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STOCHASTIC OPTIMAL CONTROL FOR A CLASS
OF DISCRETE SYSTEMS

STRATIS KOUNIAS

Properties of the optimal control and the optimal cost are studied for a class of discrete
stochastic systems.

It is proved, that for independent random imputs, the optimal control and the optimal
cost are functions of the last available information on the state variable only and that to each
de%ree of dependence on the random inputs corresponds an additional variable on the opti-
mal cost.

The total cost is taken to be the expended sum of the costs at each stage and the state
variable is a function of the state and control variables of the previous stage plus a ran-
dom error.

Finaly, for convex cost functions it is proved that the optimal cost is convex and the
optimal control is continuous function of the state variable.

1. Introduction. In this paper we study the problem of optimal control for
a wide class of discrete stochastic systems.

The study of discrete systems ([1; 2; 3]) is very importaat because the
computation of the optimal control ana the optimal cost of any control prob-
lem, using digital computers, requires the discretization of the problem. Further-
more if deterministic control is a first approximation to actual problems,
stochastic control is more realistic.

Throughout this paper we assume that the different coefficients or func-
tions are known and therefore we are not concerned with their estimation. At
the beginning we study properties of the discrete stochastic control with addi-
tive cost function, and at the end we restrict our attention to convex cost
functions. The technique we apply is equivalent to Bellman’s principle of opti-
mality.

We assume that the behaviour of the system is governed by the following
relation:

(1) Xp 1= S X )€ R=n, ..., 1,
where :

x, is a p-dimensional vector representing the value of the state variable
at stage k.

u, is a ¢-dimensional vector representing the value of the control variable
at stage k, furthermore we assume that ux¢U,C E,; (E,~g-dimensional Eucli-
dian space).

e, is a p-dimensional random variable representing random disturbances
at stage k.

fu(x, up) 2, are known p-dimensional functions.

For computational convenience we define the last stage as the stage zero
so that, when we are at stage k there are k stages remaining until the end of
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the process. The control variable u, will be taken as a (measurable) function
of the presently known values of the state and control variables with u, ¢ U,.
The overall cost is defined as the sum of the individual costs, i. e.
1
(2) JX oty ooy Xy Upy vy Uy) "'k—\' r,,()Ck—,,llk),

where n is the total number of stages and r, are known (measurable) func-
tions. This includes the case oi final stage optimization where r(x;,, uz)=0
for k=mn,...,2.

In this stochastic system the state and control variables are, from relation
(1), random variables so that a reasonable criterion will be the minimization
oif the expected cost, 1. e.

1
(3) Vi Xn) =min E( 2 r(xX,—1, &) X,),
111”1 k=n
where the conditional expectation given x, is taken with respect to the joint
distribution of the random inputs e,,...,e,, and [u,] denotes the set of ad-
missible control sequences from stage & until the end of the process, i. e.
(] = {Wp> - - - uy) with u, ¢ U, for all r—4k, ..., 1.

Taking conditional expectation we have tacitly assumed that at the beginn-
ing of the process we know ., and then the optimal expected cost V), is a
function of x, and the total number of stages, i. e. V), V,(xn)

If at the beginning of the process the value of ., is not known but is a
random variable then we have to take unconditional expectation and the optimal
cost will be only a function of the total number of stages 7.

The essential difference between deterministic and stochastic control is
that in deterministic control, given x, we are able to know in advance the
exact values of x, and u, k- n,n—1,..., 1, whereas in stochastic control we
do not know the values of x,, u, until we reach stage & and then, apply the
optimal control based on the known information up to stage k. In other words,
the optimal trajectory in the first case is a function known inadvance, where-
as in the second case it is a stochastic sequence.

In what follows we examine first the case where at each stage we know
the values of the state variable and the coutrol variable up to that stage but
the random inputs are independent and then, we prove that the optimal cost
and the optimal control are functions of only one variable aud that to each
degree of dependence of the random inputs corresponds an additional variable.
We examine also the case where at stage k we know the values of the state
variable up to stage k£+r,r=1 and we prove that a delay of information of
r stages does not increase the dimensionality of the optimal control and the
optimal cost. Also some other useful results are proved concerning convex cost
functions in which case the optimal control is proved to be convex and the
optimal control continuous functions.

2. Independent and dependent inputs. In the case where at each stage,
say k, before applying control u, we know Xx,,..., x, and the controls u,, ..., dr+:

we applied up to stage &, then

(4) Uy Uy(Xny .-y Xps Bny ..., leiy) for all R=n, ..., 1
or equivalently

(5) Wy =Up(X,y ..., xp) for all k=n,..., 1
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Under these conditions we can wrile:
1

V(X - - ., Xp)— min Eik.l‘ (X U)Xy ooty X))
[um] =m

1
=min E (Fp(X,—1 Um)+ 2 re(Xp—q, Ug) Xnyo ooy Xm)
["m] k=m—1
1
=min E(Erm(Xm—1y Um) - E X (X, 1, 1) Xpooooy Xmey) Xnyoooy Xm)
(a1 k=m—1
m
1
= min E(rm(xmhl» um) + min E\ oy rA('\‘k LR Xnp ooy Xm 1) Xy eeey -\'m)
1

I"m] um_ll R—m—
=min EFm(Xm_1, Bm)+ Vo 1(Xny o ooy X)) Xy o ooy Xm),
[a,,]
i. e
(6) V(Xns -« - s Xm) = f}‘]in E(rm(Xm— m)+ Vm—i(Xny o .y Xm1) Xy e ooy Xm)
m

=UmXpfor all m—n,...,2 and
(7) Vi(Xny o« oy Xy) - min E(ry(xg, ) Xpy ..oy Xy).

From now on u, denotes the optimal control at stage m and z =/, (Xm u,).

2.1. Theorem. If the random disturbances are independent and the sy-
stem is determined by (1) and (2), then V(X ..., Xm) = Vulx, )0, (X0 .. .. Xm)
= u (x,) for all m=n,...,1.

Proof. From (1), (7) and the assumption of independence we have:

(8) Vilxy ...y X)) =min E(ry(Xg, U)) Xn, « -+ Xq)

min E(r(z,+ e, 4,) Xpy €4, .., €)=min E(r(z, e, a,)).
So
9) Vixp, ..., X)) minr(z, u,).

Therefore u, =u,(x,) and from (9) obtain Vi(x,, ..., X)) = 'r\,(zl’, u)) = Vi(x,). Now
proceed by induction. Assume V, (X, ..., Xm )= Vp ((Xpy) and u, _ (x,,
ceesXm_y) U, (Xm_,). Then from (1), (6) and the previous assumptions obtain
V(X -+ oy Xp) }mrll E(m(Xm_ 1y Bm) Ve 1((Xny oo o X)) Xy o ooy Xi)
u
m
min E(rm(Zm+ €m Um)+ Vi ((Xm ) Xny €y ooy €min)
(2]

M0 (7 (Zpr ) + EVim (X0 1)) DN (7 g2y ) + Vi—1(2m)),
(#,,] [#m]
where 2, =fu(Xm Um), hence u, —u (x,) and consequently Vp, (X, ..., Ym)
= Vo Xm), Q-_ E. D. X X .
So for independent disturbances and full information at each stage, the
optimal control and the optimal cost are functions only of the last known
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value of the state variable. This result was expected but here we have a rigo-
rous proof. The above result is also very desirable because the time and
space needed for tabulation of u#*(x,) and V,(x,) are smaller than if they were
functions of more than one variable. Below we prove that for each degree of
dependence of the random inputs we add one variable.

22.Theorem. If e, €,—y,...,e, form a Markov chain, and the system
is determined by (1) and (2), then u, and Vi can be expressed as functions
of two p-dimensional variables.

Proof. (i) From the assumptions above and (1), (8) we obtain V (x,, ...,
x,) minr/(z, 4, e,), where ¢, x,—z, Therefore u =u/(x,,e) u(x,2,) and
VX ..o, X)) (2, 1, e0) Vilx, e) Vi(x, 22). Now proceed by induction as
before. Assume u, | u, (Xp |, €), Vi i(Xn, ..., Xa—y)= Vi  (Xk_,, €x)- Then
from (1), (7) and the assumptions of the theorem obtain

Vk(xm tee xk) min E(rk(zk’ € uk)T vk' l(z/\'“.l € ek) Xny €ny o ooy €41y)
{”[‘,l
min (7k(2 g €0 )+ Vi (€xiy, 22))-
“‘kl
Therefore
(10) W, Uy(Xn €pr)) W Xn 2, )
and
(11) V(X ooy Xa)= V(X €)= V(X 2, ))

for k- n-1,...,1.For k- n we have u - u(X,), Vo Va(x,). Now from (10),
(11), obtain, u,  —u, (X, 1, 2,), Vi1 Va (x,—1, 2)), where z,—falx,, u,) is

a p-dimensional variable, then from (10), (11) we have
u,=u(xn 2, ) Vi=Vilxp 2, ) for kn—1,...,1,

(12) u u(xy, Voo Vy(x,) for k- n.

n

Hence u,, vx can be expressed as functions of two p-dimensional variables.
Q. E. D.
For computational purposes the forms (12) are preferred because we must
try to keep the number of variables, through which u,, Vi, are expressed, to

a minimum; then we should tabulate 2z, u,=u,(xx 2,,,) and Vi Vi(xy 2,,))

for all & n—1,..., L. ‘
2.1. Corollary. If the random disturbances form a Markov sequence
of order r, i. e. their joint distribution

Flex Xu€n ... €0p)) Fle, exir ..., ers1)
for some r -1, then
Uy Wy(Xpy €hity-v-s€ror)y Vi Vixwero...€x.r) for R—n—r,... 1,
Uy =Wy (Xpy €xily- - - €n)s V,=Vuxy €rity...,€x) for k n,...,n—ri1,

where ¢,=Xp o (X)) Xp1—2y k- n,..., 1
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Proof. The proof is similar to the previous one. Q. E. D.

If we want to save computational effort we must be prepared to increase
the total cost. One way of doing this is to find the suboptimal policy in which
the control u, is only a (measurable) function of x The increase in the opti-
mal cost will depend then on the form of the cost function and the joint dis-
tribution of the random inputs.
~ 3. Observations with a time lag. In this section we consider the case
where there is a time lag in information about the state variable, i. e. at stage
k we Kknow x,, ..., Xx4, for some integer r—1 for all 2= n—r,..., 1 and we
know only x, from the beginning of the process until stage » r. The control
sequence already applied up to stage % is considered known at stage k. Under
these conditions (4), (5), (6), (7) become

(13) w,=ug(Xn), R=n,...,n—r,
(14) uk;uk(x,,,...,xkﬂ),k ‘n—r,...,1,
(15) Via(x)=min E(ry(x;_, @)+ Va—i(xa) | Xn), R=n, ..., n—r-1,
l"k]
(lb) Vk(xm ceey xk+’) = min E(rk(xk—l’ ”k)‘f’ ‘/k-'l‘xm ey Xy r—1) Xny « o« Xy r).

l”kl
k-n—r,...,2

(17) vl(xm R ] xl«-r) -min E(rl(xm ul) Xny « ooy X1 +r)-

uy

3.1. Theorem. If the random disturbances e,,...,e, are independent,
the system is determined by (1), (2) and we have r-steps lag of ivformation
about the state variable, then the optimal control u, and the optimal cost V,,

can be expressed as functions of only one p-dimensional variable.
Proof. Relation (1) can be written as

(18) Xh—1=8MXhirs Ukiry .-, Un} €hir ..., €) for k-n r,..., 1
(19) Xy =8 Xns Um ... Ur; €y ... 8€) fOr R=n, ... ,n—r-t1i,
where the functions gx are easily derived from the relations

Xn—o = frn1(Xn_1y Un—1) +€n—y =fn (fr(Xn tp)+€, tn 1) -€0

G 1(Xns Upy Un 15 €4y €n )

(20) Xp o Su(Xpttn)+en— - —Eu(Xnilny .o, Uy €p oy €y)
for k=n—r—1,...,1 and
Xp—y Sfalxmuy)te€p— - G Xptrs Upy ooy Upirs €hy oo vy €niy)

for k=n-1,...,n r.
Hence (17) becomes

v](xm LI xl+l) min E(rl(xm ul) Ky v vy xl+r)'
uy

but x, g (Xy4r; Widr oo Ui Ergn oy 1) Hence

V= min }; (vy, Uy),
u,
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where v, -y, (V4,5 @ysp .., W) = E(r(&, #,) Xn €n...,€.,). Thereiore
u,=u,(y), V.- Vi(y,). Assume now that V, ; Vi _y(y,—;) and repeating the
same procedure as in the previous theorem we prove the desired result.

If the random inputs are dependent as in Corollary 2.1 then u, and V,
will depend on e€ri/ o, ..., €x.,.1 as well as on y,

In other words, we have to add one p-dimensional parameter for each
degree of dependence but the time lag in information on the state variable
does not increase the number of parameters through which u, and V, can be
expressed. »

4. Convex cost functions. In this section we study the important case.
where the cost functions are convex. Throughout this section assume that
u.cU, U,CE, k=n_...,1 and that U are convex sets for all k=n,..., 1,
in the y-dimensional Euclidean space £,

4.1 Lemma. If F(x,u) is a (strictly) convex function of the p+gq di-
mensional wvariable (x,u) and U is a convex set in E, then

Gix) minF(x, u)
uel
s (Strictly) convex in Xx.
Prooi. Given any two points v, and x, in £, we have for 0:- i 1,

Glix, +(1—2Ax,) min Fix,+ (1 —4)Xs, 4)
uelU

= F(ix, ~ (1 —A)x,, u*(ix, + (1 —2)x.))— Flix,+ (1 —A)x,, iu*(x,) +(1-—2A)u*(x,)),

where u*(x) is a minimizing value of F(x,u), and ().u*(x,)—‘-(l—).)u‘(xg))EUA
because U/ is convex. Now F(x, u) is convex in (x, u), hence

UOAx 4 (1 2)xy)=AF(xy, u*( )+ (1 —2)F(xq, u*(x,))

Amin Fx,, u) +(1—2)min F(x.,, u)- 2G(x,)+(1—2)G(x.).
u€U uelU

Q. E.D
42 Lemma. If G(x,u) is (strictly) convex in (x,u), e is a random wvari-:
able, and f(x,u) is linear in x, u, then G(x,u)  EG(f(x,u)+e, u) is (strictly)
convex in (x, u).
Proof.

G(ax, (1 A)xo, auy = (1 Auy)  E(G(f(hx, (1 —A)xg, duy+(1—2)u,)
e, i, (1 —uy))  E(GAf(xy, u)+ (1--2)f(xq, uy)+ e, Au,+(1—2i)u.,))
E(GQU f(xy, )+ )+ (1 — AW f(Xoy ) +e), ithy + (1~ D))
EGU(J(x, u) e uy) + (1 AU (xy,ug) e, un) AG(x,, uy) + (1 —2A)U(xg, 11y)
for all O A<,
Q. E. D.
4.1 Theorem. /f E 3

(1) At stave k we know x,, ..., .\,
(ii) e,, ..., e, are independent
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(iii) The functions ra(x,—,, u,) are convex functions of (X, u,) and fx(x,n)
linear in x,u for all k =n,...,1 then, the optimal cost V,(x) is convex for
all k=n,..., 1.

Proof.

E(r(fi(x,u) ey, 1) Xp € ..., )=Er (filx,uy)+e,u,)
=r(f,(x, w), uy)=ryx, u,)
and by lemmas 4.1 and 4.2 the functions
(X, uy) and V,(x)- .:neig;:(.t, u,)
are convex. Now assume that V), ,(x)is convex and set

Falx, ug)  E(r(falx, ug)+ ex ue) 4V, (felx, u,)+ ex)

;k(fk(x' w;)e) 1+ Vk—n(fk(-\'v u)).

Fach term in the right hand side is convex by lemma 4.2, then Fi(x,u,) is
convex in (x, u,) as the sum of two convex functions and by lemma 4.1

Vi(x)= min F_(x, uz)
ap €Uy

is convex in x. So V,(x) is convex for all & n.,,,.1. Q. E. D.
If at stage £ we have r-step lag of information, then similarly we prove
that V, is a convex function of one p-dimensional variable.
4.1 Corollary. If
(i) The assumptions of theorem 4.1 hold
(if) r(xs ) is strictly convex in (x,u).

Then
(1) Vi is strictly convex
(ii) the optimal control u, is continuous for all k=n, ..., 1.

Proof. (i) From lemmas 4.1, 42 we conclude that V; is strictly convex
and consequently V, is strictly convex for all & n,..., 1.

Notice here that r,(x,u), k- n,...,2 need not be strictly convex.
(ii) The function

Fu(x, uy) E(ra(falx, uy) €., ux)+ Vi a(fulx, uy)--e,))

is strictly convex from theorem 4.1, hence to every x¢ E, there corresponds
exactly one u,¢U,, such that V(x)=F,(x,u,(x)). Now suppose that there

exists a sequence x; ¢ E, with x, —x for some x¢E, as i—> oo such that
u* u*(x;)do not au*(x).W’e can choose then a subsequence of #;, which converges.

Let u, "‘("",) wu U,, then (x,‘. u,l) -(x, 7). But the convex functions are
continuous, hence

Vi(x, )= FaXs, 7)) = Fa(x,0), VX, ) Vilx) = Fi(x, u(x)).
Therefore V(x) F(x, u)=Fux, ux(x)). From the uniqueness of u*(x) we con-
clude that u u*x). We proved that every convergent subsequence of u*(x;)
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converges to u*(x), which implies that u*(x;) — u*(x) for every x;, — x, i. e. it
is continuous.
Q. E. D.

The above corollary implies that even if r/(x, u) is not strictly convex, we
can change r,(x, u) slightly in the parts where it is not strictly convex to
obtain a continuous optimal control or that if ry(x, u) is not strictly convex
then although u,(x) might not be single valued, we can always choose u(x)

such that u,(x) is continuous.
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