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APPROXIMATION OF SOLUTIONS TO NONLINEAR VARIATIONAL TIME
DEPENDENT PROBLEMS

THEODORE S. PAPATHEODOROU

We examine a family of nonlinear elliptic variational problems, parametrized by a time
parameter £€[0, 7). Such problems are crucial in the derivation of error bounds for Galerkin
procedures pertaining to nonlinear parabolic and hyperbolic equations. Consequently, we deve-
lop a general theory for existence, uniqueness and differentiability of approximate solutions.
Moreover, we derive error estimates which are optimal in the energy norm.

I. Introduction. This paper is concerned with existence-uniqueness theory
and error estimation for nonlinear variational problems, which arise from the
elliptic part of a time dependent differential operator. Variational problems of
this type appear naturally in the error analysis of Galerkin procedures for
nonlinear time dependent problems. Typical instances are equations of parabo-
lic (j=1) or hyperbolic (j=2) type

(1.1) Dpu(x, t)+L(u(x, t))=f(x, £), xcQc R", &[0, T},

where L is a nonlinear elliptic differential operator of eorder 2m. It is the
application to problems such as (1.1), which motivates the theory developed
here (for details on these applications we refer to Papatheodorou [6)).
In addition, this theory is general: in the existing literature one may find only
special cases (e.g. m=1), restricted by unrealistic assumptions such as that L
is uniformly Lipschitz continuous with respect to its functional argument.

As a motivation and introduction to the general formulation we use th
example , . }

(12 Loz, )= £ (—1!DHux, 1, Diolx, )

In order to obtain a variational problem, one multiplies (1.1) by some admi-
ssible function v and integrates over the domain ©Q of the space variable x.
Then, if X is an appropriate space of functions, the elliptic part L gives rise
to a mapping

E°: [0, TIX XXX — R
(t’ ¢‘°. 0) - Eo[tkwo; v)v
defined by

(13) Bitiw: v)= £ [filx, &, DigODlvdx.
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We are concerned with projections Qu|t|, of the function u[t]=u(., f), on
a finite dimensional subspace S of X, defined by the requirement

(1.4) Eot)(Quult); v) - E'ltult]; v), all wEsS.

Such “elliptic projections” have been previously used (see e.g. Houstic [4])
but only for linear problems. In most linear cases, if Du[t| exists (D= du/dt)
and belongs to X, then D(Q,u[f{]) automatically exists, belongs to § and is
the elliptic projection of Du[f] on S. In other words, if u[f] is in the domain
DCX of D=0/ot:D — X, then Quu[t] is also in P and

(1.5) DQou|t) = QoDult).

Since (1.5) is instrumental in the analysis of the (alerkin methods, we
ask whether it holds true for the nonlinear situation. When E° is nonlinear in
Qou[t], as in (1.3), some of the fundamental difficulties that arise are the
following :

i) The existence of Q.u[f] is in doubt, and the existence of the time de-
rivatives of Q.u[f] does not follow automatically from the existence of the
corresponding derivatives of u{f]. Still, for the error analysis, one needs to di-
fferentiate (1.4) in / and obtain these derivatives as solutons to “derivative
problems” that are similar to (1.4).

i) Differentiation of (1.4) introduces new mapping
(1.6) E/ :dt/ E°, or E’*‘:%E’A
However, the definition of E', for instance, via (1.6) is inappropriate. For the
chain rule introduces DQu[f] into the right side of (1.6) which, by the preced-
ing comment, is not known to exist. Hence, the “derivative forms” are intro-
duced differently.

To obtain the form E', one formally writes %-{Eo[t](m“; )} using the
chain rule. In the resulting expression one replaces Dg°[¢] by an arbitrary func-
tion ¢!, which is not required to be related to °[#]. In this manner, one ob-
tains E'[t}(¢°, @'; ). Similarly, one defines E?£|(¢° o', ¢?; v) through
E't)(° ¢'; 7). Symbolically, with @/ —=(¢° ..., ¢/)c X/t /1= (9O . . ., o/,
/) = (B/, /)¢ X/+2, Ei+) is defined via E/ by

(1.7) EHItN @/ vy =S {END 5 0} |p oy

In this work we take X to be the Sobolev space AH7(f2), (cf. Aubin
[1]), where © is a bounded domain in R" The norm of this space is denoted
by |-|l,- The index ; in (1.7) is taken from the set {0,..., J}, where J is a
fixed nonnegative integer. (For the applications to elliptic, parabolic and hy-
perbollc problems, the theory, to be developed, applies with /-0, 1 and 2
respectively, [6]).

The forms E’ are considered as mappings

(1.8) E/:[0, TIXX/H X X — R
(t, D, v) — EAH(D; D),
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N
which are, in general, nonlinear in @/=(9° ..., @/) ¢ X’*' and are assumed to

be linear in o¢X.
Now, if Quu[t] is already defined by (1.4), one defines, e. g. Q,Du[tcS by

E't)(Qoult], Qult]; v)=E't)(ult), Dult]; v) all S.
However:
iii) Even if the original mapping E° is elliptic, or monotone, in &°=¢o°, the

derivative forms E’ are no longer “monotone” in f;ﬂ':(qy", ..., ¢/). Neverthe-
less, we show that Q(D/u[t]), j>0, is still well defined and lies in the domain
of D. In addition, we establish the commutativity of the diagram

D =o0/ot _
D/ult) o Ditlujf]
|
} Ql Oi+|
|
$ l
Q,D’ult) D - DQ;D’uft]= Q1 D/+1ult]

i. e. in analogy with (1.5), we prove that on the range of D’

(1.9) DQ;= Q+1D.

iv) Finally, uniform Lipschitz continuity (of the coefficient functions f:
for instance) although widely used in the literature, does not usually hold for
@/ on the entire real line. Hence, before taking the Lipschitz constant as in-
dependent of a functional argument, one must show that this argument lies in
a ball of radius r and take the constant to depend only on r.

The precise hypotheses and the formulation of the variational problems of
definition of Q;D’u[t] are presented in Section 2. The existence-uniqueness and
differentiability theory of the projections is developed in Section 3. In the
same section we establish the commutativity relationship (1.9). Optimal error
estimates for norms of the error (/—Qy)D’u[f] are derived in Section 4. Appli-
cations to nonlinear parabolic and hyperbolic problems are presented in [6].

2. Hypotheses and problem formulation. The hypotheses that we use
are observed in fairly general differential operators, which, for each fixed ¢,
are elliptic. The form (1.3) may serve as an example. For an easier illustra-
tion of the comments (i)—(iii) of the introduction, and as a motivation for
the general formulation to be presented below, we suggest the special case of
(1.1), when m—1, f=0 and f(x, ¢, 2)=2°+2, i.e.

EMEa; )=t )= fl(Dso+ DigIDsvx,
(2.1)

E (@' ; v)—ENt](o", o'; )= [[3(Dse®)? + 1)Dee'Dyvdx.

0
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If for each #[0, 7] a function ¢[f]=o¢(-, ) is in X and if sup{ |e[f]]|,
: t€[0, #]} < r, then we say that ¢ belongs to the ball B(r).

First, we make an assumption on the smoothness of the “given” func-
tions uft]eX:

Hypothesis (HO). For all ¢[0, T), [0, 1, 2, D!u[t] exists as an ele-
ment of X and for some r>0 Dlu[t]¢B(r).

Our second assumption represents the “loss of ellipticity” in passing to
derivative forms. At the same time, it also represents the observation that

some kind of “almost monotonicity” is preserved. For @*—(g°,. . ., @F)X*+,
let
- '
(2.2) P |m= |0 |m
=0
Hypothesis (Hl). FEach E/, j-0,..., J, is “hypomonotone™ in

DICXIHY, . e. there exists a b>0, and given D/, WX+, there exists a ¢;>0,
which may depend on ¥/, ' such that

(2.3) 8| 0/~ [2,— 2| @) =/ | | B I1
<ENN@; o/ —w/)— BN o/ —v)
for all [0, T). If d—;f. '?”EB(r)’*‘, for some r.>0, then c; may be taken as de-

pendent only on r.

Notice that when j=0, the empty sum in |@/~!' ¥/~ (see (2.2)), is
to be taken equal to zero. Then (HI) reduces to a standard monotonicity, or
Hm(Q)-ellipticity, assumption on E°[¢].

Next, an inequality of Cauchy-Schwartz-Bunyakovskii type is assumed.

Hypothesis (H2). Given q_;i, ';'/GXH‘, there exists a d;>0, which may
depend on &/, W/ such that -

(2.4) BN ©) - EN(I; 0) | =] &/~ |2
or all [0, T) and all v:X. If <1:/, @/EB(r)H‘,for some r>0, then d; may be

aken as dependent only on r. Ilf ¢'=vy' for i=0,. .., j—1 the d; may be

taken as independent of the particular elements ¥/, V.
The tourth hypothesis is concerned with the explicit dependence of each
E’ on t0, TJ.

Hypothesis (H3). For each fixed @ and v, E/ is uniformly Lipschitz
continuous in té[0, T), in the sence that there exists a constant y;>0, which

may depend on ®/, such that

(2.5) Nt v)— ENEND s v) =92 E—t] | v,
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for all t, t'¢[0, T|, veX. If @®/B(ry+!, for some r>O0, then y; may be taken
as dependent only on r.
Next, we use an assumption, which represents the symbolic expression

(1.7) or, the fact that Ef+‘[t]((i;/+': v) is in some sense the total time deriva-
tive of E/[t|(¢/; v).

For this, let the symbol #(¢) stand for a sequence {Z,};C[0, T']—{¢}, whose
limit is ¢, and consider the abbreviations

(2.6) or=qltal, dpdt)=@p—olt], Ouelt]= A@[t]/(tr—1), Lic(2).
We first illustrate the connection between £° and £' in the case of the
Example (2.1). By application of the mean value theorem, we find that for

each x there exists a number yyf)(x), which lies between D;¢%£)(x) and
D.p)(x) such that

A= E\tal(@ys ) —EVt)(#°l2]; ©)— @—OE (@ lt], de’l?]5 ©)
=3t {j {(wil2)(x))y*— (Dxg"[#](x))*} 0 Dxg"(t]) Dxvd x.

Next, suppose that for the given ¢, for some sequence z(f), and for some
¢'[sleX, s¢[0, T), there exists an element £[£]¢X such that limg,.0sD:p°(f]=
Dyf.[t], uniformly on Q.

Note that this is not an assumption on existence of D(D.¢7]), as fi¢]
is allowed to depend on the sequence (). Applying the uniform convergence,
we now get that given &>0 there exists a Xy(e) such that for £=£ky(s) we
have |Ax =c'¢/tp,—t| |v|, where ¢ =3(1+4|D.f.¢],) depends on | f]|
but if f[£]cB(r) then we may take ¢’ =3(1+7).

This observation goes through for more general forms. We formulate it
as our fifth hypothesis:

Hypothesis (H4). For every (|0, T| any sequence «t), any ®/[s|¢X/T},
s¢|l0, T), for which there exists an f|t|cX such that

(2.7) lim 0,0D%¢/|t) = DEf|t), |B|=m, uniformly on Q,
Rk—r00

and any ¢>0, there exists a Ry(¢) and a constant ¢, which may depend on
| fil#] ||lms such that
ENt(@}; v)— ENDIL]); v)— (b — OEM (N BI8), flt); ©) < |ty—t| | o],

for all k=ky(e) and all vcX. If flt|cB(r), for some r>0, then ¢’ may be
taken as dependent only on r.
Our last hypothesis may be translated to boundedness of the coefficients

(and some of their derivatives) of the differential operator on 2x|0, T):
Hypothesis (H5). There exists a constant =0 such that

(2.8) Et)O7; v)|<B vl all wX, all t]0, T)
where 6’5(0, ..y D)X/,
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Finally, we formulate the family of the nonlinear variational problems,
which give rise to the projections Q; As always, § is a finite dimensional

subspace of X. In this formulation, we use the abbreviations 0’[t] = (ue), . ..,

w(t), QU= (Quolt], ..., Qut)).

For each fixed ; and each fixed #[0, 7'] consider:
Problem P(/; t). Given U/ [¢)¢ X/*!, and, in case j =1, given

QU (¢t|eS/, determine Qu/(t)eS by the requirement that Q/U/[¢]= (Q/~'U/¢],
Q,u/[t]) satisfies
(2.9) Et(Q/Ut); ©v)= EVt|(UV|¢E); v), all wed.

In the sequel, the expression *Q,//u[t| solves P(j; t)” applies to the case
u'|t|=Dtult], i=0,..., J.

3. Existence, uniqueness and differentiability theory. The first result
establishes the existence and uniqueness of solution to Problem P(j; £). Its
proof is based on a result oi Minty [5] and Browder (2| and a modifica-
tion of an argument used by Ciarlet, Schultz and Varga [3]

Let S be a reflexive Banach space with norm ||-/is. It 5* denotes the con-
jugate of S, and s*S™, consider the canonical map (8%, 8)s— s%(s), seS.

An operator T:S — S* is said to be

(a) strongly monotone, iff there exists a b0 such that V*| ¢ -y !s=
(T((P’_T(W)’ P 'W)Sr for all P (r"és-

(b) finitely continuous, iff it is continuous on finite dimensional subspa-
ces of S with the weak topology of S*.

Equivalently: if V is any finite dimensional subspace of S and if
\Ual®, is any sequence in V thal converges to vV, then forany weS the
sequence |(T(vn), w)s}~ , converges to (T(v), w)s.

We have (Browder (2], Minty [5]);
Lemma 3.1. If T is strongly montone and finitely continuous then for

any s+S* the problem (T(w), v)s=(s*, v)s, vV, has a unique solution w¢S.
Now fix ¢ and j. With the notation of (2.9) define the operator 7:8 — S*

by
(3.1) (T, v)s = ENANQ U 8), 45 v)

for @, vcS, and the functional s*¢S by (s*, v)s = E/|t)(U/[¢]: v). Then (2.9) is

equivalent to (7(¢), v)s = (s%, V)s .
Taking S to be the finite dimensional space of Problem P(j; £), with

I.ls| - ,n we have: _
Theorem 3.1. If (Hl) and (H2) hold then Q;D’ult] is well defined

by (2.9).
Proof. We show that A(j; #) has unique solution. By the preceding dis-

cussion and by Lemma 3.1, it suifices to show that the operator 7" of (3.1) is
(i) strongly monotone, and (ii) finitely continuous. Applying (HI) with

@/ (Q,,,xL},- ), ¢), P (Q/'U/'[t), w) we get the strong monotonicity con-

dition. To show (i), apply (H2) with &/ — (Q/~\U/'[t}, vy), ¥/ (Q~'U't}, v)
to get
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(T(vn), w)s —(T(?), W)s|=d3 | Vp—V|lm| @

where, according to (H2), d; is independent of n. This concludes the proof of

the Theorem.

Taking w/(¢] = Dult] in P(j; t) and “solving” successively for J=O IS,
we have well defined projections Q;D’u[t] of D’uft), j=O,..., J. The next
task is to show the differentiability of the projections. Toward this direction

we need:
Lemma 3.2. /f (H1) and (H2) hold then the unique solution QuD’ut]

of P(j; t) satisfies
Q/'Djult] ‘|m_\¥cl{|' Dju[t] llm :g: ‘ ([——Q,)D‘Ult] Hm}'

where the constant c; depends on lj'/[tlz(u[t], . .., Dult])) and W [t1=
(Quldlt), - . -, Q1D uft). If for some ¢>0, U/|t|cBle)y! and Wi-1(t| € B (»),
then c¢; may be tak:n as dependent only on e.

Proof. Apply (HI1) with @&/ = W/[¢t)=(W/'[t], Q;D’ult]) and @l = (W/—1(¢),0)
This gives

b | QuDult) |2,= ENeNWA(t); Q,DVult)—ENLI(W ], 05 QDult).
Since Q;D/ult| solves P(j, t), the first term of the right side is equal to

E/[t](L_/}[t]; Q,D’u|t]). The proof is completed by (H2).
Lemma 3.3. /f (HO), (H1) and (H2) hold, then there exists a >0, de-
pending only on r of (HO), such that QyD’ult}¢B(e), all j=0,..., J, all

[0, T}.
Proof. Trivially, by finite induction on the inequality of Lemma 3.2.Now

pick any #0, 7] and keep it fixed. Also, pick any sequence W) ={tr C
[0, 7] —{¢}, whose limit is £. With the notation of (2.6) we have:

Lemma 3.4 If (HO) through (H5) hold, then there exists a ¢>0,depend-
ing only on r of (HO), such that 9,(Q;D'ult)}B(e) for sufficiently large R

and for all j=0,..., J
Proof. Let wi|t]|=Q;Dult), i-0,..., ],

w=E(W; W) ElL(Wis A, b= EN0(U}; dyw/)— EN(DE); 4,w)

On the one hand, (HI) applied with JML: Wi, Q’f:W’f[t] and the fact that
w] and w/[t| solve P(j; t,) and P(j; t), respectively, give

(3:2) bt Awi(t] 2 —c3| Agi(t]| 4, WHE) [mS ant B,

where ¢, depends ou W, W/[t] and, hence, by Lemma 3.3, only on ¢ On
the other hand, we get from (H3) that



80 T. S. PAPATHEODOROU
(3.3) a =y | L—t| | 4@/[t] || m

where, similarly, y depends only on ¢. Also, by (H4), applied with 5‘- l-)‘,
;V:: U’[t] and by (HO) we get

(34)  IBSC byt At [ttt | EHOE; it

for R=ky(1), where, again similarly, ¢’ depends only on o. Applying (H2), the
triangle inequality, and (H5) we also have

EF U t]; dewle)
CERUNQ t) + dd UR) ] | @) e | et o,
where ¢ depends only on o. Hence, by (3.4)
(3.5) prl=clty—t] | Hwlit]| m
where ¢ depends only on .
Now use (3.3) and (3.5) into (3.2), divide through by /,—¢ |/t |,

and observe that, in Lemma 3.3, o depends ouly on r, to conclude the proof.
Theorem 3.2. [f (HO) through (H5) hold and ij the subspace S is such
that Dfv is continuous on £, B|=m, for all VS, then the time derivative
D(Q]D/u[t]) at t exists and equals Q;.1D/+ult|.
Proof. We show that lime,-0%Q,;D/ult]) exists mdependently of the
choise of z(f) and is equal to Q;+,D/T'u[f]. Suppose for a moment that we
have proved the following:

For each 8, |8 |<m, the sequence A?={L%(d,(,;0/ult])};  is uniformly
(%)

bounded in the norm | ¢ ||w = sup{ @(x) : xeQ2) and equicontinuous on €.

Then, every subsequence A4¢ of A7 is uniformly bounded in the |. . —
norm and equicontinuous. Hence, A¢ has in turn a subsequence, which con-

verges uniformly on « to a function f%S. Since this is true for all g, |8|<=m,
we have f# - DFff, where f f° Hence, by (H4),

36)  lim (Bt (W; v) — ENE(WE); ©) (ty— )} = EF [t \WE), f; v)

for all vcS, where w/|¢] Q,D'u[t] On the other hand, in the left side of (3.6).

W/(t] may be replaced by b L/[t], respectively, because W/ W’[t] solve
the Problems P(j, ty) and P(j; t) Hence, by (HO) and (H4) thls limit is also
equal to E/“[t](UJ"[t] v) for all vcS. Consequently, f solves P(j+ 1; ¢) and,

by the uniqueness Theorem 3.1, f Q17 H1ult]. Hence, f is mdependent of
the choice of the subsequences Aﬂ A4. This shows that the entire sequence A?

converges to f. Since / is also mdependent of t(£), the result of this Theorem
follows.
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I{ remains to show statement (*): dropping the first few indices &, we
get from Lemma 3.4 that the sequence Af is uniformly bounded in the L,-
norm. By the equivalence of norms on the finite dimensional S, it is also uni-

formly bounded in the - |o-norm. Next, pick a basis {B;Y , of S, which is

orthonormal in the Ly-norm. Writing Q;D/ut)(x)=2X_ »i#)B(x), we first have
by Lemma 3.4 that IV | /() 2<e, so that max,sup, | i) |<<Ve for all k.
From this, for any x, yQ2 we get

D20,Q,D/uft})~ DIrQDIA( (= Ve = | DLBAx)—BA)|.

By the assumed smoothness of the elements of S, ¥ DZB; is continuous on

“i=1
Q, hence, A? is equicontinuous. This concludes the proof of the Theorem.

4. A priori Error Estimates. The next two theorems provide bounds for
some norms of the error (/—QpD’ult] of Problem P(j; £). The rates of con-
vergence are shown to be the same as those of the linear cases.

Although one could carry these estimates on to higher time derivatives,
we stop at the point of interest to applications, i. e. at j=1.

Let 2/[t] be the best approximation to D/u[f] by element of S, i. e. |2/[f]—
Diuft] |, =inf{ v—D’u[t]| ,: vS}.

For the corresponding (j+1)-tuples Zf[t]z(z"[t], ..., 2/t]) and l_}f[t]
=(ut), . .., D/u/[t]) we have, according to the general notation used so far,

P—U1'y= & |2[f)—t(t]lm= = int || 2=DGlf]|m
i=0 i=0 ©vES
Hence, let
(4.1) on(UNt); S)=| Z—U! | e

Assume that all the Hypotheses (HO) through (H5) hold.
Theorem 4.1. There exists a constant B, depending only on r of (HO),

such that ||(I—Q)D’ult]||,< Bo.(U'[t]; S) for all [0, T] and all j=0,..., J.

Proof. By (4.1) each z{f] lies in some ball B(o)CX, where ¢ depends
only on . The same is true for D/u[f] and, by Lemma 3.3, for Q,D/u[f].
Hence, the constants involved below depend only on r. Applying (H1) with

@/ =(Qult], ..., QD/u[t)), i =(2%¢}, . . ., 2/[f]), taking into account that Q;D/u[¢]

solves P(j; ) and applying (H2) with the same ¥ and with &/ = (mltlssson

Diu[t]) we find || Q;D/u[t]—2/[t]||n=Bo(U’[t]; S). The proof becomes complete
by the triangle inequality.
Now let on(D'ult]; 3)=intocs || Dit[t]— | = | Dtlt]—2(t] |
Theorem 4.2. If B is as in Theorem 4.1, then
sup || (/—Qo)ulf]lln+ sup [(/—Qy)Dult]
t€[0,T]

telo, 7)

<1~ Q0]+ (I~ QDu0) 2B % | Fon(Drult); Syae ]



82 T. S. PAPATHEODOROU

Proof. If ¢t] is any sufficiently smooth function, start with
Dy *[t)(x)= 29[t x)Dep[£)(x) - @ 2(x) + (Dl £])*(x),

integrate the left side from O to /=~ 7° and the right from 0 to 7, then inte-
grate on (2, change the order of integration and apply the elementary inequa-
lity J a|+ b <{ a v b|. Doing this with all the derivatives D%, 8 - m,
and taking the sup over f¢[0, 7| we find

2

1 T 1
sup g [t] m= Q'[OI | m':b' ”:_':“ {(! Dk‘/ [t] ;:r:l *

telo, 7|

Apply this inequality with ¢[f]- (/  Q)D'ult], i 0, 1 and use Theorem
4.1 to complete the proof.

Conclusions. Under the given set of five hypotheses, the analogies with
the linear case, in existence, smoothness and commutativity of the projections
with - 0/0t, hold. In addition, the rates of convergence are the same as those
of the linear case.
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