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ON HAAR BASES IN BESOV SPACES

HANS TRIEBEL

let —ools<Coo, 0<p<ioo, and 0<g<eo. The Haar system in a cube () in the Eucli-

dean n-space R, is a simultancous Schauder basis in the Besov spaces R;,q(“” if
1 1

1<ploo, =18 -

(s, p)EM= p , , 0<q< o,

n 1
ni1<P=1, n( p —1)<s<1

This assertion cannot be extended to the spaces B';.q(Q) if (s, p)M. Similarly for B;’q(R,,).

1. Introduction. If Q denotes a cube in the Euclidean n-space R,, then
it is a well-known fact that the Haar system is a Schauder basis in the usual
Lebesgue spaces L,(Q), where |< p<~~o. This statement can be extended to
the Besov spaces B; (Q) provided that 1<p<co, 1 g<~, and
1 ocs< L-, cf. [6, 4.9.4], or [5]. By standard arguments (cf. below) one ob-

tains a similar result for B;Vq(l?,,). Recently, the definition of the Besov spa-
ces B;.q(R,.) and, by restriction to ), al.o of B;.q(Q) has been extended in a
natural way to —co<s<oo, 0<p<~, 0<g ~oo. In general, these spaces are
only quasi-Banach spaces, however the notion of a Schauder basis can be ex-
tended in an obvious way to quasi-Banach spaces. The question arises to find
all Besov spaces B5 (R,) and B; (Q) for which Haar systems are Schauder
bases. Beside some limiting cases, the paper contains a solution of this prob-
lem. Since the case 1<<p< ~o has been treated in [6, 4.9.4], the most inte-
resting case in this paper is 0< o -1. Roughly speaking, the method develop-
ed in [6, 4.9.4), and [5] for 1<<p<~~c can be extended to 0<p-~1 (however
some non-trivial changes are needed). The main results are formulated in the
Theorems 1 and 2. All immaterial positive constants are denoted by ¢, ¢, etc.

2. Preliminaries. 2.1. Definition of the Besov spaces. Let R, be
the FEuclidean n-space. S(R,) is the usual Schwartz space of all complex-valued
infinitely differentiable rapidly descreasing functions on R, The dual space
S'(R,) is the set of all tempered distributions. F and F~' denote the Fourier
transform and its inverse on S'(R,), respectively. Let [p,(x)}> CS(R,) be a

J=0
system of functions such that

(i) suppoyc{y | 2" [y|=s2+ it j -1, 2, 3,...0 suppe,c{y y =2},
(i) For any multi-index y there exists a constant ¢, such that for all
j 0,1,2,..,and all xR, we have | D'gyx)|<¢,2 /7,
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(1ii) For all x¢R, we have X @y x)=1.
0

Definition 1. If —co<s< oo, 0<<p<oc, and 0<g< oo, then
() Bs (R)—{fI ¢SSR, | f1 B (R)|

- qlp /g
AL_\_JOQs}v([J}F—l[q,ij](x)de> ] <oo} .

Remark |. This is the definition of the Besov spaces due to J. Pee-
tre, cf. [3], and the references given there. If >0, 1<{p<oo, and 1=¢g<co,
then Bs (R.) coincides with the classical Besov spaces. Systematic treatments
of these spaces on the basis of the above definition have been given in [3]
and [8] (the classical cases, i.e. 1<p<Zoc and l=g<oco, may be found in [2]
and [6]). The spaces do not depend on the chosen system lg} (equivalent
quasi-norms!). In any case, B;'q(R,,) is a quasi-Banach space (Banach space if
1<p~co and 1-- @< ).

Remark 2. In an obvious way the definition can be extended to p= oo
and/or ¢=co. One obtains non-separable quasi-Banach spaces which, from the
point of view of the existence of Schauder bases, are not of interest. How-
ever for the later considerations it is useful to remark that if s>0 then
Bs _(Rn)  CY(Ry) are the usual Holder-Zygmund spaces, cf. [8, 2.2.9].

Definition 2. Let Q be a cube in R, If —~<s<oo, 0<p<loo and
0<g< oo then B;yq(Q) is the restriction of B;_q(R,.) to Q. Furthermore,

1B, (Q) —infl g| By (Ra) |,

where the infimum is taken over all gB; AR), whose restriction to Q coin-

cides with [ (considered as an element of the space D'(Q) of all di-
stributions on Q).

Remark 3. B; (Q) is a quasi-Banach space (Banach space if 1—p<co
and 1- g< o). If 1<p<oo and 1:-.¢g<oo,then it coincides with the classic-

al spaces. The definition can be extended to p=oco and/or @= oo, cf. Re-
mark 2.

292. Some fundamental properties of the Besov spaces. In
this subsection, we describe some properties of Besov spaces, proved in other
papers, which will be needed later on. If an assertion holds true for B;_q(R,.)
and for B;J(Q) then we formulate it for B; . '

(i) Density. Let —co<s< oo, 0<<p<oo, and 0<g<oo. B;_q is a quasi-
Banach space, S(R,) is dense in B;'q(R,.). and C=(Q) (the set of all complex
valued infinitely differentiable functions on the closed cube Q) is dense in
B; (Q). As far as the spaces on R, are concerned we refer to [8, 2.1.1] and

[7, Chapter 2]. The corresponding assertions for the spaces on Q follow imme-
diately by the restriction process.

(i) Imbeddings. If —oo<o=.§<Too, 0<p<=r<oo, 0<g<oo, and
o—n/r=<s—n/p then

(2) B; ,CB;,.
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[f o—n/r<s—n/p then B;, in (2) can be replaced by B] ~, where o >g>0is
an arbitrary number. If 0<p<<oco, 0< @< o, and co>s—n/p>0>0, then

, .
) B;.q <%

where C° are the Holder-Zygmund spaces. If O<p 1, 0<g<oco, and
s>n(p~'—1) then

(4) B; cL,.

Proofs (and also a precise definition of ) may be found in [8], 2.4.1
(as far as the spaces on R, are concerned; the corresponding assertions for
the spaceB on Q follow immediately by restriction). Cf. also [6, 2.8.1 and 4.6.1].
(iif) Dual spaces. As mentioned in Remark 2, Definition 1 can be ex-
tended to p— oo and/or g=oco. Furthermore, if 1<<p<Zco then 1/p+1/p'—1,
and if 0<p=<1 then p'=co. If —co<ls<oo, 1=p< oo, and 0<g< oo, then

) (B; [(Rn)) = B,* (Rn).
If —co<s<oo, 0<p<1, and 0<g<co then
(6) (B [(Ra))" = B 1P D(R,).

Proofs (and interpretations) may be found in [8, 2.5].

(iv) Multiplication by characteristic functions. If x is the
characteristic function of a rectangle in R,, then f — xf yields a bounded mapp-
ing from B;.q(R,,) into itself if

either 1=p<oo, ——l<s<

(7) 1 : 1 ” 1
n—

or n <p<l, ﬂ(—p_——l)<5<*ﬁ'

and 0<g<co,ci. [8, 2.6.4, Remark 3]. (Beside
limiting cases this assertion cannot be streng-
thened. In particular (7) is a natural restric-
tion, cf. [8].) )

(v) General multiplications. If
0<p< oo, 0<g<oo, —coIs<o,and o>max
(s, n/p—s), then there exists a constant c,
such that for all feB; (R.) and all geC(Ry)

®) l&f By (Roll=clglCAR) [IIf]8; (R

ci. [8, 2.6.1]. Later on, we need only multipli-
cations with g¢S(R,) (and in this case, the
Fig. 1 meaning of gf is clear without further expla-
nations).

viy Interpolation. If —co<s,<s <oo, 0<p<oo, 0<ge<oo,
0<gy< oo, 0<g< oo, 0<A<1, and s=(1—6)s,+ 6s, then

(9) (B, (Ra)y By o (R))o.a= By (Ra),

P
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cf. [8, 2.2.1y). Here (*,")s,, is the real interpolation method. Furthermore, if s,
and s, are real numbers, 0<<p,<<oo, 0<p, < oo, 0O, and

. 1 1-6 6
1 s =(1—6 LIRS S, T4
(10) s=(1—0)s,+Os,, » e o
then

(1 1 ) (B;‘:..pn(R”)' B:'I_p‘(Rn))H.P - B;J(Rn)r

cf. [8, 2.2.10]. (9) and (11) with the cube Q instead of R, remain true if
p>(n—1)/n and if all the other parameters satisfy the above conditions, res-
pectively. In [10], Theorem 2(iii) we proved (9) and (I11) for a bounded C* —
domain © instead of R, if p>(n+1)/n. The proof in [10] works also for cu-

bes Q, and a detailed examination shows that in this case p>(n—1)/n is su-
fficient.

(vii) Equivalent quasi-norms. If

[either 1= p<eco, 0<s<1/p

e ‘l‘“ n/(n+1)<p<l, n(l/p—1)<s<l,
then

: s [* = " f(x . | f(x)=f(y) |# lp
(13) x.f Bp.p(R") | = (R',l, f('\) Pdx _%_l\’,,;;l(’n —m_‘; dxd)’)

is an equivalent quasi-norm on Bj (R,) (norm if p>1), cf. [9, Proposition 4].
Obviously, if p=>1, then we have the well-known classical assertion, cf.e. g.
[6, 2.5.1]. The extension to p=1 is essentially due to J. Peetre [3, p. 254].
Some modifications of Peetre’s proof yield also the following result: If 0<
p-—1 and s>n(1/p—1), then there exists a constant ¢ such that for all finite

linear combinations f(x) of characteristic functions of rectangles with sides
parallel to the axes

(14) | £1B5,(Re) 1=

c( JIf(x)|pdx+ X [h= [|f(Xgse-es Xjm1s Xp+ b, x”h_._,x")_f(x)!rdx%h)"
R, J=10 Ry

(14) is of interest if n(1/p—1)<<s<1/p, cf. Fig. 1. In that case, property (iv)
and elementary calculations show that both sides of (14) are finite.

23. The Haar basis in cubes. If B is a complex quasi-Banach space,
then a set {b,}7>,C B is said to be a Schauder basis if each element &¢B can

be uniquely represented as & 4.‘_‘11‘1,17,, B, complex numbers, and the linear
J=

operators Py, acting in B, Pyb= _Elﬂ/b/, N=1, 2, 3,..., areuniformly bound-
I=

ed. If B is a Banach space then the second part ot the definition (the uni-
form boundedness of P,) follows from the first part of the definition, cf. [I,
p. 88). In particular, in any case f;=p,b) is a linear continuous functional,
By B'. This shows that a quasi-Banach space with a Schauder basis must have
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a sufficiently rich dual space. (A counterexample is [,(R,) with 0<<p<1, be-
cause L, ={0})

We use the system of Faar functions described in detail in [6, 4.9.4]. Let
(15) Q=lx xR, 0<xy<1, j-1,..., n}

be the unit cube. If £ is a given natural number then we consider the de-
composition ¢ - [J/ Q,, where the rectangles Q, are given by

(16) Q,,,{wxe/e,,,,z, <x<"SL it e, 4
m;+1 . .
2" <x;< jk‘?i" i j=I4+1,..., n}_

Here [ and m; are appropriate numbers. Obviously, Q, N Qs =) if s+r. If Z
symbolizes this decomposition then we introduce the operator £,

(17) (Pzf)(x) ‘—(\}frf‘,aff(y)dy it xcQ,

(mean value). The set of all these decompositions is enumerated by Z,, Z,
Zg, ..., in such a way that Z;., is obtained from Z; by dividing (bisecting)
exactly one of the rectangles Q, belonging to Z,. Then it follows that
Pz, — Pz/_ are projections on one-dimensional subspaces, j 1, 2, 3,.... We
proved in [6, 4.9.4], that the generating elements of the one-dimensional ran.
ges of Pz and P, P/ form a simultaneous Schauder basis in Bj (Q) i

1<p<oo, 1 ~q<\~ and '1/p-1<s<1/p (Haar basis). The representahon is
given by

(18) f=Pzf+ ‘(P/ =Pz .

It is well-known that (18) is also an unique representation (Schauder basis) in
L(Q) if 1<<p<co. Finally we add a technical remark: If f is smooth, then
(17) and (18) have an immediate meaning. If the projections Pz, are uniform-

ly bounded in a given space B};.«,’("‘)) then the density of C=(Q) in B;_q(Q)
(cf. 2.2(i)) and the wusual completion argument shows that each element
feB;.[,(Qb can be represented by (18}, wlere P[jf is defined via this limiting
process. The statements below must be understood in this sense.

3. Special properties of the Besov spaces. 3.1 Equivalent quasi-
norms.

Proposition 1. Let Q be the cube described in (15) and let s and p
be given by (12). Then the following three quasi-norms

. w S-S 1P \ie
(19) 1/18,0@ [ foo raxs [ SOID  dvay)”,

(20) 1B Q) [ [(x) dix (4( A =S dxdy)

| x- yv’lbl‘p
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@1 111 By (@1 O=| Jfeaax| +( [ TN dxay)”,

| x—y|nteP

are equivalent quasi-norms in B; JI,(Q).
Proof. Step 1. Obviously, Definition 2 and (13) prove that

(22) FIB(Q) W= 1B, (Q).

On the other hand, let f¢B; (Q) and f(x)=0 if x¢Q and x/=1/2. (The gene-
ral multiplication properties described in 2.2(v) show that it is sufficient to
prove the reversion of (22) for functions of that type.) The special multiplica-
tion properties described in 2.2 (iv) yield that S,

flx) if  x¢Q,

0 if xtR,—Q,

is an extension from B (Q) into B;_ptR,.). Then it follows that S,
(24) SiNx)=7(x1, xoly--ey [ Xa)

is also an extension. Here we assume that (S, f) (x)=0 if x|=1/,)
Hence, by (13),

(25) 185 (Q) =[S S| B; (R *=c| f| B, (Q| .

This proves that (19) is an equivalent quasi-norm in Bj (Q).

Step 2. By (4) (ii p<1) and Holder’s inequality (if p>1) we have

23) (Suf) ()= {

(26) FIBS (QIO=|f B85 (Q)®=<c||f] Bs(Q) .
Hence, we must show that there exist a constant ¢ such that for allfeB’f’(Q)
(27) 1f 1L Q) | = f1 B (Q)]®.

Let us assume that there does not exist a constant ¢ with (27). Then we find
a sequence {fjjcB; (Q) with

(28) [ L(Q)| =1 and |f; B; (Q @ -— 0 when j—oo.

In particular, by (19), {f,} is a bounded set in B; (Q). Ii 1<<p<co then it is
well-known that {f,} is pre-compact in /,(Q) (compact imbedding). Hence, in

that case, without loss of geuerality, f; — f in L,(Q). By (19) and (28),f, —f
in Bj (Q). Hence,

(29) [fx)dx—0 and [ TOIDT gegy o,

Q QXQ | x—y|
Consequently, f(x)=0. This is a contradiction, since | f|L,(Q)| —1. If p<1,
then (2) and (4) show that {/,} is pre-compact in L,(Q). By Holder’s inequa-
lity, {fy} is also pre-compact in L,(Q). Then we can apply the above argu-
ments in this case, too. The proof is complete.

Corollary 1. S, in (23) is an extension operator from Bj (Q) into
B; (R,). Consequently,

|| Sof | By J(Ra) |~ f B (Q) .
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On the other hand if d(x) denotes the distance of x¢Q from the boun-
dary of Q, then

|| — fix)—f(y) P lp
| Sof B3 (Rn) | ~( d—?(x) f(x) Pdx-+ |——-—dxd) ,
of By (R "~ ( fd(x) fx) o ey dxdy
cf. (13). If one uses the equivalent quasi-norm (19) then one obtains the fol-
lowing fractional Hardy inequality: /f p and s satisfy (12), then there exists
a constant c¢ such that for all f¢B; (Q)

(30) ( fd-s» j(x)‘l‘dx)lp-;c( [ 1f(x) 1pdx+ [ ) —-—f—,}ﬁ,l”—dxdy)“'.
Q Q QXQ | x—y|
Inequalities of type (30) are known if 1<<p<oo, cf. [6, 3.2.6], and the referen-
ces given there (essentially, assertions of this type are due to P. Grisvard).
An extension to values p- 1 and a direct proof may be found in [9], formula
(72) (bounded C= — domains instead of cubes).
As usual we set

(A D) =f(x 1y ey Xjmty Xptly Xjitaenny Xp) —f(X), A} =y A7

it £>0 and (A2 f)x)=f(x+h)—f(x), 44" if h¢R,. Here =2, 3,...

Proposition 2. Let 0<p=1, 0<g<-o, and 0<s<co. If | is a na-
tural number with [>s, then there exists a constant ¢ such that for all
GS(RII);

! an\'
(31) ([ 1481 LRI ) 1| LoARe) |11 B} (R |-

n
2
j=1

Proof. Step 1. First we prove aninequality. If f¢S(R,) and if {¢,] is a
system as it has been described at the beginning of 2.1, then

(32) f= §o F-19,Ff (convergence in S(R,)).
J=

Furthermore, let {y,}>, be a second system with the properties (i) and (ii) in
2.1 (with y instead of @) and yy(x)- 1 if x¢suppgy; j=0, 1, 2,.... It is not
hard to see that there exist couples of systems {g,}, {y,;} having these pro-
perties. Furthermore, we may assume that yy(x)=y(2/x) if j=1, 2,... We
have

(33) | AL F'guFf Ly(Ry) ||| FlguFf | Ly(Ry) ||
and | AL \F'gFf LRn) | =| F=N e — 1)y FF'gFf | Ly(Ra) | -
Let j- 1, 2,.... Applying formula (7) in (7, p. 57|, then it follows that

1
In{ ——1
B 4, F- S | Ly(Ra) | <2 ) e vy | LR | 1 F a7 LRy

—

1
Jo\ ——1
=c'2 (” )

| Al (F (27 )] | LARA) | || F='epf | LAR,) -
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Here ¢ and ¢’ are independent of j. Because
#[F =127 ) (x) =2 Ay,  F1y)(20x)
we have
A PR ] Ly(Ra) =20 e gy Fly Lp(Ry) S22 RY,

where ¢ and ¢’ are independent of j and k. Putting this estimate in (34) and
using (33) we have

(35) A FY F) LAR,) - emin (1, (2R)Y)F g LR,

Here j 0,1, 2,..., and ¢ is independent of j and 4. Obviously, 4] can be
replaced by 1} ,, where k=2, ..., n '

Step 2. We prove (31). It is sufficient to consider the term with .
Let #~2—* where 21, 2, 3,.... (32) and (35) yield

k o
A:I.lf Lp(Rn) r SCEO2U‘")"‘ Fq,Ff I-p(Rn) ’+e¢. k: 1 FloFf ‘,‘P(Rﬂ) ¥
j= j=
Consequently,
! dh o ) ,
Jh——-.l‘q “;l,]f LP(RII) V,h, C kf\' 2 ~/2 *k_‘\lu’ph . X ;‘;‘.lf Lp(Rn) g
oo A q'p
(36) <¢' X 2:kq( N 2U-mip | FlguFf L (Ry) p) !
k=0 j=0

RS gm( S UFg, Ff LARY) ”)”

k=0 J=k+1
If e is an arbitrary positive number, then the right-hand side of (36) can be
estimated from above by

C; E QU—kNI—s—=2)9Q /39 F"]q /Ff Lp(Rn) o

=0 j=0
oo o0 ) ) o :

e T % gunu-ain FoigFf LAR,) Y.
k= 0j=k+1

It « is chosen in an appropriate way then 0<e<s< s+e</ and the last esti-
mate show that

o

' T A N T .
J‘h* 1AL LR 7, "/_fo 2750 F o, Ff | Ly(Rn) 7= |} TB,,_,,(R'!) e

Similarly for  f'LyR,) . The proof is complete.
Remark 4. Immaterial modifications of the above proof show that un-

der the hypotheses of Proposition 2

@7 (Jh el A LR ¢ NS LR sl 1B (R -

h
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Remark 5. Let 0-=p=1, 0< ¢g< o0, and n(,', l)<s<l. Then (4) yields

that one can add the term | f L,(R,) on the left-hand side of (31). Hence, a
fundamental sequence in the quasi-norm of the left-hand side of (31) with
the added term f L(R,) is both a fundamental sequence in the
space of all measurable functions and in §’(R,). This shows that (31) can
be extended by continuity to all feB; (R.), provided that s>n(1/p—1). This
argument fails if s n(1/p - 1). This follows also from the fact that O(B;_q(R,,)
ii 0<p<oc, 0<g<<ov, and s<n(l/p—1).

Proposition 3. Let (n—1)n<p<l and max (I, n(p ' 1)<s<
min(2, 1 p), (¢f. the Figure). Then | f B (R, and

‘ ) L A-PU . dRr\'? 5 4
(8 S LdR) + E(THr 4 LR )= B R

are equivalent quasi-norms on the set of all finite linear combinations f(x)
of characteristic functions of rectangles with sides parallel to the axes.

Proof. In this proof, f(x) denotes always a finite linear combination of
characteristic functions of rectangles with sides parallel to the axes. 2.2 (iv)
and elementary calculations show that

(39) f By (R) <~ and [ B (R) *<

Using .1}, 15+ 2.1, then we have

dh

[how Guf LR 25 2 7Ty f LR 2%
v

dh

2w R B[ LRy PU -2 n [ ke 4l f LR #0.
0 ' 0 '

Because s>1 and all terms in the last estimate are finite, we have

dh

Those L f LR 7, 607 & f LR #h 52

Similarly for 1} , with & 2,..., n. Because s<2 and s>n(p '—1), Proposi-
tion 2, Remark 5, and (39) prove that f B;“p(R,,) fee f By (Rn) - This es-
timate and (14) prove the proposition.

Corollary 2. If (n—=1)n<p<) and max(l,n(p'—1)<s<p' then
any finite linear combination of characteristic functions of rectangles with
sides parallel to the axes belongs to B; 4,(R,,), however the set of all these
functions is not dense in B;J(R,,).

The first assertion follows from 2.2 (iv). In order to prove the non-den-
sity we may assume that s< 2. This follows from (2). (This additional assump-
tion is automatically satisfied if » ~2.) Then Proposition 3 is applicable. If we
assume that the finite linear combinations of characteristic functions of rec-
tangles with sides parallel to the axes are dense in Bj (R, then it follows
that f B (R, * is an equivalent quasi-norm of Bj (R,). However, if
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f B (R) t<o and feS(R,) then it is not bard to see that fix) =0, (here
we use s>1). This is a contradiction.

32. Direct products. Let NV be the lattice of all points & in R, such
that k= (ky, ..., k), k; are integers. Let QW={x k;<<x;<k;+1, where j
l,..., n}. The characteristic function of Q® is denoted by 7. Obviously,

R.= UrenQ®. A )
Proposition 4. If p and s satisfy (12), then ( Y B (R (7)1
kReN
and ( Y Of B (QW) ")'P are equivalent quasi-norms in BS (R,). In other
REN e p.p
words

(40) B; S Rn) (kEN ® B;'P(Qm)) >

Proof. (13) and the fact that S, from formula (23) is an extension ope-
rator from B (Q) into B; (R,) prove that

T By pR) '\Tckfm'lz"f B, ,(R) ch'ﬁé\' [ B, (QM)*.

The reverse inequality is an easy consequence of (19).

4. Haar bases in Besov spaces. 4.1. Haar bases in B;'q(Q). Q has the
meaning of (15) (unit cube in R,). The system of Haar functions in Q is that
one described in 2.3.

Theorem 1. (i), The Haar functions in Q are a simultaneous Schau-
der basis in B; (Q) if

either 1<p< oo, lp 1<s<l/p, 0<g<oo
or n/(n+D<p -1, n(l p—1H<s<l, 0<g<Too.
(i) The assertion in (i) cannot be extended to B; (Q) if

(41)

either 1<p< oo, s¢(1/p—1, 1/p), 0<g<<~
(42) or ni(n+D=p=1, stn(l/p—1), 1], 0<g<~
or 0<p<n/(n-+1), —co<s< oo, 0<<g<oc.

Prooi. Step 1. If 1<p<eco, p' 1<s<1lp, and 1<<¢<<oc then part
(i) has been proved in [6], 4.9.4. Let n/(n+1)<p=<1, n(p '—1)<<s<l and
0<g< co. I we assume that f(x)=0 is represented by Haar functions in
B; (Q) then (2) shows that f(x) =0 is also represented by Haar functions in

B';;(Q), where ﬁ and s are appropriate numbers with 1<1E< co and 0<

s<1/p. Since the Haar functions are a Schauder basis in B};(Q) we obtain

that the above representation of f(x) 0 must be the trivial representation.
This proves the uniqueness of the representation. Hence, we must show that
(18) is a representation in the above-mentioned sense. Using the interpolation
formula (9), then it follows that we may assume, without loss of generality

P-4
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Step 2. We prove that (18) is a representation in B; (Q) if n/(n+1)
<p 1 and n(p—'—1)<<s<l. First we show thatthere exists a constant ¢ such
that for all j—1, 2, 3,... and all f(C=(Q),

(43) Pz [ By Q)¢ [ B Q) .

We extend the proof given in |6, 4.9.4] (or in [5)) to the case under consi-
deration here. We use the equivalent quasi-norm (20). Obviously,

(44) Prf LQ) = f L(Q ¢ f B Q.

Furthermore, if Q, has the meaning of 2.3 with respect to the fixed decom-
position Z,, then we have

o Porg-P,fiy)? Y
(45) J 4 o dxdy- ¥ Y

Q¥Q x—y e 11

Il

QX%,, =m QR

In the first sum we put all couples (/, m) with QN Q-+ and [+=m. The
second sum contains the rest. In order to estimate the first sum we fix / and
assume, without loss of generality,

(46) [fixydx 0 with  Qp— (J Qs
Q

where the union is taken over all m such that Q,NQ,~ . We have

47) X [ ... ~:c§’[ Q »\ f fix) dx)’+ 0, ,,( Q{' f(x) dx)’."?pi’fo,,, Mi';,,

m Q<Qy, " Q r=y
¢’ (3{ pl—sp u\ l /(() d'\-)l_
°l

The equivalence of the quasi-norms (20) and (21), a simple homogeneity argu-
ment and (46) yield

K] 1

S . ;
(48) [ fix)dy-¢c Q" "‘ | = '/(;v:}: dxdy\'”.
Q, Qg )
Putting (48) in (47) we have
(49) ¥ [ o...sc f “f{x)w{}ﬂ"’ dxdy,
mQQ, (7,5(3, Xy

where ¢ is independent of j (and /). Hence,
N, .

(50) I e B (Q) "
[=1 ™ QXQ,, '

In order to estimate the second sum in (45) we first note that

1 1 g, .
— | 1 :
(51) Aim O ‘?’/ flx)dx O Q;"/(.vux =0 lf f(X) €m dx,
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where ¢, Q,, ' [Sf(x)dx. The equivalence of the quasi-norms (19) and (20)
Q

and a homogeneity ';rgument yield

(52) “‘I_MSC Ql sn -1 ,(' ’ ) vf(X)_"fl,V)iP dxdy)‘p

P - n-+8j
QXQ x—y"T®

+c Q, -1p ‘ _f(_ﬂ_,cm Pdx\Ve.
(d )
Furthermore, if x¢(Q, is fixed then
X)) em = [ ) —f(w) dy.
Om q,,

Applying again the above inequality we have

AX) Cm -C Qm* n~l’p( [ - f@—fw) 2 dzdy)] 4

5 , n+Sp
2 —
Q,,XQ,, 3

+¢ Qu! “’(Qf Hx)—f(y) "dy\'”,

Integration over x¢Q; yields
Q P J S0 cw x| rc Querte( SR dzay )
( { \Q,,'XQ," =y g
e Q' Qy "“’( I ) - Ay ”dde’)"’.
R m N
Putting this estimate in (52) we have

(53) Aime=c Q8 n-1p [ f _fLE)TI'.‘l_’_ dxdy+ l -l(_{.)ﬁﬂ)_i dXdy L»
QXQ, Xy I QmXQ X—y

€ QT Qe (S S Sy rdxay)i

QxQ,,

Now, we are able to estimate the second sum in (45). If b,, denotes the dis-
tance of the rectangles ; and (), then we have

! :V e \ Alp.m |

(54) ¥z f om0l —2 Q|| Qu-
=1 m QQ, im b,._

It is easy to see that for fixed /

S5 o l . . ™

(D9) ; b;’:;"'r'_- ( (‘)I 1—sp/n

Similarly for fixed m. Putting (53) in (54) and using (55) then we have

N ‘
(56) S f ... e RSSO
1 om ogYe, Qe Q lx-y

(44), (50), and (56) prove (43).

dxdy.
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Step 3. Again we assume that n/(n+1)<p=1 and n(p'—<s<l. If f
is a finite linear combination of Haar functions then f(x)- P;_jf, provided that
i ~j, is sufficiently large. Hence, functions of that type are represented in
Bs ,(Q) by (18). Furthermore, any smooth function can be approximated in
B;.pt‘\); by finite linear combinations of Haar functions. The proof of this fact
is the same as in {6, 4.9.4] (Step 3 of the proof of Theorem 1). (43), 2.2 (i),
and the just-mentioned facts prove that each function f¢B; (Q) canbe
represented by (18). The proof of (i) is complete.

Step 4. We prove (ii). Let 0<p<leo, 0<g< o and s>1/p. In that case
the Haar functions do not belong to Bj (Q) (with exception of f(x)- 1). Let
us assume that all Haar functions are elements of B (Q). Then it follows
from the multiplication properties described in 2.2 (v) that y(x’)x(x.)2(Xa)€
B;w(le,,y, where X' (X, ..., Xn1), W(X)ES(Ra—1), Ax,)ES(R,) and x(x,) is a
characteristic function of an appropriate interval. In [8], 2.6.4, Remark 1 (and
Substep 4.1 of the proof of the theorem in 2.6.4 in [8]) we proved that this
is not possible. (For details we refer to [3], 2.6.4.) Next we assume l<p<oo
and s<~p-'—1 and 0-“g<co. The operators sz from (17), (18) are formally

self-adjoint, i. e. if pcC(Q) and v,v€C3°(Q) then
(57) f(P/jq )(x)p(x)dx = [g(X)(Pz yw(x))dx.
Q Q ’

In an obvious way this relation can be extended to ¢tS(R.), where we assume
that ycCo(Q) is fixed. If we assume that Pz/ is a bounded operator from
H;‘_V,(Q) into itself with 1< p<~, 0<<g<~o and s<Ip 1—1, then (5), the mul-
tiplication properties in 2.2 (v) and the usual duality argument show that

P, belongs to Rﬂ,fq,(R,,). However —s>1/p’ and we obtain a contradiction

to 'the above case. Next we assume that 0<<p- 1, 0<l¢g<" -, and s<n(p~'—1).
We use the same duality argument and (6) and (3). We have

(H8) szqv( Bt =1 R C(R,),

where 0<a-~ —s+n(1 p—1). Since any function belonging to ©”(R,) is conti-
nuous, (58) yields a contradiction. It remains the case (cf. the Figure) (n—1)/n=
1, 0"g< ~, max(l,n(p '—1))<s<1/p, where s>1. The interpolation for-
mulas (9) and (11) show that we may assume (n—1)/n<p q<1, max(l,
n(p '—1)<s<Z1/p (in particular, the interpolation formulas (9) and (11) prove
that the maximal extension of the shaded region in the Figure, characterizing
the spaces Bj (Q), 0-"g<o, for which the Haar functions are a simultaneous
Schander basis, must be convex). Now Corollary 2 shows that the finite li-
near combinations of the Haar functions are not dense in B;.p((\)). Hence, they
are not a Schauder basis. The proof is complete. )

42 Haar bases in B;_q(/e,.». If Q® has the meaning of 3.2, then we
denote the corresponding Haar functions in the sense of 2.3 (with respect to
QW instead of Q) by H;(Q™*)(generating function of the range of PZ/H—PZ,-
resp. P, with respect to Q" instead of Q). Here j 1, 2,.... The set of all
these functions is ordered by {HdR,)|; ,, where H(R,) Hy(Q™), = 1(j, k), in
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such a way that I(j,, k) >1(Jj,, ko) if either &, +ky, or k- k, and j,>j,. H(R,)
are denoted as the Haar functions in R,.

Theorem 2. (iy The Haar functions in R, are a simultaneous Schau-
der basis in B;_q(R,,) if (41) is satisfied.

(ii) The assertion in (i) cannot be extended to B; q(R,,) if (42) is satisfied.

Proof. Part (i) with p--¢ follows from Theorem 1 (i), Proposition 4, and
well-known standard arguments. The general case (p==¢) is a consequence of
(9). The proof of part (ii) is the same as in Theorem 1.

43. Remarks.

Remark 6. The Theorems | and 2 have a final character beside limiting
cases. Probably, the corresponding systems of Haar functions are not Schau-
der bases for Bj if (s,p) belongs to the boundary of the shaded region in
the Figure and 0<¢g< ~c. In some cases one can prove this conjecture, i.e.
if 1<p<~, s=1/p, and 0<<g<cc.In this case, the argument at the beginn-
ing of Step 4 of the proof of Theorem 1 is applicable, cf. [8, 2.6.3], formula
(18). By duality one obtains the case 1<p<<oo, s=p~1—1, and 1<{g<Tcc.

Remar k 7. We considered in this paper only Haar functions. One could
try to use spline functions of higher order for the construction of Schauder
basis. We refer to S. Ropela [4]. There are reasons that the shaded region
in the Figure, characterizing simultaneous Schauder bases, can be extended
(in dependence of the order of the spline functions) if one uses higher spline
functions. Negative results in this sense of the part (ii) of the two theorems
can be obtained on the basis of [8, 2.6.4].
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