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SOME TRANSFORMATIONS OF RENEWAL PROCESSES
HERMANN DEBES, ULRICH ZAHLE

This note deals with homogeneous transformations of stationary remewal point processes
on the real axis. Points will be translated successive. The translation of a single point depends
on the distance to and the translation of its “foregoer’”. There are given wide classes of trans-
formations which left the Poisson process invariant. Some characterizations of the Poisson process
and of other renewal processes are derived. M/(G l-systems with service tfinish if a new call
arrives and with service time dependent on the previous idle time are studied. For such sys-
tems necessary and sufficient conditions for the output to be Poissonian were found.

0. Introduction. Let V,, X, X,, ... be independent real random variables,
X;, X, ... being identically distributed according to a common probability dis-
tribution 2. Let K be a stochastic kernel from R? into R. Let Y, Y., ... be
random variables such that ¥; given X, ¥, ,,...; X},Y, has distribution K (X, Yi—y, )-
Suppose that there is a unique stationary initial distribution Q for the Markov
process Y, Y, Y. ... . Let Y, be distributed according to Q. The stationary se-
quence of random variables Z;— X;+ VY, —VY; 4, i-1,2,3,... may be viewed
as a transformation of the sequence X,, X, ... . Call the sequence X, X, ...
(or the distribution P) K-invariant if Z,, Z,, ... are independent random vari-
ables, indentically distributed according to P.

If X;, Z, are nonnegative random variables with positive and finite expec-
tations the above procedure describes a class of transformations of stationary
renewal processes into stationary point processes. The distances between con-
secutive points before and after the transformation are X; and Z, respectively,
the Y; are the translations of the points. This is a type of homogeneous trans-
lation without overtaking.

In section 2 we give the construction of the transformation and some
sufficient conditions for P to be K-invariant.

In sections 3 and 4 we investigate for some interesting classes of kernels
the structure of K-invariant distributions.

In particular, Theorems 2 and 4 characterize the Gamma-distribution. Theo-
rem 5> gives a wide class of transformations under which the Poisson process
is invariant.

Section 5 deals with input-output-transformations of a single server system
with service-finish if a new call arrives and idle time dependent service times.

Let us point out two special results. Let K be the kernel which describes
the input-output-transtormation of a single server service system with expo-
nential distributed service times and service-finish if a new call arrives. Then
P is K-invariant iff P is an Exponential distribution (Theorem 1).

Consider the following transformation. Points move in one direction only,
to the left say, the “new” position of a point is equidistributed in the interval
which is constituted by the “old” position of this point and the “new” position
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40 H. DEBES. 7. ZAHLE

of its left neighbour. The Poisson processes are the only stationary renewal
processes invariant under this transformation (Corollary 3 of Theorem 4).

Some of these transformations are applicable in queueing theory.

1. Notations. Let [M, 9] be a measurable space. By [M", M"], [M=, M=)
we denote the product spaces M'=X7?_M, M= X7 M, Mw:x;_wM,
M= =X M. For PePgy, (the set of probability distributions on [M, M|) P~
P= denote the product probabilities X2 P, X7 P, on [M*, M"] and
[M=, Mm=] respectively.

Let [R, 2], [R+, 2+) [R_, 2 | P,P.,P_ be the real axis and the subsets
[0, ), (—<o, O] equipped with the o-algebras of Borel subsets and the sets
of probability distributions on these spaces respectively.

Denote by [,/ 1,14 IT;,, 3, the Lebesgue measure on R, R, R_, the
equidistribution on the Borel set 4, the exponential distribution with parameter i
and the Dirac measure at the point &, respectively.

Let F(2!) be the set of (WM, £,) — measurable bounded functions. x4 de-
notes the indicator function of the set A¢ ).

Let K(M,, M,] be the set of stochastic kernels from [M,, Mi,] into [M,, M),
i. e. the set of mappings K defined on M, <M, such that K (-, A)¢F(M,)
for all A€M, and l('(rr1,-)€P¢m_2 for all me M,. If not otherwise specified the

domain of integration will be the real axis.

2. The basic model. Definition 1. Take K¢ K(R? Q). Let PcP,(or P=)
be called K-transformable if there is one and only one Q- P such that for
all f¢F(Q) '

(1) fQ(dyo) _{P(dxx)f K(x,, Yo, ay1) f(¥,)- { Q(‘Iy!)f(y1)-

If P is K-transformable, by the extension theorem of Kolmogorov there
is a unique probability distribution Wp x on [(R?)>, (£2)~] with

(2) [ We.k(@x, yDh(y: 1 xi, v))
(Réyeo

- [ Qdy:_,) [P(dx,) [ K(x;, v @V (V- Xiy Vi)

for all £¢F(2%) and all integers i Now consider the mapping L, (L((x, y)))
=Xi+Vi—Yi  i= ... 1,0,1,..., and denote by Zpx= Wpxrol™! the in-
duced probability distribution on [R=, £=].

Definition 2. If P~ (or P) is K-transformable we call Zpx the
K-transformation of P> (or P). Further we say that P~ (or P) is K-inva-
riant if Zp_[( P=.

Remarks. a. In fact (1) means that Q, respectively Q <P, are station-
ary initial distributions for the Markov processes V,, ¥, V5, ... and [X,, Y, 1,
[X5 Y3), ... mentioned in the introduction. Then Wpyx is the distribution of
the corresponding two-sided stationary Markov process ... [X ,, Y_,], [X,, V_)],
[XI’ Yo]’ [X'h Yl]’ s

b. If PePy, [xPdx)<oo and K(x,y,[y—x, +co))=1forall x¢Ry, yeR,
it is clear that Zpx (R7)=1. Therefore, P~ and Zpx can be interpreted as the
Palm distributions of stationary point processes. The above construction gives
then a homogeneous transformation of stationary renewal processes into station-
ary point processes (see [3; 4; 6]).
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In this note however we will use such formulations as “I7, is K-invariant”
instead of “the stationary Poisson point process with intensity i is invariant
under the homogeneous transformation induced by the kernel K”.

Now we give some conditions which guarantee that P is K-invariant. .

Definition 3. Assume that P is K-transformable. We say that P
satisfies condition 1, (respectively 1,) with respect to K if for all f,g¢F (®),
we have

(3) [ Qd vo) [ P(dx,) [ K(xy, Yo av1)&( Y1) f(X1+y1—30)
= [ Q(dyo)g(yo) | Pldxy) f (x,)

respectively
(4) [ Qdyo) [ P(dx,) [ K(xy, Yor AV, Yo X1s V1)

= f Q(d)’o)fp(dx1) [-K (X} Yo dy ) h( Y1, X1+ 31— Yo Yo)»
for all h¢F (L% (thereby Q is as in Definition 1).

To be short we will say “P satisfies I, —K (or [,—K)".

Remark. Formula (3) means that Z, =X, +Y,—Y, and Y, are indepen-
dent and distributed according to P and Q respectively. Equation (4) says that
[Y,. X, Y] and [Y, Z,, ¥,] have the same distributions (cp. [6]). k

Proposition 1. a. If P satisfies l—K then P satisfies |,—K.

] b. If P satisfies 1,—K then P is K-invariant.

Proof. Let 7, g¢ F(Q) define k¢ F(R) by A(v,, X, 1) =8(3:) f (X1 +y,—Yo)
and use (4). Then (3) follows at once.

To prove b. assume that P satisfies I, —K. Let f,, fo, ..., f, ¢ F(2). By the
definition of Zp x and equation (2) we have
I Zp.kdz)[1(2) - - . ful2a) = { W k(d(X, Y)) f1(X+Y1 Vo) - - - fa(XatVa—Yn_))

R>® (R%)>

[ QUdy,) [P(dx))[K (%1, Yor d¥y) f1(%1+31 - 30) [PldXq)
Xews fp(dxn)fK(xm Y 1s8Yn) [(Xp+Yn —Yn—1)-
Now define g¢ F(2) by
g(y) = [P(dx,)[K (X3, ¥1, AYs) fol x5+ Yo —y1) [P(dX3) - . .
fp(dxn)fK (xm yn_lixdyn)fn(xn‘*'yn —yn—-l)
and use (3). We get

[ Zrk(d2)f\(2)) .. falz,) = [ Q(Ayo)&( y) - [P(dx,) /1(X1)-
e

Repeating this argument and using that Zp x is shift-invariant we get Zp k=P~
and b. is proved.

3. C-motions. In this section we consider conditional independent motions
of points in one direction without overtaking (C-motions). Roughly speaking
the points move independently from each other in one direction to the “leit”
say, the translation law of a single point depends only on the distance to its
left neighbour before the translation. To be more precise let

C{CecK(R:, 2 ):C(x,[—x,0]=1 for all xeR, }.
For each C¢C define Ko¢ K(R2, &) by Ko(x, y,-)=C(x,-).



492 H. DEBES, U. ZAHLE

Proposition 2. For all P¢ P, the following statements hold.
a. For each C¢C, P is Kq-transformable.
b. P is Ke-invariant iff for all f, g¢F ()

(%) TP(dx)[Clxy, dy) f (x,+y)gl yy)
IPdx)[Clxy, dy) [ (x,+yy). [ Pldx,)[Clx,, dy,)g(y,)-
Proof. It is clear that we have for all f¢F (2)
TP(dx ) JKc(xy, Yo, dy) [ () [P(dx)[Clx,, dy,)f ().
Therefore (1) is fulfilled iff [Q(dy)f(v)— [P(dx,)[C(xy, dv,)f(y)).

To prove b. we first conclude from (5) that P satisfies I, - K (and hence
it is Kc-invariant by Propositionl). Let f,, /., f,¢ F(£). We have using (5)
.[O(d.yo)fp(d‘\)fk'f?('\'h Yo dy1)f| (Wo) folxy V) f:(yy)
= fQ(d,Vu) fil Vo) - ,’A,‘)(d-\\ ’_’-("‘r\'p dy,) fa(Xy | _V])/:t()ﬁ)
TAAY,) f1(yy) - [P(dx)) [ Clx, dy)) fox,+ ). [Pdx))[Cix,, dy,) fs(y,)
= [QUAY) [+ o) S Pldx,) [ Clxy, dyy) fo(x,+v,) - [Qdyy) f5( 3)).
From here we get for all 4¢F (0%
JAWo) [P(dx)) [ K1y Yoo dY )R Vo, Xy + Yy V1)
f(\)(dyo)fl)(dxl).fKC('\.lvym dyl)k()’l’ Xyt )’n.l’n)-
But this is equivalent to (4), because the mapping (o, Xy, ¥,) (Vo Xy + Y1, V1)
is a one to one and in both directions (¢? ¢%) — measurable mapping from
R? onto R?. Hence P satisfies [, K.
Now suppose that P is K-invariant. Then we have for all s,¢ -0
I Zp'/\'(dZ)e’“' e—t: = f Zp k(dz)e s prv,\-(dz)e tz:
R R™ R>
By definition of Zp x and formula (2) this is equivalent to
JQUdy,) e - [Pldx,) [C(x,,dy,)e—s ety [P(dx)) [C(x,, dy,)e ¥
JQi(dyy)er - [Pdx)) [Clx,, dy,)e—s* 2. [ Q(dyy)e™ [Pdx,) [Clx,,dy,)e—x+¥)
for all s, £=0.

The first and the last factor of this product are Laplace transforms of
the distributions of the nonnegative random variables — ¥, and X, + Y, and
therefore nonzero and finite for all s,/ 0. Now (5) follows easily.

Remark. Because (5) means that —VY,, X;+4 VY, are independent we can
formulate Proposition 2 as follows: P¢ P is K-invariant for some C¢ C iff
there exist independent nonnegative random variables V,, V,, such that V, - V,
has distribution 7~ and C(x,-) is a version of the conditional distribution of

-V, under condition V,+ V, - x.

Hence there is a one-to-one correspondence between those (¢C
which leave a fixed P¢ P, invariant and the representations of 2 as a convolu-
tion of two P, P,¢P. .

It is more interesting however to seek all K -invariant P¢P, for fixed
C¢C. Theorems | and 2 below give all K -invariant P for some nice kernels.

Consider the input-output-transformation of a steady state single server
system with service-finish if a new call arrives. That is, the points ofa station-
ary renewal process will try to move independently from each other a random
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distaiice (to the left say). The interaction consists in stopping the moving by
the (“old”) position of the left neighbour.
Let F¢P . and define Cr¢ C by

JCr(x, dy) f(y)= [F@dt) f(— gy ,,()+ [ (—x)F (%, + =]), fEF(Q)

Theorem 1. a. Let F-—=1I,, n>0, P¢P., P{0})<1. P is Kcginvariant
iff P 1II, for some i>0.

b. If F has a strong positive density with respect to |. and F=1I, for
all >0, then there is no K.,-invariant P¢P ..

Proof. This follows easy from Proposition 2 and the following theorem
which can be found in [2].

Theorem. Let V,, V, independent nonnegative random wvariables with
distributions G and F respectively. Suppose that F has a strong positive
density with respect to |, and G(}0})<1. Then the random wvariables min
(V,, Vo), V, — min (V,, V,) are independent iff G- II, and F-—=1II, for some
A, u>0.

Now we consider the following motion. The points move independent of
each other. The “new position” of a point is equidistributed in the interval
which is bounded by the “old” positions of this point and its left neighbour.
Corollary 1 of the following Theorem 2 states that the Erlang distributions
order two are the only distributions invariant under this motion.

Theorem 2. Let S be a measure on [R,, Q.| with a strong positive
density s with respect to |.. Write S(x) instead of S(|0,x|). Suppose that

fdx et A8 (x) = [S(dx)e—"*=1 for some i>0. Define Cs¢ C by
TCs(x, dn f(y)=[S()]7'- [S@y) f(—=)z, o (¥), [EF(Q).
PeP,, P{ON<], is Keginvariant iff P has a density p(x)=ie'*S(x) with
respect to .. i

Proof. If P has density p(x)= ie7*S(x) we obtain for f, g€ F(Q)
JP(dx,) [ Cs(xy,dy,) f (X, +v)8(y1) =0f dx ke [S(ay)y,., (¥) f(x—y)g(—Y)

= [S(dylg(—y)] dx1e™ f(x—y)~ [S(dyg(—ye . [ dxie ™ f(x).

Hence (5) is fulfilled and P is K ginvariant by Proposition 2.
Let on the other hand P¢P, with P({0})<1 be K s invariant. First from
(5) it is easy to see that P({0})—0. Second we note that P has a density p. In
fact by Proposition 2 P is a convolution of P, ¢P defined by [Pydy)f(y)
[Pidx)[Cs(x,dy)f(—~y), f¢ F (L) with a certain P,¢ P, (the distribution of

X+ Y,). Because the distributions Cs(x,-) have densities for all x>0 P, and
P have densities also.

Now we obtain using (5) (put there f(x)=e~", g(x)=e) for £, £,>0
‘f .F dy dx S(y)R(x +y)e_‘|)’e ~lax
00

o0

= [ [ dy dxs(yR(xc+y)e 2. ] [ dy dx s(p)R(x+y)e
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(put R(x)=p(x)/S(x)). Hence s( y)Rix +y)-of(ix S(YR(x+y) .r;fedy S(YR(x+y),

[+X!, -a.e. B2cause s is strong positive it cancels out. Multiplying by
e~“¥le—%v and integrating over R, < Ry yields for £, £,>0

L\t - fxdx/?(xn X -fxde(x) (e % —e—tx)
0 0

(ty—t,))fdx RIx)(| —e—= - [ dxR(x)(1—e—t").
0o i)
Dividing by t,—t,, letting ¢, tend to #, and defining L
by L(t) - [dxR(x)(1 ") we get
0

L2A(t)y= —ct? ;jt I(t), L(0)=0, ¢ - [ xR(x)dx.

! 0

Solving this equation we find L(z) ¢¢/(1 | cdt), d >0, and p(x) = S(x) (cd?)—le—*/,
Now [S(dx)ie—’* —1 implies d=1 and 1 -1/c. The Theorem is proved.

Corollary 1. lLet C¢C defined by

[ Clecdp) f(9)= -\ [dyf(~ ). fEF(@.

PePy, PO )<, is Kg-inovariant iff P~ II,+IT; for some i>0.

Proof. Choose in Theorem 2 S --i-1/..

4. D-motions. A C-motion of the previous section we can imagine as a
simultaneous motion of all points (all the information needed is the position of
points before the motion). Now we consider a class of motions with succes-
sive translation of the points. A point will “wait” until its left neighbour is
translated and then “move” (without overtaking) according to a distribution
A(d,-) which depends on the distance d between this point and the “new”
position of its left neighbour.

Let D={D¢K(R, Q). D(v,|—w, +)) =1 for all v¢ R} and define for D¢D
Kpt K(R? Q) by Kp(x,y, )~ D(x—y,-). It is not to expect that each P¢P, is
Kp-transformable for all »¢D. We remember that K-transformability means
that the Markov process of translations has a unique stationary initial distribu-
tion. In some cases we can find a special stationary initial distribution and
want to prove uniqueness. This we can establish by the following

Proposition 3. Suppose that P¢P. has a strong positive density
with respect to .. Let D¢D. There exists at most one Qp(P such that
[ Qp(dyo) [Pldxy) [D(xy =y, dy)) [ (31)  SQp(dy,) f(y,) for all f¢F ().

To prove this it is sufficient to show that all stationary Markov proces-
ses with transition function H(y, )= [Pl{dx)D{x -y, ) are ergodic. In fact one
can show that H(y, A)—=y,(y) Q—a.e. implies G(A) 0 or Q(A)=1 for every
stationary initial distribution @, i. e. all invariant sets are trivial. We omit the
details of the proof because it is only “technical”.

Before turning to special D-motions we collect some useful properties of
such P which satisfy condition [,— K,

Lemma 1. If PcP satisfies |,— K, thenthe following equations are valid

a. for all fcF(L?)

T Qdyo) [P(dx,)[DNx, ~ yo, dy)) f (¥, X, — Vo) = Q@Yo) S P(dX,) [ ( Yor X1— Vo)
b. for all g¢F (93)
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[ Qdyo) fP@x ) [L(xy— v, dvi)E( Y X1 Yo, Y1)
= [Qdyo) [ P(dx))[I(xy  yodv)S( Vi X1~ Yo Vo) 5
c. If P has a density p with respect to | then for all h¢F (¥)
JAdy,) po+y,) [ Div, dv)h( y,) — [QAy,) p(v + Vo)h( yo), L—a. e.
Prooi. Equation a. follows from (3) replacing there f(x)-g(y) by f(y, x—y)
Now let g¢F(¢3). Using a. twice we can write
JQayo) | Pldoxy) f D(xy — Yo, 4y )&( Yo X1—Yor J1)
[Qld o) [P(dx,) [ D(x,—y,, dt) [ D(xy— Yo, dy1)E(E, X, Y,y V1)
JQU@Yo) S P@x)) [ D(x,— yo, dy,) [ D(x,—y,, dE)g(E, X, Yo» Y1)
= JQayo) [ P(dx,) [ D(x,— Yo, dE)E(t, X, Yo, Yo)-
It remains to show «c. Let 4, kc¢F(g), define ge¢F (¥%) by g( Vo X1, V1)
= h(vy).k(x;) and use b. Then c. follows immediately.
Becau-e b. is equivalent to (4) we have (see Proposition 1)
Proposition 4. Let P¢P, UcD. Then P satisfies |,—K,, iff P satis-
fies 1,—Kp

The following theorem gives invariant distributions for some interesting
motions.

Theorem 3. Suppose that S is as in Theorem 2. Lefine Ds¢D by
v
JUs(v, dy) f(v)= (S@)™t. J S@dy) f(y—v) feF (@)

The distribution PP, with density p(x) -s(x)e=** is Kp,-invariant.
Proof. For f, g¢F(¥) we obtain

Jdve- "vg("’)ufs(d)’o)f[)('u ay)f(y,)= fdve—i”g(v)ufS(dyo) f(YVo—w),
[ S(dyo)e= [ dve v g(v) [ (v, dy,)] ()

- [ Sdy,)e— > | dveo—2g(v) f (yo— ),
Yo

JP(dyo) [ 11(d2)8(2+Yo) [D(z + yo, dyy) f (1) = [ P@ys) [ 11:(d2)g(2+Ya) f(—2).

Hence (3) is fulfilled with Q(A)=1I,( A), K=Kps, P. Thus, P is Kpg-invariant
by Propositions 1 and 3.

Corollary 2. Suppose that D, v,-) has density v—'a(l+ x/v)*!
Lt —0,0)(X), a>0, with resp.to l,. Then P=1I'(a, ) (the Gamma-distribution) is
Kp, invariant.

Prooi. Choose s(x)=1%/"(a)~'x* ! i>0, in Theorem 3.

The following theorem gives a characterization of the Gamma-distribution
as the only K -invariant distribution.

Theorem 4. Let be D,e¢D, a>0 such that D, (v, ) has density v=' a
X1+ x/v)*L i —«u.u;(x) with respect to l. Then P¢P., P(0})<! is Kp -inva-
riant iff P has density p(x)=Ai°I'(a) x* le—** for some A>0.
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Proof. The K, -invariance of the Gamma-distribution follows from Co-
rollary 2.

Now assume that P is K, -invariant, i. e. Zpg, — P~ Using (2) the
equation

' va Kp (dl)‘.——::‘eut:, . f[)(dx[)e sXy . f/’(dx,)t" tx,
Reoo “

has the following form
FQ(dyy) [P(dxy) [Dyxy Yo, dy,)e sy [P(dx,) [D, (x,— y,, dy,)e—x+y—x
= [P(dx )e " [P(dx,)e ™.

t
Because we have [D (v, dy)e ‘@t .t ¢ dze=vz+~! we get after some ele-
[}

mentary calculations
¢ s = - :
att el dz/(2)zet (s—2) [ dw(w - 2y 'P(w)Q(—w) - P(s)P(t)
v z

for all s>¢>0, where £, Q aredefined by P(f)- [Prdx)e ", Q(f) -~ [ Qldx)e—*
Ditferentiation by ¢ and s leeds to

A2PHPs)Q( ) ((s l)p(S)filP(S))(f/"{fy»%—ul)(f))

for all s>/>0. If ¢ tends to zero this gives «P($)Q(—3) SFP(s) 1 «P(s), s>0.
Finally we get a(s—17) Y(P(H)P'(s)—P(L)P(s)) — P () P'(t), s>t >>0. Letting ¢
tend to zero we obtain the differential equation

P(s)(a—P'(0)-5) - aP0)P(s), P0)-1,

which has the solution A(s)=a*(a-- P’(0)s) « Because P({0})<<1 we have
P(U)<<0 and P(s)=4iA+s) « for some A~0. Hence P is a Gamma-distribu-
tion with parameters « and /.

For a1 we get the following

Corollary 3. Let D¢D such that Li(v,-) 1 o PPy, P(10})<]
is Kyinvariant ijf P- 11, for some i> 0.

On this way we get an interesting transformation which leit the FPoisson
process invariant: Points will be translated successive in one direction without
overtaking, according to the equidistribution on the “free” interval.

The next theorem gives a broad class of transformations which left the
Poisson process invariant.

Theorem 5 P II, satisfies 1, — K, iff there is a measure S on
(R, ¢| such that [S(dy)e’> | and

S([—v, N[ Iw, dy)f(y) [S@) [y i) (V)

for all f¢F(Q). , i
Proof. Suppose first that S,/) are as above. For /,g¢F (¥) we get

Jdve e (o) fS(dyor, ., , (v D@, dy) f( )
- [dve 7g(v) [ S(dyo) [ ( Yo) 2y 1y Vo)
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oo

[S(dyo)e’r: [ dve—*v+yig(v) [ v, dy,) f(y))

—Yo
IS(dyy)e > [ dve 2 f( y,)8(v).
Yo

Defining Q, by [Qo(dy)a(y) - [S(dy)e>h(y), h¢ F(¥), we have
S Qoldyo) [ 11:(dx)) [ (X, —Yody)L(x, ~Yof(y)= T Qody) [ 11:(dx))g(x1— Yo )f(Vo)-
Hence (3) is valid with P II,, Q- Q,, K K. By Proposition 3 Q is unique.
Therefore //, satisiies I, —K,.

Now suppose that I/ satisfies I,— K, By Lemma 1, c. we have for all
heF (%)

JQdyo)e >y, :v.mx(}'o).'il)(vy dy Y y,) = [ Q@y,)e ’/‘~)"-h(yu)x[_,,_+w)(yo)» [—a.e.
Defining S by [ S(@y)/(y)— [Qdy)f(v)e—"”, feF (¥), we get [S(dy)e’” =1 and
S v+ oD, dyYa(yy) - [S@Yo(Yo)x o o Yo) [ —a e

For each mcasure S on |R, v] with [ S(dy)e’»=1 we get a transformation
which left the Poissun process invariant.

It S=1, >4, then

D 1, v <0,
(@)= 8, =1, v=0,

and Theorem 5 gives a long known result: The output of a steady state
M| M 1 co service system is Poissonian too with the same parameter as the
input (see, e. g. [1]).

Ii $ il weget [Nv,-) li-m,on and we have the case treated in Corol-
lary 3.

Remark concerning the lattice case. Let P, denote the set of distri-
butions on U, 1,2,...;, D, the set of stochastic matrices Do, y) with
Y= Div,y) 1 tor all v=- -+ —1,0,1...

For P¢P, and D(D, one can show results similar to Proposition 3,
lemma 1, c.,Theorems 3 and 5, where the role of the Lebesgue measure and
the exponential distribution play the counting measure on the integers and ihe
geometric distribution respectively.

5. A single server system. This section is deduced to a class of trans-
formations which seem to be applicable in queueing theory. Consider a single
server system with Poisson input. There are no waiting places. If an arriving
customer finds the counter occupied the running service is finished and . the
new customer has service time distribution E[(0,-)¢ P+. If an arriving customer
finds the counter free the service time distribution will be E(f,-)¢P+, ¢ being
the time the counter was free. By the output we mean both completed and
not completed services. Theorem 6 below gives all service systems of such
type which have Poissonian output.

To be precise let E¢K(Ry, ¢.) and define K¢ K(R+XR ,Y¥) by

TKe(x0, Yo, dy) f (31)
FO)E(— Yo |1, 4 00)) T JE(—Yor dy) [ (V1= X170 (1) TEF ().
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We introduce the following functions
E(s)  fE(0, dz)e =, E(s;:fd(_y)e—”fé( y, dz)e—¢, F(s)- [Fldz)e*, FcP..

Now we can formulate

Theorem 6. P 11, is K-invariant iff sE(s)(l —AE(4)=41E(4) (1 —sE(s))
for all s -0.

The proof of Theorem 6 we give at the end of this section. Because itis
not easy to see which kernels fulfill the condition of Theorem 6 we give some
corollaries. .

Corollary 4. Let E,)=F,cP. and E(y,)- —F ¢P, for all y>0.
Lhen P =11, is Kg-invariant iff sFy(s)(1—F\(2) AF(A) (1~ F(s)) jor all s -0.

Prooi. Obvious from Theorem 6.

We give some distributions which satisfy the condition of Corollary
4. It Fo= F,= 11, ©>0, we have the case treated in Theorem 1.

We can also choose F, =11, F, po,+(1 p)li,, u>0,0 -p<l. Fy 1y,
F,=pd, (1 —p)d, 6>0, 0=p <1, induce an interesting motion. We may de-
scribe the case p-=0 in the following manner: An arriving call which finds the
server empty tries to speak a time of a units. A call which finds the server
occupied finishes the service of its “foregoer” and will be shorter: its service
time distribution is /).

Corollary 5. Let pcFi¥4), Fo, Fic P+ and let E be defined by E(y,-)
=p(y)o, {1 —-p(Y)F., y>0, E,-)Fy. P=1II, is Kginvariant iff for some
¢>0 and all s=0

sFy(s)=c(1 —Fy(s))(1— sf dz p(z)e—%).

Prooi. Obvious irom Theorem 6.

For example we can take p(y) e« F =0, F, Il los, u>0, b>0, or
piy)y=1—pye-ry, Fi=I1, Fy,=11, 0<p-1, 6>u>(.

Proof of Theorem 6. We first show that /7, is Kg-transtormable for
all £. Indeed we have for all s=0

fnl(dxl)fKE(xnyov dy’)e.ty,_, ! —3(1.*5)"./'5("’)’0' dyl)e—ly'»
Q¢ P fulfills condition (1) iff Q¢P- and
JQdy)e” - 1 —s(i+5)"1 [ Qo) JE(— Yo, dyr)e™ .
Hence for each E exists a unique Qg which fulfills (1), namely Qg(A)

=(1 -cp)8(—A)+celly(—A), Acg _, with cg—(1—E@2)— EQ)E(A).
Now let /T, be Kginvariant. Then we have in particular for all s -0

l(;n r S)-l - fQE(dyU)j lll(dxl)fKE(xlu yO) dyl)e—l(x|+y|—y“)
J Qeldyo) (4 + 8) M(a+-se>r [E(—yo, d2)eFx
S AAHs) A (1 —cg)s) (A +9) (4 ) (1 — ) EG+ )+ cAE(R + 9).

It follows immediately that for all s--0 we bave sE(s)(1 —AEQ)=AER) (1 sE(s)).
On the other hand we can compute
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H(s, )= [ Q(dyo) [ TTi(dx,) [ K (%y, You dy,)e—stxitrroet:
=4+ )N (A8 A+ (A —p)9)+ G+ BN (s— 1) (A=) E(A+5) + cE(1+5)).

If we assume that SE(s)(1—2E(2)=1E(A)(1—sE(s)) for all s=0 we get
r(s, £)=(A+38)"Y(A+(1—cp)s)i(A+£)~ % Hence II, satisfies I, —Kr and therefore
II, is Kg-invariant by Proposition 1.

Remark concerning a special lattice case. Consider kernels K, € K({0, 1, 2,...}
x{0,1}, R({0,1})) and let P¢P, (see the remark at the end of section 4). The
condition of nonovertaking is expressed by K,(0,0,1)=0. To be short we
will denote P({n})=pa Ki(n, 1,0)=s,, K ;(n,0, 1)=I, n=0,1,2,...

By simple computations (sp [5]) we get the following

Theorem 7. For every K, of the above type the following state-
ments hold :

a. every P¢P, is K;-transformable ;

b.if 1,>0 forull n=1,2,..., then P¢P, is K,-invariant iff there is a con-
stant ¢>0 such that X | c(ly-...-lp) Y Sgr...cSpy < o and  pa

=c"ly-eo L) 180 ceeSn_yPoy n=1,2, ...
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