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LINEAR OPERATORS DEFINED IN SPACES OF COMPLEX FUNCTIONS
OF MANY VARIABLES AND COMMUTING WITH THE OPERATORS
OF INTEGRATION

IVAN RAICHINOV

An integral-differential represcatation is found for operators defined on topological spaces
of analytical functions of many complex variables and commuting with the operators of
integration.

In this paper we denote by A, the space of the functions/(z), 2
(21, 29y - o 2,) € C™, analytical at the origin. The operators /, == A, ~ A, defined by

“k
the equalities /,f(2) [ flz;, 20y oy Tioe ooy Z,) dryy B 1, 2,000, m, where 2z s
V]

small enough and the integration is accomplished over the segment [0, 2,]| are
called operators of integration (with respect to the variable z,).

Some analytical characteristics of classes of linear operators in a closed
form, acting from different subspaces of A, in A, and commuting with the
operators /,, & 1,2,..., m are obtained in this paper.

Analogical problems and their applications are treated in the case of one
variable (see for instance [1 —13]).

1. Linear operators defined in the space of the polynomials and com-
muting with the operators of integration. Let S, denote the subset of A,
composed by the polynomials P(2)=X s. ,a,2" (2--(2,,2y ..., 2m) € C™, k (&),
Roy. .., Rm), a,€C), where n is an arbitrary non-negative integer.

Let H denote an arbitrary linear subset ot A, closed with respect to the
operators /,, k -1,2,..., m, i. e suchthat: f(z)¢c H /[, f(2)e H, k- 1.2,..., m.

Let further /S, ;H) denote the class of the linear operators L:S,, - F,
commuting with the operators /,, k=1,2,..., m.

In this paragraph some analytical characteristics of the class /(S,:H)
will be given. Furthermore, these characteristics will be established for classes
of linear continuous operators defined in more general topological subspaces of A,.
For these purposes we shall establish three lemmas.

Lemma 1.1. If f(z2)¢ A, and n(ny, ny,..., ny) is an arbitrary m-dimen-
sional multiindex with non zero components, for the operator I I, 1,...1,
the formula

‘(2 !)“

(1.1) I'f (2)- (,f"m'_n.z' S (s)dts

2, 2. ™

2
holds, where v (xry, tq..., tm) is @ vector of integration, and [ [ [ ---

0 00 0
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denotes a consecutive integration with respect to the variables v, with boun-
daries from O to zx k- m,m—1,..., 1, respectively.

The proof of this lemma can be carried out by a multiple application of
the well known formula of Cauchy [14] and accomplishment of the necessary
number of integrations under the sign of the integral.

Note. One can easily conclude that the representation (1.1) holds also in
the cases when the mmltiindex n has zero components as soon as the iollow-
ing conditions are satisfied: 1. The zero degree oi each operator /, is the
identity ; 2°. The integral of the right-hand side of (1.1) means multiple in-
tegration from O to 2, but for values of £ only, for which 7,03 3°. For
ngs=0 the factors (z,,s-~r,)"x v, (ns—1)! in the integrand are omitted; 4°
The function f(r) under the integral is replaced by the function obtained from
f(r), when the the integration variables 7, for which n,=0 are substituted by
the parameters z,.

Lemma 1.2. Let L¢ (S, H) and ($,,S.,..., Sp), p—1,2,...,m be a p-
class wvariation of the numbers 1,2,..., m such that s,<s,<---<sp Let
n—(ny,, Ms.,..., ns ) be an arbitrary p-dimensional multiindex with non zero
components. Then the representation

1.2 ()i
(1.2) <k=|~’f.~k)n(‘! C _!' G(Z)y vy Tsype e oy LORERRD Zm)
o7 P n
oz, .0z, ki_l‘l (25, —Ts,) drsy. . ., d'f,:
holds, where @(z)— L1 ¢ H.
Proof. The equality /s 1';:,- o s p 1 =11 z:;;; ng,! can be verified di-

rectly. Using it and taking into account that the linear operator L commutes
with the operators /,, £ -1,2,..., m, we obtain:

£ ng 4 ng, Jis, n
(1.3) L (klllz,-kt> [klil‘”:k!,:ll"“ FALRI l‘:pt/’(Z),

where @(z)=L1¢H.
Applying Lemma 1.1, from (1.3) we obtain the equality

Pon P s Cs “Sprop g,
L(k“.z‘i'k):<.,IJ."’~)" J ... Ul [kil.(*z’k T, ) ]¢(zu---.

u v
Toppenor Tsppee s Zm) drs, . .. dt,’_
which evidently can be written in the form (1.2).

Lemma 1.3. Each operator L of the class ISm:;H) acts on functions
of the kind

P n
(1.4) Q@)= Il z5%, n,, >0,

according to the formula
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(1.5) Lg(2) I [q(z—v)e (o)

021025 ... 02 ;

'\.;

( z — small enough),where 2=(z,, 23, . . ., Zm) = (1}, 705 . . ., 1,) and _fr fj ..
0 00

-~ O

means consecutive m-multiple integration (p, s, and n has wvalues given in

Lemma 1.2).
Proof. Let 7, 7. .., rm—p denote those of indexes 1,2,..., m which

are not included in the multiindex (s; Sy, ..., S,) and let 2*=(2,, 2r,,.. ., Zr,_,)-
Accomplishing the necessary derivations and integrations under the sign
of the integral, for the right-hand side of (1.5) we obtain

am -
o202, 0z 1E (D) AT

oP s “sp om—p z* d d
0z, -0z, J o Ia@Ea g oz, Lj p(r)dr,, . . . dr,, P} T,
From here, taking into account that
omr <! amr r mp
0,02, ... 0z, J o(de,, . dy 0,02, .. 0z, ;,’ dry,... 1 v,
om o m o po
oz, 0z, . s, ;‘, de, . .. uf elry, ..., SRR vy,
G(Z1y oy ooy Ts Tsyy e - o Ts,pee o Zm)

(the arguments of ¢, under which the derivation was accomplished are replaced
by the fixed values z,, 2, ...2,, . and the other are integration va-

riables), we obtain the equality
‘jlll

TJEIV 02y . . .02,

l g(z —1)q ()t

v

5

07 $i P
Jodrg, .o [ @z —0)@(Zyy ey Ty Ts vy Zpdr,
1] 0 r r

0z; 0z .. ‘Ozv\_p

Accomplishing the derivations of the respective integrals depending on
parameters (containing the parameter in the integration boundaries as well as
in the subintegral function), taking into account that g(z 1) is zero in the
points of the hyperplanes 7, ==2,, k& 1,2,..., m p we obtain the equality

om H
02,0z, . . . 02, '-! q (z—oe(r)d

r g
2 P o » "
| “I G(Zpye ooy Tapy v vy "'p""'z"’)Oz‘, I 1 (25, z") k (Ilh...d(;,'

' 2 Spk 1

which, according to Lemma 1.2 implies (1.5). Thus, the lemma is proved.



LINEAR OPERATORS IN SPACES OF COMPLEX FUNCTIONS OF MANY VARIABLES 319

Theorem 1.1. Each operator L¢ (S, ;H) admits a representation of
the form

. o Z
(lb) L[)(Z) 021(52_37.7. ;—a:—m‘I{P(Z—!)([’(T)dt

( tzH—small enough), where ¢(z) L1 is a single-valued junction from the
set H.
Proof. Each polynomial P(z)¢ S, can be represented in the form

. - . : ro
(1.7) P(z)=P(0) X z R T | G-/
p=1 si<s:< oL <8y [ ng = SuoS: Sp k=1 "k
where the multiindex ns— (75, fs,. -0 Bs ) has nonzero components, n is a
natural number and (sy, Ss, . . ., S,) describes p-class variations without inversions of
the numbers 1,2,..., m.
Since the operator L is linear, irom (1.6), the equality

d

(1.8) LP(@)=PO}(2)+ ¥ = = _an n oon, L2

p=1 8<ss< ... Sp i |=n voS: P

follows, where ¢(2)--L1 and g(z) is the function (1.4).
From (1.8), applying lemma 1.3 and representing @(z) under the form

mn

d <
W)= 62,020 . .0z, 0‘ ¢ (1) dr,

we obtain immediately the representation (1.6).

Theorem 1.2. If /1 is a linear subset of A, invariant with respect to
the operators I, k= 1,2,...,m andclosed with respect to multiplication with in-
dependent variables z,, k=1, 2,..., m, then each operatordefinedinSy,by an
equality of the form (1.6), where ¢(2) in an arbitrary function of the set H,
is an operator of the class 1(Sm; H).

Proof. First of all we have to prove that the right-hand side of (1.6) is
a function of /, for any function ¢(2)¢ / and for every polinomial P(2) € S
For this purpose, it is enough to develop the polynomial P(z—r) according to
the formula of Taylor in the neighbourhood of the point z and to accomplish
the derivation 0”/0z,...0z, Thus, according to the properties of the set H,
the right-hand side of (1.6) can be represented as a linear combination of ecle-
ments of /4, hence it is an element of H(H is a linear subset of Ap).

Hence, under the hypotheses of the theorem, each operator L, defined in
S, by the equality (1.6), acts from Sn into H.

On the other hand, one can easily verify that L is a linear operator,
hence theorem 1.2 would be proved if we establish that the considered ope-
rator L:S, — H deiined by the equality (1.6), commutes with every operator
1, k=1,2,...,m, i e. the equalities

(1.9) LIP(2)=LLP(z), YP(R)¢Sm k-1,2,...,m

hold (of course for 2 — small enough).
Let us iix & and P(z) in (1.9) and g,(2)-- LI P(2), 2:(2)= Ll P(2).
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Using the representation (1.6) of the operator L and the definition of the
operator /,, we can easily see that the equalities

(1.10) dg,(2)/0z, — 0g.(2)/0z,
hold, and
(111 22 - o 210 0y Zagie o Z,)=821. .-y Zp—1, 0y Zhiry- - - Zm)—0

for every point (z,,..., 2, 1,0, Zay1,..., Zm) as soon as its distance from the
origin is small enough.

The equality (1.10) indicates, that the difference g,(2)—g(2) is a constant
with respect to z,, i. e. the equality g,(2)—8&x(2) €(2 2oy - -y Za—10 Zut1re - o> Zm)
holds (| z — small enough).

From the last equality taking z=(2,, 25, . 4 241, 0, 2441, . - -» Zm) according to
(1.11), we can conclude that ¢(z,,25,..., Ze 1,---, Zm) -0 for every 2=
(2, Zg00 e -y Zpm..., Zm), for which z is small enough, i.e. g (2)=gy(2) for
such  z , hence (1.9) holds. Thus, theorem 1.2 is proved.

Theorem 1.3. If H is an arbitrary linear subset of A, then an ope-
rator L:S, — H is of the class [(Sn: H) if it admits a representation of the
form (1.6)

o™ z
[./)(.’,) = 92:02, . . Oin ;f P(: Ty (I)d(

( z — small enough), where ¢(2) is a function from H.

This theorem follows immediately from theorem 1.1 and the prooi of
theorem 1.2.

This shows that the representation (1.6) is an analytical charecteristic of
the class /(S,; H).

From formula (1.6) it appears that the character of the map of the space
Sm by an operator L¢ /(Sm; /1) is determined by the function ¢(2) LI. For
instance, if L1¢ Sn, the operator L acts from S, into Sn; if L1¢ E(G), where
E(G) is the class of the analytical functions in the domain G containing the
origin, the operator L acts from S, into E(G); if Ll is an entire function
(L1¢ AL), L acts from S, into A., etc.

2. Linear oparators defined in arbitrary subsets of /1, and commuting
with the operators of integration. The results obtained in | can be applied
for finding the general type of linear continuous operators commuting with
the operators of integration and acting in considerably wider subspaces of
the space A,.

To do that we shall first of all topologize the space A, introducing into
it the natural topology 4, according to which, a sequence {f,(2)} is conver-
gent to a function f(2)¢ A, iff there exists a polycircle K with a centre in
the origin, such that:

1) the functions fu(2), n=1,2,... are analytical in K, and

2) the sequence |f,(z)} converges uniformly in K to the function f(2).

Without entering into details which do not difier essentially from their
respective ones in the case of analytical functions of one argument (see [158]--
(18]), we shall point out that the mentioned topology can be introduced con-
sidering the space A, as the inductive limit of Banach’s spaces:
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Ap=lim ind 4,
O ocRim R
where ZR is the space of functions f(z), analytical in the open polycircle K

w1:th centre the origin, radius R and continuous in the closure Kk, normalized
with the norm ||f(2)|| =sup.¢x,|f(2) |-

The same topology in A, can be introduced considering the inductive
limit of Fréchet, spaces (Ag;hyg), where Ap={f(2); f(z) is analytical in the
polycircle Ky}, and %y is the topology of uniform convergence on every com-
pact contained in the polycircle K.

Now let H; i—1,2 be arbitrary linear subspaces of A, with respective
topologies 4, i—1,2. We shall assume that the subspace S, is sequentially
dense in the topological space (/7,;%,). Besides, we shall suppose that the
topologies /%, i~ 1,2 majorize the respective topologies, which are induced on
the spaces /4, by the natural topology %, in A, Finally, we shall assume that
the spaces /4, are closed with respect to the operators of integration /,, k=
1,2,..., m, which are continuous in the topological space (/7,;%,).

The described general conception is realized in a number of particular
cases. The simplest ones are:

a) H,= H,= A, with topologies %, and A, identical to the topologies in-
duced in H,, i=1,2 by hy;

b) H,=Ag,; Hy=Ag,; h;, i=1,2 are the topologies of uniform conver-
gence on every compact contained in the polycircle with centre the origin and
radius R, i—1, 2.

Let us denote by /(H,, H,) the class of the linear operators acting from
H, to H, and commuting with the operators of integration /,, k=1,2,..., m

Theorem 2.1. Each continuous operator of the class [(H,; H,
admits a representation of the form

« am i
(2.]) Ly(z( — *B’z*lo’z’ o oz’;" (!.y (z —l’)tp (')d(

(' z| — small enough), where ¢(2)=L1 is a function from [,
Proof. Let y(z) be arbitrary fixed function from the space //, and P,(z)

Py(2),..., Py2),... is a sequence of polynomials convergent to y(z) according
to the topology #,.

Taking into account that the operator L:/, — H, is a continuous map
of Hausdorff’'s space /, in Hausdorff’s space H, (from which follows its se-
quential continuity) we conclude that the sequence

(2.2) LP,(2), LPy(2),. .., LP(2),. ..

is convergent to the function Ly(2) according to the topology hy.
On the other hand the topology /4, majorizes the topology induced in H,
by the natural topology #, therefore (2.2) is convergent to Ly(z) according

to the topology #, in the space A, i.e. (2.2) is uniformly convergent to the
function Ly(z) in a certain circle [z|<r,.

Taking into account that the restriction of the operator L on §, is an
operator from the class /(8m; A;). according to theorem 1.1 we obtain
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alll

(2.3) LPA2) 5. 6z,. ..

oz jtp,,(z——t)q)(t)dr, n-1,2,..
Zm o

However, the right-hand side of (2.3) tends uniformly in a certain circle
z <r, to the funciion

dlll

(2.4) 02,02, . . . Uz, d’- ¥ (z—0)¢(r)dr.

This follows from the fact that after the substitution z—t=7 the derivation
0m/0z,0z, ... Jzy can be transierred to the function ¢(2) and then the right-
hand side of (2.3) will be represenied as a finite sum of integral expressions
in which P,(z) participates as a subintegral factor. In this representation, be-
cause of the continuity of the operators /, we can accomplish the limit ope-
ration P,(z) y(2) and then again transform the expression in the form (2.4).

Thus, there exists a circle |z <(ry in which the left-hand side of (2.3)
tends uniformly to Ly(z) and its right-hand side tends uniformly to the func-
tion (2.4).

In this case, because of the thcorem of identity, the equality (2.1) holds
in the whole circle, where the function y(z) is analytical. Theorem 2.1 is
proved.

Theorem 2.2. Fach operator [ defined in the space [1, by an equality
oj the type

nm

(2.5) Ly(z)-— — J V(z—1)e(v)dr,

02102, . . .

where ¢(z) is an arbitrary function from H,, is a continuous operator from
the class [(ly;11).

Proof. We have to show only that each operator L defined by (2.5)
commutes with the operators of integration /g y(2)= f:’\'y(z,, Zoyevey Thye o oy Zm)dTy.
Indeed the statement that the operators of the type (2.5) act from H, to Hy
and are continuous in /1, follows immediately from the assumptions about the
spaces /1, and H, and the continuity of the operators /, in the space (/,;h,).

Let us consider an arbitrary operator L of the type (2.5). Its restriction
in the subspace S, of the space F/f, obviously satisiies the requirements of
theorem (1.1) and therefore belongs to the class /(Sn; A,), i. e. for any poly-
nomial P(z)¢€ S, the commutation /,LP(z)=L1IPz),k=1, 2,..., mholds. How-
ever, from it follows the equality /,Ly(z)=Lly(z), k=1,2,..., m, y(2)¢H,
since by assumption the space S, is sequentially dense in /1, according to
the topology 4, and the operators L, Iy, I,,..., I, are continuous in (/,; k).
Theorem 2.2 is proved.

The proved thecrems 2.1 and 2.2 obviously allow us to state that the
analytical representation (2.1) is a characteristic property (or a general form)
of the continuous operators of the class /(H, ; H,), i.e. the following theorem
holds.

Theorem 2.3. A continuous opepator L:H, — H, commutes with the
operators of integration 1, y(2)= [Ay(2,,..., th..., Zm)dex ( 2| — small
enouch), k=1,..., m, if the operator L can be represented in the form
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0™ z
Ly(z)=-dz1dzg . dzm Uf)’ (Z—t)q;‘(t)dr,
where ¢(z) is an arbitrary function of the space H,.

In conclusion we shall note that the given proofs of theorems 2.1 and
2.2 allow us to omit some of the assumptions; this will make the exposition
easier.

So for instance:

1°) In theorem 2.1 the assumption that the space (/7,;%,) should be such
that the operators of integration are continuous can be omitted;

2°) The same assumption can be omitted in the particular case of theorem
2.2 where the space /, coincides with A,

Some applications of the obtained representations will be a subject of a
paper to follow.
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