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THE REPRESENTATION OF ANALYTIC FUNCTIONS BY MEANS
OF SERIES IN LAGUERRE FUNCTIONS OF THE SECOND KIND

PETER K. RUSEV

It is proved that an analytic function f can be represented by a series in Laguerre func
tions of the second kind :Mf;‘)(z)};fzo iff f is a K, -transformation of a suitable entire function.
Here K is the modified Bessel function of th€ third kind with index «.

The system of Laguerre functions of the second kind with parameter
a>—1 is defined in the region C /0, 4+co] by the equalities

o t* exp (—)LL(t)

(1) Mfln)(z);;—f dt, n—01,2,...,
0

t—z
where {L(*)(2)}>_, are the Laguerre polynomials with parameter «. Using Rod-
rigues formula [1, II, p. 188, (5)] from (1) we get easily that

°‘t"+"exp(—t)
() PR B 4 WA, F' =0 AR
(2) M(z) r)f oyt dt, n=0,1,2
If Re2<C0, we denote by /(z) the ray {{=(—2).f, 0<t<+ co}. Then, from
(2) it follows that

:n—+—a - eetlx+a ex (zt)
3) M@(z)— — [ eXP(=0) 4. oyaf i eXP
© ") 1(zf) (& -zt ° (=2yf (148!

Having in view the integral representation (I, I, p. 273, (10)|] of Tricomi’s
confluent hypergeometrical function, from (3) we get the following representa-
tion of the Laguerre functions of second kind (=0, 1, 2,..., 2cC\J0,+ =])

2(—2)*?

@ M@= =y

7t"+““2 exp (— K. (2 —zt)dt,
0
where K, (z) is the modified Bessel function of the third kind with index a.

In this paper using the integral representation (4) we consider the prob-
lem of-expanding an analytic function in series of the kind

) 'i*o buM@(2).

n=

The region of convergence of the series (5 can be described by means
of a formula of Cauchy-Hadamard type. More precisely, the following state-
ment holds [2, p. 283].
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Lemma 1. /f u,—max{0, lim SUPnostee(2Vn) " In | b, '}, the series (5) is ab-
solutely uniformly convergent on every compact subset of the region
A*(uo): Re (—2)'2>u, and diverges at every point of the region C\4*(uo) U
[0, + o) (4*(+20)=@, 4*%(0)=C\][0, +0)).

Let 0==tz< 4 oo and B(r) denote the class of the entire functions ¥ hav-
ing the property that
(6) limsup (2, w )" Y(In /¥ (w)|—lwl)=r.

|w] oo

Lemma 2. The entire function

) Pw)— S (nl)='b,w"

n=0
belongs to the class B(x) iff
(8) limsup (2yn)~tIn|b,|=r.

n—--oo

Proof. (a) If Y¢B(z), then for every >0,
b, ,:O{rl! I 'wl—"*‘ld)(w)lds}:O{nl n—" exp [n-2(x+ 8)yn)}

and therefore, limsup,.+.(2yn)~'In b,|=t+4.

(b) Suppose that (8) holds. Then, having in view the asymptotic formula
(3, (8.22.3)] for the Laguerre polynomials, we can conclude that for every >0
there exists M(8)>0 such that |b,|=M@)LO[(x+d)] (=0, 1, 2,...) (Let
us note that LO(—x)>0 if x>0.) Using [1, II, p. 189, (18)] we get that

w(@)|~0f T (1L~ +o| w ") = Ole (N~ GF o w]

=O{e™ /o[ 2i(z+ o)y | w |]} = Ole!® [ 2(+ )V | w ]},

where J,(2) is the Bessel function of the first kind and /y(2) is the modified
Bessel function of the first kind, both with zero index.

Further, the asymptotic formula (1, II, p. 86, (5)] gives that ¥(w)
—~O{ w|"exp| w|+2(z+0)y w|]} and since >0 is arbitrary, we get (6).

Theorem 1. Let 0=u,<+oc, a>—1and f be a complex function ana-
lytic in the region A*(u). In order that f can be expanded in this region in
a series of the kind (5) is necessary and sufficient that for f holds an in-
tegral representation ;

() f@@) = A—2)? Jt2 exp (—OPOK. (=22 ),

where W¢B(uy)-

Proof. First of all we note that if ¥¢B(u,), the integral in (9) is absolute-
ly uniformly convergent on every compact subset KCd%(u,). Indeed, let
po<<m< +oo be chosen so that Kc 4%(u). Then from the inequality | ¥(7) |-
Of exp [t +2(uo+ O)E]}, where 0 (u—uo)/2, and the asymptotic formula [I, II,
p. 86, (7)] it follows that if 7 — + oo
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(10) texp (1) | P(OK. (2 zt) = Oft«? exp(—28yt)}
uniformly on K.

Let us suppose that the representation (9) holds, where W¢B(u,). If the
function ¥ is given by the expansion (7), from Lemmas 1, 2 it follows that
the series (5) is convergent in the region A*(u,). Then, if we define R,(2)
= flz)—Xr_ baM{(2) and use the integral representation (4), we can write

n=y+

R(2)=—2( -z)«""jt""’ exp(——t){ $ l(n!)“"b,,t"}Ka y—=zt).

From Lemma 2 it follows thal the function Y*w)=2Xx (n!)~'| b,|w"

also belongs to the class B(u,). Therefore, if we replace ¥ by %* in (10), we
can assert that for every &>0 there exists 7= 7(¢)>0 such that

[ t2exp(— OPHt)| K. (2 —2F) dt<e.
T
Then, for every »=0, 1, 2,... we get that

| fturz exp(—-t){' s (n!)—‘b,.t"}Ka (2 —zb)dt ‘

n=y-+1
< f 102 exp (— ) WH(t) | Ko (2 —21) | dE<e.

Further, there exists a N=N(¢) such that if »>N and 0=¢(<7, then
Y (n)716,t" <e. Therefore,

oo

| feen exp(—t){ S ()b} K. 2)=zhat
0 n=y+1

= O{eOTtaf‘l exp(—1t) | K. (2V—20))| dt} —0e).

Now, R,(z)=0(e) if »>N, i. e. the series (5) represents the function f in
the region A*(u,).

Let f be analytic in the region A*(uo)(0<=u,<<+o0) and have a represen-
tation by the series (5) in this region. Then, from Lemmas I, 2 it follows that
the function ¥ defined by (7) belongs to the class B(u,). By means of the
integral transformation (9) the function ¥ defines a complex function f ana-
lytic in the region A*(u,). But we have just seen that f can be represented in
this region by the series (5) and, therefore, f=1.

As an application of Theorem 1 we shall get a necessary and sufficient
condition for a complex function f, analytic in the half-plane H¥(z,): Im 2>z,
(0=<%,<<+c0), to be represented in this half-plane by a series in Hermite func-
tions of the second kind {G4(2)}:.,. The last system is defined by the equali-
ties (2¢CN\(— oo, + o)) Gu(2) = — [=_(£—2) " exp [(—2)H(¢)]dt, n=0, 1, 2,...,
where {/,(2)}, are the Hermite polynomials.
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Using the relations [1, II, p. 193, (2), (3)] between Laguerre and Hermite
polynomials, we can write the corresponding formulas, which express the Her-
mite functions of second kind in terms of the Laguerre functions of second
kind, namely

Gon(2) = (— 1)22"mzM120(22),  Gopa(2) = (-~ 1)"22"H 1 nIMOI)(22).

The above relations, the equalities K;2(2)= K_,2(2)—J7/2z exp (—2) [1, 11,
p. 5, (14); p. 9, (39)] and Theorem 1 lead to the following result

Theorem 2. The complex function f, analytic in the half-plane H*(z,)
0--1,<-}ov), can be expanded in this half-plane in a series of Hermite
functions of the second kind iff for f holds the representation

/() :f{ V(£2)+-t,(t2) } exp (—12+ 2izt)dt,

where W,, WqtB(z,),

Remark. Theorem 2 holds if we replace the half-plane H*(z,) by
H(—7,): Imz<<—1, and 2z by —z.

As a second application of Theorem 1 we shall prove that under the
assumption Re(—2)'2>Re(—)VX(z, t¢C) holds the equality

(1n 2;—«/2(—z)«ﬂof” Ju VK (2 —2t)dt = ;iz -

The system of Laguerre polynomials as well as the system of Laguerre func-
tions of the second kind satisfies the linear recurrence (7+41)y,i1+(z2—2n
a—1)y,+(n+a)y,—1=0. Moreover, there is a formula of Cristoffel-Darboux
type, namely

1 ¥r5ny A5 ¢.
(12) o= & o LMo+ 22,
where J@W=1(n+a+1)/I(n+1) and A (& 2)= -+ 1)/JALENIME, (2)
LM A2);-

With the aim of (12) and the asymptotic formulas for Laguerre polyno-
mials |3, (8.22.2), (8.22.3)] and for Laguerre functions of the second kind [2,
p. 272, (11)] one can prove that 1/(z—7)— X3, L(OM{(2)//¢ provided that
Re( - 2)"2>Re(—{)"2

For every ¢¢C the entire function

3 L) Lo
Y74 g s Ttad ~ n ATl s
Vel @) n=0 nlJ\® Y I(n+a+1)

is in the class B(z), where r—Re(—¢)!2. Then, (11) follows immediately from
Theorem 1, while ¥, (&, w)— exp @w(tw)—2/, (2Yzw) (1, II, p. 189, (18)]
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