure is also a forgetful one. o o
Corollary. The functor £: AS — AP maintains the projective limits
and is a generative one for the category AP. o
The proof results from the fact that ¢ is a restriction of P, over

AS  VctK, which is a right adjoint for the functor P, and from the defini-
tions and the general theorems of [5].

Now we can come up to the general result.

Theorem 3. There is a left adjoint &: AP — AS fto the functor ®.

The statement 1o ®=P¥o V holds.

Proof. According to the above construction of ¢ and to Prop. 6, £
maintains the projective limits. By the second part of the Corollary to Propo-
sition 6 it follows that @ satisfies the condition for the existence (see _[9]) of
a resolving set. Therefore for the functor ¢ all conditions for the holding of
the Freyd’s theorem for the existence of an adjoint functor [9] are satisfied.
The second part of the statement follows immediately from the above con-
structed diagram of the functors (see Fig. 5).

Theorem 4. Every S-automaton is a free structure for ¢ over an 0b-
ject of AP. A

The proof results from Theorem 3 accordingly with the equivalence of
the existence of an adjoint functor and of free structures (see [5] and [9]).

4. Connections of automata in the categories AS and S. Let A-(X,
Q, Y, k) and A’ (X, Q, Y, k') be two automata. Their composition iIn auto-
mata sense (see [8; 10]) can be done by several nonequivalent ways and des-
cribed by constructions in the categories AS and 9(S. The basic cases of com-
positions and their categorical representations are the subject of the present
paragraph. 2

Let us consider the parallel connection of the automata A and A’ with
separated entries (Fig. 6 and [7; 8]). Then”the automaton-composition is
AXA = (XXX, QXQ, YXY' h<h'), where we denote by the symbol *X ’
the carthesian product of the sets and the linear mappings. The composition
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law in the set of the S-automata having been written the same way. One ob-
tains the representing matrix for the automaton-composition AX A’ as a direct
product of the representing matrices for the automata-components A and A’
(see [20]).

A- /B
X I— ————— i y //
0—*——»- A —I——b s / r
I | s
xu | " 'y” /
o—f——— A ——t—» C 5
L
Fig. 6 Fig. 7

The automaton /=({1}, {1}, {1},7), with regard to the composition law X,
is a neutral element (unity) for every S-automaton, i. e. the lawX allows a
unique neutral element. One can easily establish that the algebraic structures
(AS, ) and (S, X) are semigroups with unity /, which are commutative up
to isomorphism.

The so constructed composition gives way to the following interesting
results.

Theorem 5. The category AS of the A-S-morphisms (respectively AS
of the S-automata) has the structure of a bicategory in the sense of [17].

Proof. According to the theorem for the homomorphisms every A-S-mor-
phism f: A— A’ is representable in the from f=goh, where h: A—A/f is
an epimophism and g: A/f — A’ is a monomorphism. It is obviously true, for
(A/f, k) is a factor-cbject “for A in AS,and (g, A /f) isa subobject for A’ inAS;
here we have denoted byf the equivalence, canomcally generated by the
corresponding to f/ mapping. For each commutative square (Fig. 7), for which
v€AS and wu¢AS, is diagonalizable, our statement results from the defini-
tions [17].

One can also establish:

Theorem 6. The ordered triple (AS, X,[) is a monoidal category.

Proof. In fact, every monoid M, regarding as a discrete category, is a
monoidal category. But (AS, ) is obviously a monoid with regard to the
composition lawX.

One states analogically that the ordered triple (S, X, /) is a monoidal
category.

The sets AS and AS, whose elements are the stochastic automata, can
obviously be identified; to do this it suffices to juxtapose to the identical
A-S-morphism of AS its correspondent S-automaton. This gives way to the
formulation of the following problem: to find out a construction in the cate-
gory AS whose result is an object of AS, identical or isomorphical to the
composition of two S-automata in (S. Let Ily=1IIy={c, ¢’} be a discrete cate-
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gory and let ~: I, — AS be a funclor from the category Il, to the category AS.
Theorem 7./f A,A" ¢ AS =S and if F(11,) = {A, A’} then A< A’~ lim_(F)
holds.
Prootf. It follows from the construction of ily and from Th. 1 that lim.(F)
exists in AS and lim. (F)- AXA’; on the other hand, according to the con-

N It
- A pp—vy
AR T
! R : o o == m—. e e S —
[ ’ | ' ,
SR e R CAE I e
; ) i‘—:':!____l = = -1
Fig. 8 Fig. 9

struction of the composition law < in 98, AX A'= (XX X', QX Q', YXV, h < h').
The equality is defined up to isomorphism according to the general properties
of the limits [9].

Theorem 7 is evidently valid also for the subcategories A® and A® of
AS and S respectively.

One can regard the parallel connection of automata with common entry
as a special case of the parallel connection of automata with separated en-
tries (Fig. 8). We shall use for this case the following notation AXA = (X,
Q- Q,YXY', hXk'), X~ X.In fact the input alphabet for the automaton-
composition AXA’ is the diagonal of the carthesian product X< X', i. e. the
set A(XxXX) {(x,x); x¢ X}, but the identification (x, x)=~x is useful. One
obtains the representing matrix for the automaton AX)A’ as a disjunctive union
of the direct product of the matrices for the automata A and A’, regarded as
with independent entries [18].

Let us now consider the categorical interpretation of the well-known in
the theory of automata (|7; 8]) sequential connection of two automata A and
A’ (see Fig. 9). We shall denote the automaton-composition Ao A— (X, QXQ,
Y, h'oh) with X'- Y.

Each automaton of the form F£E=(M, {1}, M, i) with i being the identical
mapping for M, which is composable with a given automaton with regard to
the law o, is a neutral element (unity) under o. Of course, an automaton-left
unity and an automaton-right unity correspond to each automaton; (AS, o) is
a category.

Theorem 8. For the category (AS, o) the following statements are valid :

a) The category S is one with finite products;

b) The category S is one with equalizers for each pair of morphisms
with common source and target.

By analogy with the statement of Th. 7, the following problem arises
for the category (S, 0): to find out a construction in the category AS, the
result of whose applications is an object — S-automaton, which is identical or
isomorphical to the sequential connection of two S-automata, i. e. to their
composition under the law o in 9(S. For that purpose we shall define in the
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category AS a special projection as follows: let AX A’ be a product in AS
of the two S-automata A and A’ such that

AXA = (XXX, QX Q, YXY, hXk);
the mapping p,: AS —AS is a V-projection is AS if
PAAXAN)=(X, QXQ, Y, k' oh).

The following result gives an essential relation between the categories
(S, 0) and AS.

Theorem 9. /f A, A'¢AS and if F(11,)={A, A'}, then A'o A=p, (lim(F))
holds.

The proof of this statement is analogous to the proof of Th. 7. It is evi-
dent that a similar result is also valid for the subcategories AP and (®, o)
of the categories AS and (2%, o). :

The relation between the composition laws X (resp. (X)) and o is ref-
lected in the following statement:

Theorem 10. The oredered triple (WS, X, o) is a double categoriy in
Ch. Ehresmann’s sense [9)).

Proof. As was stated above, the ordered pairs (S, ) and (A%, o) are
categories (the first is a monoid, ; therefore what is left to do is to establish
the inter-relation between the laws X and o. For this purpose let us consider
the S-automata A, B, C, K for which the following expression is valid:

(Ao B)X(CoK) - (AXC)o(BXK).

The expression can be directly verified by means of the schemes for connect-
ing the automata (the immediate calculations are too roomy on accout of
which we do not adduce them here).

Corollary. The ordered triple (AP, X p, op) is a double category.

The proof ensues from the fact that 9(® is a subset of S, which is
closed under the restrictions X, and o, on it of the constructed in S com-
position laws > and o.

Without any basical difficulties one can see that the ordered pair (AS, ®)
is a category under the composition law & which defines a direct sum
A@® A’ of two S-automata (see for the definitions [7; 8]).

5. Final notes. A series of additional and curious results related to the
categories of S-automata can be setteld, having in mind a number of stan-
dard constructions and methods of the Category Theory (see [9; 17]). But
from our point of view they would only be new examples of well-known
mathematical substances and therefore they woudn’t be of considerable inte-
rest. From the point of view of the theory of the S-automata we do not see
their particular importance because they could only set special cases (of S-au-
tomaia or A-S-morphisms) in a categorical form, without being able to further
the very theory of the S-automata.

But two problems may have solutions in the light of the categories for
the S-automata and have undeniable importance for the very theory of S-au-
tomata. They are the problems of decomposition and that of minimization.
They will be subjects of some further reports.
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