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A SET OF POLYNOMIALS RELEVANT TO PROBLEMS
IN QUANTUM MECHANICS

T. R. PRABHAKAR, SUDHA JAIN

Recently Cohen (1938) introduced a polyeomial @,(x), which is relevant to problems
of quantum mechanics. In this paper a generalized Rodrigues formula and three double inte-
grals arc obtained for the polynomials R/(x), which c¢ontain as special cases a number of

known polynomials including @ (x) and 2iso squares and products of several standard polyno-
mials.

1. Introduction. In many problems of quantem mechanics and related
fields one encounters rot only various polynomials such a. those of Gegen-
bauer, Legendre, Hermite but also the squares and products of these
polynomials (see for instance [1]). Here we consider the polynomials Re¢(x) de-
fined by

. Ay oo vy ap. —ixt v i (O )
(1) (1 0 ”Fq\: b ’ (1:[)”]= n;ot nl R:(X}Y
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where ,F, is the generalized hypergeometric function. They include not only
the mentioned standard polynomials but also those of Laguerre, Sister
Celine and Jacobi (see [6]) and the polynomials recently introduced by
Konhauser [4) and Cohen [1], as also the squares and products of many
of these polynomials.

In this paper we obtain a generalized Rodrigues formula and evaluate
three double integrals for the polynomial Ki(x). A specialization of parameters
yields a large number of formulae for various polynomials, as well as for their
squares and products. In [8] we obtained integrals for R«(x) andin [9] we de-
rived some generating functions for this polynomial.

From (1), one gets the following hypergeometric representalion for Re(x

R{x)=RU(c: @y, ...y ap; by, ..., bg; dx)

|
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where

. (1 -1 w,#/u, when wu>1,
A , when =1.

Specializing the parameters in R%(x) one gets a number of particular cases,
most of which have been listed in [8].
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2. A contour integral representation and a generalized Rodrigues for-
mula for R:(x). Denoting the function in the left of (1) by f(¢) and using ar-
guments from the theory of functions, we obtain the following contour integ-
ral representation for R(x)

! . a,..., a ~2
) (OaRix) = 5, [0 t)-;fq[ : = ]dt.

by, ..., by (1—t)

where ( is a circle £ r and r<1. Putting u=x (1 —£) in (2), we get an-
other integral representation

I—c n+c—1 Ay, ..., Q PPTTE IV h
3) RUR) - iramt e 'u[ R u_)_Jdu,
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where C’ may again be taken as a circle u#—x| ¢ of small radius.
Evaluating the integral (3) by the Cauchy residue theorem, we obtain a
generalized Rodrigues formula given by

0" a,..., a ruat l(x —u)
—1 1 ’ P .
<uu Fe F [ o B ., \’.
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(4) Ri(x)- ‘(

Some special cases
(i) When u 2, -4, ¢ 2v and a » we get the following generalized
Rodrigues formula for the polynomial @, of Cohen [1}:

vy Aoy ooy py by ..., by X)

MBI L (u"‘:v lp/_‘qlr, Qy, . . :, a,,; 4u(x —u) }) .
’ \ b,...., ] X n=x
(1) When p- 1, (=2, = 7i-1,a,- 1+atr, b= (1-+4a)?2, b.= 1+a/2and
¢=1+a we have

(l+(4),,( x |22 on o[Vt atn X2 )
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where L{’(x) is the generalized Laguerre polynomial {6].
(iii) Taking p=2, g=1, u -2, i=4, a;- ag v, b,= 2v- ¢, we get an in-
teresting representation for the square of the Gegenbauer polynomials [6]:

nl—e 7 ’ 2
(v(eya (21X , 9" (nrrer p | MY du(—xi-u)
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(iv) Letting n- 2, 2 -4, c=2», p -2, q=1, a,=ay-» and b, - 2» we gel
P12 008 A2 ) P(2v ) (= x/4) (1 — %)=
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fwhere p’(x) is the associated Legendre function [3].
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(V) If u=2, i=4, ¢ l+atp, ay- (a+p+1)/2, ay— (a+p+2 /2, b,=1+4q,
and b, 1,2, then we have the following formula for the generalized Sister
Celine’s polynomial [10]

f(a./il A3z - v ey ap, X | = 7,0,,—‘_:)1,, xl—c
" b’, ceey bq’ (I'L""f‘ﬂ)n"!

< an (:,uwﬁ Fllatp+1)2, (a+p+2)2, as ..., @, dux—u) )
~ ou” PPN ba, 1/2, by, ..., by, ’ x iex
For « p 0, this reduces to a formula for Sister Celine’s polynomial [6].

(vi) When w4 1, p 1, g=k, a, ¢, b;=(a+i)k, i 1,..., k, this re-
duces to the generalized Rodrigues formula [7, (4.5)]

Zox; k) (knta+1)x*=9nl(c),)

L 0" (u" — c . x_’"»-f-zz J)
© our Tk @Dk, (@ k)R X )

or the polynomial Z¢(x; k) studied recently by Konhauser [4] and Prab-
hakar [7].

On further specialization of parameters (4) reduces to the well-known
Rodrigues formulae for the classical orthogonal polynomials. Thus for instance
in (4), put u i=1,¢ l-ta p ¢g=0 for L{Px)and » 2,2 4,¢c 1,a,=1/2,
p=1, ¢ 0 for P,x).

3. Double integral representations for R* (x)

(i) We first obtain the following double integral representation

(5) Riux)= [B(l, s){l +s+ r)l-’?_cf e iy (x4 y) xt-Tys—l
00

<Rc; ay, ..., ap [ 55 b6,..., b, 1, [4+s+r; dtxidxdy.
Puting in equality [2]

(6) Flolx + yyxi—tys—tdxdy =B, s)[o(ayu' -+ 'du

00

p=ue" we get

?J’ e+ (x4 y)r),r——lxl—l

00
XRHC; ay, ..., Gy Lis; b, ..., by l, l+str; dtx)ydxdy

- T sa) - (@phl —mpdr(n—1, c+n)

”k_kB [A k‘ s ue""u’“‘*""—‘dt,
kom0 Dl 45+ )by - - - (by)k! t*B(l+ ‘)X\[ ‘

which through [6, 15(1) and 19(3)| leads to (5).
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(ii) We now show that

y 2—(1*"“2)1‘(l+s+v) 21251 x2 ,Vz o1
Ryx) = ()T (v) ElLane o [l ]

x[";;(c; A,y vny Qo I+S+D5 byy.. ., by, l;%t)dxdy,

for x=0, y=0 and x’+3y?<2, where Re(/)>>0, Re s>0 and Re v>0.
By taking f(ax?+6y°)=[1—(x>+y?)/2|°~! in (6) we obtain

ST s flaxt + by?dxdy =

e L+5—1 £{ v\
a bs' B(lv S)(!. 2t lf(x)dz)

where the double integral on the left is taken over the domain defined by
x 0, y=0 and ax®+by?<c? and proceeding on the lines of (i), we get the
desired result.

(itiy It we take f(z)=2"(1 —z), then

j f1 fluv)(1 —u)y—'ve(l —v)/—'dudv= Bla, bldflf(z)(l —z2)etBtldz,

where Re(a)>0, Re(8)>0, then we are led to the following interesting integ-
ral representation for R“(x)

1
Ri(x)=[Bla, AB(r +1, B+ )| [0y (1 —uwp(1 —up—tze(1 —op—"

XRee: @y, ..., ap, a+pB,at+B+e+r+1; by, ..., by B a+p+e;dx(1 -v)|dudo,

where Re y> —1, Re(a+8+0)>0, Re(a) >0, Re(B8)>0.

As in 2, by specialization of the parameters, one can obtain double integ-
ral representations for several known polynomials as well as for products and
squares of a number of them.
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