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ASYMPTOTIC DISTRIBUTION OF THE ZEROS OF POWER SERIES
W. GAWRONSKI

In this paper we consider power series of the type f(z)=2A(n%z", a_>0, where A is an
entire function at most of the zero type of order 1/a. Explicit representations of the analytic
extension of f onto the cut plane c*={z if Re z=1, then Im 230} are derived. The main
results consist in the asymptotic distribution of the zeros of f near z=1 if A are genera-
lized hypergeometric fuuctions. In particular it is shown that the zeros are distributed on cer-
tain curves and their asymptotic number is established.

1. In this paper we investigate the behaviour of the zeros near z=1 of
power series

(1) f(z)=2B(n)z", limsup B(n)n=1,
0 n—oo

which admit unique analytic continuation into the set

(2) C*={z|Rez<1 if Im z2=0|.

The functions
(3) fd2) = 2=° (n+1y2", x>0,

are of the from (1) and possess exactly & simple zeros (kR<x=—k+1), which
are negative (see [8]). In continuation of this work we ask for the zeros of
such power series (1) whose functions of coefficients B(z) increase more ra-

pidly than z# (for example B(2)= eV or B(z)=cosh |z). On the one hand, if the
assumptions for B(z) are not too special, we only may expect asymptotic state-
ments about the distribution of the zeros. On the other hand, in order to
get the analytic extension of f(z), we need certain conditions on growth and
“smoothness” of B(z). Hence we consider power series of the form

(4) f(z):§ An*)z", a>0,

where A(z) is an entire function at most of the zero type of order l/a. If

A(2) - 20°b,2%, fu(z) - X7 n=z" for x>0 and fo(2)=1/(1—2), then we have

(5) lim = by Lk
and :
(6) f(z)= : b,/ x(2)
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14 W. GAWRONSKI

for |2'<<1. Moreover (6) is the analytic extension of f(z) onto C*, since the

series converges uniformly on every compact subset K of C* For such a K

put  =inf{ 1—=2f z¢ K, 0=£=1}, which is positive by the assumption on K.
We have for z==1 ([10]) that

(7) fa(2)= Pe(2)/(1 —2)1, Pyz)=1; k=0,1,2,...,

where P,(z) denotes a polynomial of degree 2 whose coefficients are positive
and- P,(1)= k!. The equation (7) is an immediate consequence of the recurrence
relation fp.(2)=zf,(2). Since

_ 1} 1\6-1 )
n—e - i‘ie)éf (]og —'—) " dt, neN, -0,
we have for k<»<k+1 ([8]) that

N 1 R—x
/”‘Z) F(k';l—l:;il_)f(log%) ka»](Zt)#
and so |fux(z) | I'(ak +2) (R**+14+1)6°*+2 z¢ K. Now condition (5) implies the
analyticity of f(z) in K. The only singular point other than infinity is z2=11,
which is a possible accumulation point of zeros. Hencetorth the following
representation (Lindelof [6], Wirtinger [12]), valid in C* -0}, is im-
portant

1

- — — ’ ,x:»U
wo(2nim +log (1/2))* !

(8) fue)=Ta+1) X

and fo(z)=1/(1—2)=2""'4+ I 1/(2aim—logz), where I means symmetrical
summation. These identities follow by application of Poisson’s summation for-
mula (e. g. Miesner, Wirsing [7]). Hence we have in C* {0} (see (6))

1

)'ak+l ’

- b‘) 4 :0 ‘ < _
9) f(z)= 2 ;.Zobk’(ak+ 1)}0‘, (2xim+log (1/z
from which follows that f(z) can be continued analytically across the slit along
the real axis for Rez>1, where for the new branches besides 1 and o z-=0
is a singular point too [12]. In (8) the power exp (—(a+1)loglog(1/z)) is de-
fined by the principle branch of loglog(1l/z) (i. e. loglog(1/z) is real for
0<z<1). Then we get the values of the terms of the sum (8) by the value
of (log(1/z))—+—', defined above, if we surround the boundary of C* m|
times in the positive or negative sense, respectively [12|. In view of (9) we
have

oo 1
- (¢ . —_— - -
(10) f(z)'.':ub"l (ke + l)“o““lz»ukﬂ +H(z),

where F(z) denotes a holomorphic function in the neighbourhood of z=1.
Now formula (10) yields the behaviour of zeros in this region. For z— 1 the
growth of f(z) is determined by the asymptotic behaviour of the series. There-
fore we next derive asympiotic developements of f(2)(z 1) for a certain
class of functions of coeificients A(z) (special cases have been treated by
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M. A. Evgraiov [2]). From these expansions we can conclude necessary
conditions for the location of an infinite number of zeros; more precisely,
these zeros lie in certain regions and on curves asymptotically. Furthermore
the asymptotic series of f(z) yields sufficient conditions for the existence of
an infinite number of zeros in the neighbourhood of z=1 and asymptotic ex-
pansions of the densities of the zeéros.

Remark 1. In the case a=1 a theorem of Wigert [1] implies f(z)
=0(z/(1 —2))in C-—{1}, where G is an entire function. If A(z) is of type o of
order g, 0<<p<1, formula (10) gives a simple proof of the well known con-
nection between g, o, the order g5 and type o5 of G (e. g. [1;5]); because of
the asymptotic equivalence 1/log(1/2)~z/(1—z),z— 1, and the relation bet-
ween order, type and Taylor coefficients of entire functions we have

T klogk o
(11) @C,_lugsuplog(l by RN = T3’
(12) o —,--~(hmsupk”’a( ba|k1)E)2a=(1 —g)ge1—elgl/(1—0),

k—o

2. In order to get asymptotic expansions for f(z), additionally we have to
specialize the functions of coefficients A(z). Ii we choose generalized hyper-
geometric functions for A(z), whose asymptotic behaviour has been investi-

gated in detail by E. M. Wright [13; 14], we cover an extended class of
power series of the form (4). Put

(13) f(Z)— qu(an“)Z"
where

. S ek
(14) F(Iq(w)=kiow.k(_!)wk

p q

and ¢(t)— 11 D(apt+8,) 1l Dot +u,) with By i, 0€C,0-+0(—n< argo<a),
r=1 r=1

a, a5, 0,>0 and

q P
(15) 1+ 2 ¢,— 2 a,—a>0.
r=1 r==1

Suppose, further, that the poles of ¢(f) are all different from £=0, 1, 2,.

i@
Thus, f(z) is of the form (4) with b,=¢(R)o*/k!. Hence (see (9),(10)) we hav
in C* {0}

_¢(0) S w(k)o" 1
f)=%"+ R I'(a ku)-“(b‘m“o“mrm
or
T k) (ak+1) o
(16) f@= = " aa Tt H(z),

where /1(z) is holomorphic in z-1 with
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%0 0
H(z)= 29 wk)o* 1 N
17) (@) 2 +p§o k! Flak+1) »Ego(?:u’m+log (1/z))2%+!
and
(18) H@) = c=o(0)+ £ 20 o —ar), 21,

(¢ denotes the g-function of Riemann.)
E. g. (13) is of the following forms for the following values of parame-

ters: for 6=1, 6=1/2, p(f)=1 we have f(z)=2g5 eV 2" for o =a =1, @)
=0t +1)/I'(2t+1) we have f(z)=ZX5 coshynz"; for 6 = —1,a = 2/5, ¢(¢)
=I(+1)/I'(2t+1) we have f(z)=23; cosn!/5z",

Putting s -log(1/z) (according to the choice of the principle branch of
loglog(1/z) we have to choose for log(l/z) the principle branch too, i. e.
log(1/z) is real for real positive z), the asymptotic behaviour of f(z) for z— 1
is determined by the asymptotic properties of

(19) g(s) = % kio M%ﬂ (a/s%)*
near s- 0. Let be the following notations
/P+1 " q ‘_g p+1 g, 1
ap1=a, Ppr1 -1, 4 —( IIa/)([I o, ’), 9= X B,—2 ,,¢,+2—(q—p~l),
\r=1 r=1 r=1 r=1
q p+1
y=1+ 2o, X a,
r=1 r=1
q P ptl Ry
(20) Ao__—(zm(ptl-q)"zyl/z_.,( 11 o2 ,)( ol “>,
r=1 r=1

w-o/s, Z=y(R|®@ )rexp (i(argw)/y), Zs —|Z exp(i(arg(—w)+x)/y)
and for argy =ax:
(21) (y) - yoer(Ag+O(y 1)), Voo oo,

p+1 -[Re y\"—Nq’]» i (> +8, N+

(22) J(y)= X = P,y % D N

r=1 y=0 .
(23) P, = (""" Im) res I'(—t)I" (at+ 1)g(t) y'.
t  —(+p,)/ a,

(m —order of the pole &= —(v+8,)/a,).

If the point ¢ (»-+8,)/a, is not a pole of pE)I"(aft+1), we put P,, 0.
It m>1, P,, is a polynomial in log y of degree m 1. If m=1, then P,, is
independent of log y.

In the sequel let ¢ be real because of clearness of the formulas. Results
of E M. Wright [13] on asymptotic expansions of ,G(w) yield the fol-
lowing - -
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Lemma. Let be N¢N, ¢ 0>0. If condition (15) is satisfied, then

* @lk)(ak
p+le(w>=%W -

has the following properties (w— oo):
i) If y=2, then p,Gyw)=[ZD)+-1(Z_)+J(—w), arg(—w)|=x.
i) If 0<y<2,
J—w) , arg(—w)|=7% (2—y)—e
p+1 0 (@)= g ’
2
Remark 2. (see [13, 14]). We observe that Re Z_—Re Z,=2|Z| X
sin (arg (—w)/y) sin (x/y) and so when y >1.
Z=2Z, Re Z_<Re Z, for —a< arg (—w)<0,
Z=Z_rRe Zy <Re Z_ for 0< arg(—w)=n,
and Re Z, =Re Z_ for arg (—w)=0.

I(Z2)+J(—w). |arg w |=min (n, i:zy—es), larg (—w) =a.

Part i) of the lemma implies the exponential “expansion” ,,,G(w)=/(Z) for
arg w |=a—e and y>2, since /(Zy)=0(/(Z=)) for Re Z.<Re Z=. In the case
y=2 the exponential terms /(Z,) are bounded on the “critical” line arg (—w)
=0, and so the growth on arg (—w)=0 is determined by the “algebraic ex-
pansion” J too.

Since s=log(1/z) maps the neighbourhood of z=1 ([2—1|<d<1) one to
one onto a neighbourhood of s=0, in what follows it is sufficient to state the
results in terms of s. Wright’s lemma yields asymptotic expansions of g(s)
= p+,Gy(0/s%)/s inside sectors with an angle 2a/a at the origin (in the s-plane).
Hence, since s,g(s,)=sg(s), where s,=sexp(2ni/a), we can obtain asymptotic
expansions for g(s) at s=0 in every branch on its Riemann surface.

3. This section is devoted to our main results. The developments given
by Wright’s lemma permit to decide in principle whether the number of zeros
is infinite and to determine their location and density asymptotically. Ob-
viously zeros can accumulate in such regions only, where a superposition of
exponential and algebraic expansions happens. For the sake of clearness and
simplicity in stating the results we choose restrictions concerning some para-
meters. So we only deal with the case

(24) J(—o/[s*)/s=0(1) (s—0),
which is characteristic for applications. (24) is equivalent to the condition that
o(f) has n> pole with real part greater than or equal to — 1/a. In

the cases, where J(—o/s*)~K s%(& arbitrarily complex), we can get similar
results. For the location of the zeros we have the following

Theorem 1. Define i=ad/y+1; suppose that f(e—) has infinitely
many zeros in the neighbourhood of s—0 and that (24) is satisfied.

i) If y>2, then all except a finite number of zeros lie in the region

(25) |arg (—o/s9)| < K, s*fo¥" (s —0)
where K, is some positive constant.
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ity If y=—2, then all except a finite number of zeros lie in the region
I Ks s¢/c|V?log a/s*  for <0,
K, s \? for 0,
K‘ | s¢/a +(1/2) for =0,
as s — 0, where K; denote positive constants and &--min (1/2, 1/a-+§4/2).
iii) /f 0<<y<<2 and c+-0, then all except a finite number of zeros lie
on the curves
(27) st=t"(rFi(sign2) C, rev+'log r FiCor**) 40 (r7+') (r—0),
t-—exp(i(arg o+ ny/2)/a) C; ¢ R C, >0
+1 for i>0,
sign A= 0 for i=0,
—1 for i<0.

Remark 3. The assumption ¢+0 is necessary, because the location of
the zeros (27) follows from a comparison of the exponential expansion with
the limit of the holomorphic part H(z) for z— 1 (see (16)-—(18)). The curves
(27) are similar to parabolas (see the first example of part 4).

Proof of theorem 1. i) Part i) of the lemma implies that

’ 1 )
(28) f(e)= »" (he)”" (Ax(w)As+Ole™""))+ A-(w)(Ao+ Ole™""))),
where we write w- a/s%, @w e’ and
A (w)—exp (i(p+a)d/y+ (ko) e/@EDT).
Note that in this case the term F/(z) can be absorbed in the “0O” terms and
hence may be omitted. Since there are at most a finite number of zerosin arg w
<7 ¢, we may suppose that || does not exceed some suitable constant, n/

say. Moreover, it is enough, by symmetry, to consider the case in which =0
Thus, a necessary condition for a zero is that A, (w)/A_(w) =1+ O(e~"7). But

A (w)/A_(w) | =exp( 2y(he)"” sin (n/y) sin (¢/r))==1.

Thus, there is some constant K, such that all zeros for which |w |is sufficient-
ly large satisfy

vr

(26) érg( —0/8") <

re Jre

exp (—2y(ho)"” sin (x/7) sin(¢/7)) 1 —Ke .

Hence K, o' sin (¢/y)— —log (1— K0~ '”), where K, is some positive constant.
Since ¢/y=n/2y we get with some positive constant K that ¢ Ko ?7. Omit-
ting now the assumption ¢ 0 we have finished the proof of part i).

ii) Again part i) of the lemma implies that (use the same notations as
above)

fle=) L 27 (hoy® (A, (w)(Ay+0(e~'?))+ A_(w) (Ag+ Oe™"?)) ) +e-+o(1).

Since now A,(w) and A (w) are both bounded on the critical line, we have
to take account of the contribution of the holomorphic part //(z). For the
same reason as in the proof in the preceeding part we may restrict our atten-
tion to the case in which 0<@<x/2. Then A (w) is bounded by 1. In what
follows, we use K to denote positive constants which may be different at each
occurrence. A necessary condition for any zero is that
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(29) |A_(@) (A+ 0@ ) =| A(w) (Ao+O0(e'?))+O(e V=)
Further we have from the definition of A.(w) that
(30) | As(w) | =exp(F2(ko)" ?sin (¢/2)).

First suppose that §¢<0. Since | Ay(w)|=1, the first term on the right of (29)
may be absorbed in the second one. Hence we obtain, by (30),

exp (2(he)'? sin (¢/2)) =K ¢,
and thus 2(ko)"?sin (¢/2)<K—é;loge, which implies that
{ K¢ loge for £<0,
=

Ko1? for £=0.
Now suppose that &>, that is 1/a+9/2>0. If
(31) 2(he)'?sin (p/2)< K,
then, since for bounded x, e*=1+0,x, e¥=1—6,x, where ©; lie between two
positive constants, it follows from (29) that
2(hg)'?sin (¢/2)=0O(e~" ¥ )+ O(¢="?)= O(¢™*)
and thus
(32) o= Kot
If (31) is false, then for sufficiently large o
| A—(@) (As+O0(e7'?))—| A(w) | (A, + O(e™?))

is at least equal to a positive constant which implies that (29) cannot hold if
o is sufficiently large. Hence there are at most finitely many zeros for which
(31) is false so that all but at most a finite number of zeros satisfy (32). Omit-
ting now the assumption ¢ =0 the proof is complete.

iii) Now suppose 0<y<2. Then part ii) of the lemma implies that all
except a finite number of zeros lie in such regions in which

fle*)=U(Z)+I(—o/s))/s+H (™)
and (see (24))

(33) £ (e=)=By/s~ exp (By(o/s*)") (1+0(1) )+ +0(1)
hold, where B,= A, y? (ko)?”, B,=yh'”, and
(34) arg (0/s%) | < min (n, -g-ny—e) .

In view of the remark at the end of section 2 we choose arg w=arg o—
a arg s. Writing s=re' it follows that

l-%Jexp(B, % cos (M))—»]cl (r—0)
and so
cos ((argo—a ¢(r))/y) — +0, i<0
cos((argo—aq(r))/y) - —0, i>0
cos((argo—aq(r))/y) — 0, i=0.
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Thus it follows, by (34), if i-' 0, that

(35) (arg o aq(r)/y - +(a/2-}¢(r)sign i),
where ¢(r) - +0 as r -~ 0. Now we conclude (note that cos ((argo—aqy(r))/y)
(sign i) sine(n, By, By 0)
Y V44
(36) — B, ‘“,‘” (sign 2)sine(r)=1log r--log i';' +o(1),
r 0!
: I al? : lOg:C,B( a/ L,
sin«(r) = LT re” log r —(sign 1) B:];T‘% re7o(rv?),

e(r) - —Crevlogr—Cori*+o(rr)
and

s ren =rexp(iarg o Ty /5 +e(r) sign 1))/a)
(2

v rexp | i 1: s(r)signl)s T r(l Te(r)i “ sign 4 O(a‘-’(r)))
v (r+i(sign2) Cyrer+tlog ri Corev+1 )+ o(rer 1).

In the case i=0 (35) has to be replaced by (arge - ag(r))y  £(x/2+4&(r)),
where #r) 0, as r -0, and then the following computations are similar.

Obviously sufficient conditions for the existence of an infinite number of
zeros in the ranges (25) and (26) depend on special constellations of the pa-
rameters involved. We restrict our attention to the curves (27). Denoting by
N “(r) the number of zeros on (27), whose modulus is greater than or equal
to r we prove the following

Theorem 2. Suppose that (24) is satisfied. If 0<y<2 and c==0, then
there is an infinite number of zeros on the curves (27) and

1/y
N(r) = Y‘f'r" L O(logr) (r—0).

Proof. Withthe notations above we have from (33) for some B, -0 and
real [’ that f(e—*)=B,w" exp|Byw'”|(1+o0(l))+c+o(l). Putting (- Wl we
get (I=1y)

(37) fles)=F(5)=B, ¢l eBs(1 o(1)+c+o(l), (¢— ),

where we may assume that the branches of the logarithms are chosen suchy that
- and the functions involved in the o-terms are holomorphic in the uppe and
lower half-plane respectively. (Actually we can get from (17), (18) and (21)
that the o-terms can be replaced by O(; ') and O(;~7+).) Now we have to
investigate the zeros of F(z) in the neighbourhood of the rays arg (= +n/2
(see (35)). More precisely, if we take account of (35), (36) and the following
lines of the proof of theorem 1, it follows that the corresponding zeros of
F(r) are distributed on the curves ({ - Re™)

(38) t Li(R+i(sign DK log R+ Ky)+o(1), (R ),

where K are constants and K,>0. Without loss of generality we are dealing
with the positive sign in (38). We denote by n(o) the number of zeros of F({)
on the line *+ whose modulus is less than or equal to . Following Polya
(|9], p. 287) we consider the region (, bounded by the following curves
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m
|

Il
fre Trer
+
~
)

-+

C,— inl&=klogn, 1-=n=o0},
Cy={1¢ klogo=¢& kloge |,
Cy—{r=E&+in|i— —klogn, o=n=1},

where % is a sufficiently large positive constant. Further suppose that ~(¢) 0
for ;¢ C,. Now we shall see that an application of the argument principle to
G, implies that

(39) n(e) - f,: e+ 0 (loge), (e—> ).

Since, by definition, 7(0) is non-decreasing, (39) will follow if we prove it for
a sequence o, of values of o increasing to infinity such that oy, —en—O(1)
as V- .. We may therefore suppose that ¢ satisfies

—~—
v e

"

v

(40) arg B' + L 41+ Bo—arg c+ 2N,
() g

where N is an integer. Since arg [ tends to /2 uniformly on C, as ¢ tends
to infinity, it then follows from (40) and (37) that arg F(;) — arg ¢ uniformly
on C, as o — occo. Hence, since ¢ +-0, the contribution of C, given by the ar-
gument principle is bounded. Clearly, by (37), the contributions of C, ard C;
give Byo-+ O (log 0), which implies (39). By construction, there are no zeros on
C, and C; for n -7, and so we can distort the parts of C; and C; for 5 <,
such that the finitely many zeros of F(;) with 1- Im <3, are not located
on C, and C,. Since these manipulations do not affect (39), the proof is com-
plete, if we remind the definitions of w and .
4. This section is devoted to applications. Consider the function f(2)
Yy coshyn z" (6=a y=1, @(t)= I'(¢+1)/I" (2t +1)). We have from (18) that
(for formulas concerning the Riemann Z-function see for example [11, pp. 19, 20])

LNk 1 F-20) 1 3 (=Dee 1 T e 2 (28)!
c=1+2Gomr oY @rmgr =2 TraRae—y 2 T3 D o gy 0

where the absolute values of the members of the latter series form a strictly
monotone decreasing sequence. Hence ¢>1/2—b6,/4 = 11,24. Since ()
-I'(t +1)/ (2t +1) is an entire function, (24) is satisfied. Now we get from
the theorems 1 and 2 that the infinitely many zeros lie on the lines

zt=1+ir—6r2log r+Lrr+o(r?), r—0, L real,

with n(ry N+t(r)+N"(r)=1/4ar+O('log r ), where n(r) denotes the number of
zeros in {z| z—1|=r}. The existence of an infinite number of zeros _ of this
function can also be proved by the following argument.) Since cosh Jz is an
entire function of type 1 of order 1/2, remark 1 yields /(2= G(z/(1 —2)), where
G is an entire function of order 1. If we assume that f(2) only has a finite num-
ber of zeros, Hadamard's factorization theorem implies f(2)--P(z/(1 - 2))exp
[Kz/(1—-2)], where P denotes a polynomial. But this is a contradiction to the
expansion f(2)~{2 'yJa exp [1/4 log (1/z)]}/(log (1/2)*?, (0<z-->1-—0), which
follows from the lemma and (33). In the neighbourhood of z -~ the zeros
cannot accumulate, for @w  —1 is a regular point of G(w).

The latter example shows that for some power series we may conclude
sufficient conditions for the existence of infinitely many zeros from the lemma
more simply than from theorem 2. If « 1, then U, (0z) is an entire function of
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mean type of order 1/(1+y); remark 1 implies f(2)=ZX ,G, (on) z" possesses

an analytic continuation into C—{1} and f(2)=G(z/(1—z)), where G denotes

an entire function of mean type of order 1/y. In view of (33) we have for
- . ~ By S BV i -

argo=arg log(1/2):f(2) oz (177 exp(B,( long)) )(z — 1). Considera

tions, analogous to the example above, yield the following general result:
Theorem 3. Let be 1/y¢N or AENU{O0}, then

f(2)=1,0, (om) 2

has infinitely many zeros.
Another method for investigating the behaviour of the zeros of functions

of the type (13) is illustrated by the following example. Using the represen-
tation (4]

—aj, @ 1 n a? dt
e _Z’T’nb“ P (4 logt) t (log (1/8)*? (a>0)
as Hausdorif-moment sequence,
f@=S ez (o=—aa=1/2, ¢(t)=1)
admits unique analytic continuation into C*, given by
a ! a? dt
/@ —@,Of 1=z °*P (4 logt) t (log (1/2))*?

Because
a ! a2 dz
g()=5; f exp (4 Tog v ):(log am’?

is monotone (£=0) and g (1)>g(0), f(2)==0 in C*isee Peyerimhoff [8]).
In order to prove the existence of infinitely many zeros of power series
f(z2)=ZXy B(n) 2" (B(z) is an entire function of mean type of order a, 0 <a<l),

there is another method, which is based on certain arithmetical properties of
B(n) (see (3], for example f(z)=ZXg cosh yn 2z7).

Remark 4. i) In the case f(2)=ZIy e 2" (0<a<l, o(t)=1) (33) yields
the exponential expansion

f(@)~ (log(l/ )yl exp (1 —a)a?i=a) ¢'(1=a) / (log (1/2))¥(1-=),

(arg o — o > (1—a)+e)/asarglog (1/2)<(argo+ o 5 (1—a)—eé) / qa,

which agrees with (11), (12).
ii) Our statements may be extented to power series of the form

SA(mne 2 (¢>0) and T A(neyne (log ny 2 (v¢N)

(differentiation with respect to o).
The aathor acknowledges valuable conversations held with Professor

A. Peyerimhoff.
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