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NONPARAMETRIC ESTIMATION OF CURVES
WALTER SCHLEE

In this paper we deal with nonparametric estimators for muitivariate distribution func-
tions, multivariate densities, multivariate regression curves and derivatives hereof. Consistency
and asymptotic normality are proved. Optimal parameters of the estimators as functions of the
sample size are computed. Estimation and test of the structures of the theoretical curves are
discussed.

The given estimators are some kind of kernel estimates, which are investigated for in-
stance by Parzen (1962), Murthy (1965, Nadaraya (1965), Cacoullos (1966) and
Bhattacharya (1967) in the case of a density. In the case of a regression curve there are
papers by Nadaraya (1964) and (1965), Schuster (1972), Stone (1977) and Meyer
(1977). The paper of Tukey (1961) gives a regressogram, which is an analogue to the
histogram in the case of regression.

The paper of Stone (1977) concerns only the consistency of nonparametric regression
by weighted sums. However our aim is to give the actual bias and limiting expectations, va-
riances and covariances. In our cases the consistency follows immediately hereof. Meyer (1977)

puses splines for deriving convergence bounds like the ones described below. Smoothed distri-
bution functions are given e.g. by Penkov (1976) and Wahba (1976). For distribution func-
tions we use splines, which are piecewise polynomial of at least third order.

The main emphasis of this paper lies on the fact that there are investigated the statistical
properties of the really computed regression curve resp. density resp. distrtbution function esti-
mator (besides numerical contamination caused by summation and miltiplication). Indeed no
further discretization is needed here in contrary to the usual kernel estimates and the func-
tional series expansions. This is achieved by some simple histospline whose complexity, how-
ever increases with the needed number of derivatives. A further advantage is the possibility
of on-line computation of the estimators.

1. Description of the estimators. Iu the following we consider random
variables (X, Y), whereas X is a g-dimensional r.v. and ¥ a y-dimensional r.v.
Developed are estimators of the distribution function F and density f of X and
their derivatives and an estimator of the regression of ¥ on X, that is g(x)
&(y|x) and the derivatives of the product g(x)f(x). Let us have a sample
(X, Y:) of size n and let r =(r,,..., r,) denote that the r,-th derivative in the
variable x,, j=1,2,... q is taken. By r, 1 we denote the integral with res-
pect to the variable x, Let be r|-Xj_,r, Sometimes r denotes an index
vector with only one component, but confusion is avoided. The estimator for
the density resp.d.f. (r—=( -1, —1,..., 1)) and their derivatives is proposed
as follows:

. 7 X, —i;8
(1.1) O ey X hTrx /lllk"/’( ,L,-..’.-A)Ju)F,,,
..... .
(fa.---- D is the smoothed estimator of the d.f). The estimator for the pro-

du"ct f(x)2(x) and its derivatives is
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G - —i:8
(1.2) P (X .y Xg) =A==t Xy 11 k"ﬂ(f’Tl—’L) 1(i)F,.
3 i J=1
q
n (1.1) and (1.2) and in the sequel the sum is taken over all integers i;
= —o0,..., koo, j=1,2,..., ¢ unless there is axplicitly given a restriction. A
suitable estimator for the regression is

'Y(])/fl(-rlv A '¥f]) ‘f fﬂ(x) '\Oy

0 it fa(x)=0.
The explanation of the parameters is as follows: i=(i,..., i) denotes an
index vector. There is given a partition of the 7 into intervals with side

:ength B(k) and h, p are parameters 0. They are connected by thé following
imits :

(1.4) lim Ak(n)=0, lim pg(h)/kh -0, lim nh%(n) -c.
h >0

n-»c0 n—oo

(X enny
”':;) .gn(xl'- 0y xq)':{ e

Occasionally additional limits are demanded. By y(, we denote the arithmetic
mean of all sample variables y, whose corresponding x lies in the interval
N7_;)(, 1)B, iB); further F, is the empirical distribution function of X and
A(i)u denotes the g-folded difference of a function z: R? >R with respect to
the chosen interval partition defined by the side length f:

(1.5) ‘“i)u: . B ju((il —'].1)0’,- AR (iq _jq)ﬁ)( l):jk.
q

Jre e

whereas the summation is taken over all values j,, jy ..., j,=0,1. Therefore
A(i)F, resp. I(i)F is the empirical resp. theoretical probability that X lies in
the interval 11{_,] (i;— 1)8, i:B).

It is assumed that the function £: R — R has the properties:

(1.6.1) k(x) =0, R(x)=0 vy x:|x|>Cy,
(1.6.2) k is Riemann-integrable,
(1.6.3) [ k(x)dx=1,

R
(1.6.4) sup |k(x) =C,.

If the r,-th derivatives are considered there will be assumed that
(1.6.5) k is continuously differentiable up to the (r;+ 1)-th order.
Generalizations are straightforward like replacing

(i) A9 by k",

(i) 19y k((x,—igB)/h) by R((x,—i,By) Ry« o vnnny (Xg—igB) hy),
(iii) (1.6.1) by k(x)~O(x™") for x — 4 oo,

(iv) or dropping the positivity of k.

Only the case I1f., k((x;—i,8,)/h;) with different 8,, h; is practically interesting.
In order to keep small the number of indices we dispense with the explicit
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elaboration of this case. It will be seen that all results remain valid. We do
not take into account the remaining generalizations because there seems to be
no real application.

The announced immediate computability of the above estimators is realized
only if we choose an appropriate function 2. But we would like to confirm
that the below described special form is not used in the proofs. This special
form is only proposed for computational convenience.

Constructing & we begin with the (#+ 1)-th derivative, if the r-this needed.
The derivative &) is defined as a linear spline on 2277 intervals with equal
length. For simplicity let the length be equal to 1. The lefthand endpoint is
assumed to be a—?27+!' and the righthand endpoint a-+27+' with integer a. The
maxima resp. minima are ¢ resp. - ¢ whereas ¢ is given by the condition
(1.6.3). We assume that & is symmetric with respect to a and non-negative
and takes its maximum at the point «. Further it is assumed &*(a—27+") 0,
kD (a+2+t)=0,i-0,1,2,..., r.

These splines may be defined recursively beginning with a spline &(*, a, 0)
of order O with the following second derivative :

&g If a-2- x<a—1,

—e, if a-l1-—-x<a

’" 0)— L) . )
X 8 B —, if a x<a-l1,
g If all--x a+2.

This implies
eo(x—(@—2) i a—2=x--.a-1,
—go(x—a) if a—1=x=a,
—eo(x—a) if a=x—-a+1,
g(x—(@+2)) if a+l=x_-a+2;

k' (x,a, 0)=

(x—a)?24+2(x—a)+2 if a-2 -x-.a—1,

(1.7) k(x, a,0) (x—a)?/2+1 if a 1 x-Za,
’ £ —(x—a)?2+1 if a=x ‘a+tl,
(x—a?2—-2(x a)+2 it at+l x al2;
0 if X=a—2,
(x—ap/6+(x—a)?+2(x a)+4/3 it a 2 x a 1,
(18) £ V(x, a,0) (x—a)’/6+(x—a)+ 1 if a—1-x -a,
' %0 —(x a)}/6+(x—a)t 1 if a=x a+l,
(x—a)’/6 —(x—a)*+2(x—a)+2/3 if a+l -x at2
2 if atb2 x

The recursive definition is:
1.9 Wix,ai) | R a=2, i D, it a-27Tsxsa,
(1.9) o | —k(x, a2, i—1)e,_, if a x<=a+2°t,

and the symmetry yields ¢ 2 * "
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The algorithmic computation of the spline of order i begins with its
a i (2)-th derivative, which has the values +¢, only. The symmetry described by
(1.9) yields the following table of the signs of the (i-+2)-th derivatives:

a

k2 (, a,0): 4 —i—

kO, a, 1) o

kDG a,2): 4 =t

The table can be continued easily.
By integration we get the lower derivatives of k or k itself or its in-
tegral. Let the [-th derivative in the interval (j,j+1) be denoted by

2—

(1.10) £1() '7_

1
L gk
o c/kx .

The equality 7 '(x) =fi N+ Ak CLxrHT— jE 1)k implies the recursion
formulas

ci+?— +¢ according to the above table,

J0
(1.11) cltcl, Jky k=1,2,..., (+2-1),
sy Fept
Jo j—1 ooy ’
iy i,

Computational forms of the estimators are

[ (x) == (nhot 1)~ S e (t'fi;'('il—)ﬂ)
=1 j=I

(1.12) e

N .

A (x)= (nh?+ R Iql ku/)(-ﬁ_",’(ut_)ﬂ),
" 1=17 j=1 g

whereas i,(u;) denotes the index i=(i;,..., ig) of the sample value (y, ;)

with u; ¢ 117_,] (is— 1)B, is8). The formulas (1.12) show that the estimators can

be computed on-line adding step by step Il}l:lk"i’((x,» iy (u,);i)/h) resp.

Y, B2 ((x;—i; () B))(h). In the sequel we use the abbreviation &) (x, i)

N9_, k" ((x,—i,B)/h) and z;, 7 denote appropriate values of the interval

W] (i—1) B, iy B): ,

2. Some basic lemmas. In the sequel the properties (1.6) are assumed
valid. The first three lemmas are needed in order to handle the derivatives and
the integrals.

Lemmal. Let v,: R >R, j-1,...,q be of bounded wvariation and u
Re R a bounded function, v W v, If A(i)v is zero outside a bounded
domain, then
(2.1) S o)A (1) T u(ip)A v

I,,
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R
q

The proof follows from the fact that the righthandside of these equalities
is absolutely convergent for a given interval partition.
Lemma?2. Let u:R — R be (r+1)-times continuously differentiable, then

=1y, ue) 1@ B A8,

(2.2) uO(c—ip)=p " % (;)u(x—u‘—t)ﬂﬂ D71 BC gt Bt

(=0

C,:, is a constant which depends on u and r but does not depend on f-

Proofi. The proof follows by induction. For r -1 the formula (2.2) is
implied by the power series of u. For u” the power series yield

ur i (x—ip) - pN (WO (x—(E—1)B)—uD (x —if)) — CutH(x —if+4i+2).

Assuming now that (2.2) is valid for r the formula (2.2) may be proved
for r+1.

Lemma 3. Let u:R9--R (r+1)-times continuously differentiable and
u'r+Y bounded and Riemann-integrable, then

(2.3) uln (ey—iB,. .., Xg—1igh)

p-iri X S| (’f)u(x—(i—l)ﬂ)(——l)"i~”~517(x—iﬁ+r)".+‘),
=0 lq’ 0 j==1 1,‘
where u s a bounded Riemann-integrable function.

The proof follows by lemma 2.

Lemma 4. For all -1, r;=0, j=1,2,..., 9

(2.4) lim ¥ (RO (x, i))‘(-f;)q = 11 [ )yat.
h -0 i.....l'q J=1

P roof. The formal identity

AT =R )]

i;,.-..lq/:l

oo

allows a reduction to the I1-dimensional case. X can be replaced by

=00
2 because k(" is outside the domain described by C, equal zero.
it |(e—1gy h|=C .
This sum has only finitely many summands and is a Riemann sum which con-
vereges to the corresponding integral.
Lemma 5. Let r;=~0 and u:RY->R be (r,+1,..., r,+ 1)-times conti-
nuously differentiable in a neighbourhood of x.Further let

sup | wx) v (e 1L, 1B, i8], lim BhYAT 10,
X J=1 hi—at)

“

Then
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(2.5) lim A X RO (x, DuE@) () = w0 kY.

h— o0 Iy, oo oy

In the case of r| -0 only the continuity of u in a neighbourhood of x is need-
ed. It is not necessary that (1.6.3) is fulfilled.
Proo f. In the case r - 0:

s B, ) (8 weo)—aormdy | <8 Eee () @) - u)

tlx.—i. 8

J 7
[ \S) N : E_q < INE / f q~—- ‘ ) |
Ly, R D(5) @ we| SR (5) - TRty ux)

sup u(x)y—u(y) v k(x, i)(%y

volx—yl 84 i !"j—ijﬂl s

+2 sup u(x) z k( x, i) (%Y + sup u(x) ,':E(x,i)(%)q_(.[k(t)dt)q@.
x {: ‘Ij—'i}d“/\" X LI | |
The continuity of u at the point x implies the existence of a 6 and a (k) suf-
ficiently small so that sup{ u(x) —u(y) <n : y: X —y|=d+ 8} for
every 5>0. Now we choose an & (and B(k) eventually decreases) with 8/A>C..
Then the second sum is equal to zero. .
Lemma 4 implies that Y k(x,i)(8/h) is bounded and that the third
i:|x .—i}ﬂiﬁd
summand converges to zero. ’
In the case | >0: According to lemma 2

ST Ve, = (= 1) 7 Bk iB) o,

1)
L, ..., lq=0/'=1
nr s oG, ) 4

w11 (1) = 1) (=17 @) (£) g

i1 J=1 j
h=" (B/h) = ;\(x—iﬁ+ n ) u (5’)(7,4)"'
i
With the propositions about & and about 4 7 ~'B the second summand con-

verges to zero. Using i;: —i, -/; and lemma 3 the first summand is ftrans-
formed to

gora i (;;)E(x,i)( )" ‘u(fm)(ﬁy

=1
S (5) R D @ @) +pE G ).
i

Lemma 2 and the case |r =0 imply that this quantity converges to the
one of (2.5).
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Lemma 6. For all u, v>0 and (xy,. .., X5)=(Y\, ..., ¥q) and bounded g
it holds

(2.6) lim X (R (x, YR (y, i))‘v(%)” £(5) 0.

h=>0 §, ,.. 7

Proof.
:{'(kw (x, D))k y, D)) (-%)"g(&)

sup g(x)Isup &U (x) " X » (kU (y, i) (i)q

L i )0
csuplg(x) sup B ()0 X ke ()
X y i: (xl. - l'j;l) /h| >6 h

At first we choose % small enough so that 8/2>C,. Then the second sum-
mand is zero. Further we decrease # so that x; -y, >2C.h. Then the first
summand is zero.

3. Bias and consistency. Estimating f, (gf), 'r|>0. it is possible to
give a limiting variance in terms of f resp. (gf).

The consistency follows if we additionally suppose

(1) lim nh9+2r - oo
R0

(ii) that the bias converges to 0.
These are restrictions to both p(k) and A(n).

Theorem |. Let r; -0 and the density f be (r+1)-times continuously
differentiable. Then

(3-1.1) lim 8f() (x)=fXx),
(3.1.2) lim var ((nh?)"* h'"! f,0(x)) = f(x) Iql [ (R (t)?2 dt.
n-+00 J=1

If fis (r2)-times continuously differentiable, k symmetric to zero and C, .
i=1,2, 3, r are suitable constants then

27 9 r)
@1y bl a0 =5 ¢ 5
- i

([£2k (tydt) + Cy f,]

f(!fl_) ‘Ci.n "h l Cr,n)+ﬂ(:l,n-
If r|—0 then C, ,=0.
Proof. Proof of (3.1.1): 80 h 11X kx, i) (BRI M B, MDF/p?-f(&)

and lemma 5 imply the assertion.
Proof of (3.1.2):

Var (nh?) k7 fO(x) = nh 0 S X RO (x, DR, HSAENE— F)A ) (Fa— F)).
i

I 00 j: SNNEn—F)N ) Fn=F)  —a@)F. 1) F/n. 1t i j: S(AUNF. F)?
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(o ]

= A(f)F(1- A(i)F)/n. Therefore, the summands with i=-j are of order A% and are
added up to order h? according to lemma 5. Consequently this sum converges
to zero. The remaining sum yields the stated value.

Proof of (3.1.3). According to lemma 3 and the proof of lemma 5 there
exist bounded quantities Ci,, C,, with

b[fi,')l _p—irl };E(r) (x, i) (%\)q f(&E)—f(x)
Sk, ) (5] 0@ 0 N+ (SE (G 1) 700

+h—l" (ﬁ/'h)(:,',, + ﬂCl.m

taking into account that (3,k (x, i) (B/h)?—1) converges to zero like (8 h)C, with
a suitable constant C,. The Taylor series of f() yields

q -~ ~ Ay af(f) i & .7 A A (BT a2f(r)
Rl 3 x I (BIh) ‘ RS sk d TG e
(/=l . k (x) l) h (ﬁ/h) ox/ N + 2 o1 i ( ’ ) h h \h| axlaxl le,

+(B/R)Can+b " (B/R)Crn+ BC e

The symmetry of % implies the first sum to be O and the second sum reduces
to a sum with /—=/. Therefore, the assertion is true.

Theorem 2. Let F,—fC'---- 1 be the smoothed d. [. estimate. If k
satisfies the conditions (1.6.1)-(1.6.4) then:
(3.2.1) lim 8F,(x) = F(x),
(3.2.2) lim Var(yn Fu(x))= F(x)(1 — F(x)).

n=4o0

If k and F are continuously differentiablein a neighbourhood of x and k is
symmetric to zero then the bias is

aQ ¢ = o .o R L F ;
(3-2.3) b[F,.(x)] = O ,,(x)-—F(x)- -C|.,,~;"+—2‘ [i:l dx,f ix (ftak(t)dt)"*‘cln%} :

Proof. Proof of (3.2.1): Using lemma 1 and x—if--nh=x- (i+1)8
we get

~

SR (x, DAWD)Fn) — (— 1) = Fp)Ai + 1)kt (—1)w;F(iﬁ)%(m. i)(B/h).

This quantity converges to F(x) according to lemma 5.
Proof of (3.2.2): Taking into account that
o . L. —ADFAHF it i),
Hnd() (Fa—EYA)) (Fa=F)) {A(t)l" (1—A@F) it
we have

S Sk (X, )RV (x, j) i) (Fa—F) A() (Fa F)
i
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—3 3 kD) (xi)k— (X ) ADFAG)F + V(k( D i) A(F.

i

According to lemma 1 the second sum can be transformed to

SF(R) i+ 1) (R (x, 0)) = SFB)Y (R Dy, )H0 - V(B k).
Lemuma 4 implies the convergence of this sum to
F(x) 11 fd (kD) - F(x).
J=1

Proof of (3.2.3). Cousidering the proof of (3.2.1) we get the following
equality :
SFBYR(,, 1) (B/RY— F(x)

~SFB) (i, D=k (D) (B0 Z(F () Fx)k(x, i) (B0

+ = (F(tﬁ)—-F(x))k(x z)(-ﬁ) +(:_‘E(x, i)(%)" F(x).

i:x—18>48

d>0 is arbitrary and we may consider only such h’s which are small enough
to yield 8/A>C,. Using the Taylor series of £ and F and the symmetry of &
we obtian the assertion analoguously to the above proofs.

Now ¥ denotes the sample vector (Xj,..., Xp).

Theorem 3. There is assumed that bounded wersions of the condi-
tional expectation 8(Y| X) and the conditional covariance matrix exist. In
the sequel we denote 8(Y X) by g(x) and the conditional covariance matrix
(Cov(Y,, Y, X)) by (0,.(x)) and o* denotes the vector (d},...,0))=(0,y,...,0,).

The product g(x)f(x) is supposed to be (r+1)-times conttnuously diffe-
rentiable, then

(3.3.1) lim Sy{D(x) = (&(x) f (%)),

(3.3.2) lim Var ((nh)"/2 A7l 40 (x))—o’(x)f(x) n f(k"’(t))’dt
If viu then

(3.3.3) lim Cov ((nh?)V2h"1y\1) (x), (nh9)'? A"y (X))

(0,.(X)+g, (x)g,.(x)f(x) /fll f(kfr/) (¢))%dt.

If of is (r+2)-times continuously differentiable and k is symmetric with
respect to zero then

(3.3.4) by (x)] ’;.[/§| d.(dfm (ff’k(t)dt)!’(-cn(ﬂ/h)}
- o

+(B/h)(Ca,n +h711Cr n)+BCra
with C, ,=0 if |r
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Proof. Proof of (3.3.1):

84 (9)=8 (8 (A0) | X)) = A SEn(x, D g () () 40F.

The proof is similar to the proofs of the above theorems.
Proof of (3.3.3) and (3. 3. 2):

Cov (nh?)V2h 7 1p0)(x). (nh9)2h! 7 $)(x))
S RhIEE RO (x, ) RO (x, ) (Vi MOFa—&E)NDE) . (YA )En—&UNADF).
iJ

The stochastic independence of y(, reduces this sum to & =j, [=1,...,¢. The
assertions are obtained by

(VA &(E)AOF) (YoM Fn—Eul &) AWF)
= 8( Wi — &) (¥ (ire— 8ul€0) (A F)* +8,(5)8uE) (A0 Fa— ADF)?
— (Vi — & ENANDF 8, (&) (ADEn— ADF) — (M~ LulEDADFngoE0) (ADF,
— AP = (0, 0n)/n) - 8 ST + 2,(E)@(EADF( — ADF ).
Proof of (3. 3. 4). With appropriate constants it holds:

bl = k7 SR, Dglefn) (%)" — (g()f(x)) D

= 20 ) (4@t fnn — g0 £) )

@R ) () 1) @ )+ Crnht ™71 (B/H) + B

" Theorem 4. Let f and g be (r+1)-times continuously differentiable.
en

(3.4.1) lim Cov ((nh9)' 2R 7 f0)(x), (nh?)'?h 7| yD(x)) = &(x) [(x) ,‘i j (R"7(t))dt.

n—oo

Proof.
8lnh=2 ZERO(x, ) (Y Ay —8,(&)ADF)ENx, J) (A )Fa—AC)F]
=k~ 3 SO DR SN Fa—F) () (Fu=F)).
The assertions follow by argument similar to the above.
Theorem 5. Let B,: = b[y"(x)]—b[f0(x)) (&N "/f. It is assumed that
(3.5.1,) ltm nh9+' 71 = co and limnhvt! 7! B2 <oo 7 X.

Then it holds
(35.2)  b(y(x)/fNx)) = 8@ fiN) —@NHVID = By(X)/f"(x)+ O(n=2h—2— 211 1),



196 W. SCHLEE
Proof. The assumptions of the theorem yield the convergence of /17 to
[ in probability. Let be v (gf)"/f".
:,(r) .
’ [ff"] = (SO D D) 0= 1Y)
For i=1 we have
o,'(:.ixr) _.Z,f;r)) (/':'lr) f(r))i < ‘(n;(y,(”r) ‘Z,f\nn)ﬁxg(/"\'r)_f(r))m)l '_’,
Sy, —vfn)2=Var (1) + v Var (f)—2v Cov (7, f)+B;,
O(nh=7=27 )+ O(By),
21
B SO LY+ S GOV (B AP
=2

b f\7] is of order 5 and & fi7 —&(f,) of order (nha+2171)=12 This proves (3.5.2).
4. Asymptotic normality. In this part we show the asymptotic normality
of the r. v. (Z,,T(x,), ..., ZX(x))), whereas

(r) —8&y((x
(4.1) Z(X)"'(ﬂhq‘{’? r»)l'g g (X) Vn (\) i
' fO(x)—=8f(x)

(4.2) Z(x) = (nhe) 2Rl 7 (?},"(x) -(gf)"’(x))
n fflr)(x) _f(r)(x)

if

(4.3) lim (nhe' 27"y  max (b f), by =0 wx.

Moreover the asymptotic normality of y/f) follows by (4.3) and a theorem
which one finds e. g. in Witting [18, p. 49]. Theorem 9 gives the asymp-

totic normality of 7, The following theorem gives an [-variate central limit
theorem for further use which the author did not find in the literature.

Theorem 6. Let X,k 1,2,...,n, be stochastically independent l-di-
mensional r. v. with expectation vector ) and covariance matrix C"* :(o}.;"‘));

Xima denotes the i-th component of the vector X, If the matrix

n
(4.4.1) @ - lim ¥ CUo

n-reo R==l

is strictly positive definite and

(4.4.2) lim ¥ max&/ X,/ 0,

n-roo Rl f
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then lim, Y, — lim, Ss_ Xk is [-dimensionally normally distributed with ex-
pectation vector O and covariance matrix € lim, e Yi=1CUR.

~ Proof. According to a well known theorem that an /-dimensional r. v.
is_ normally distributed iff every (non-zero) linear combination of its compo-
nents is 1-dimensionally normally distributed. Therefore, we consider the random
variable U,,= 3{_14.X,,, with some vector a=(a, a,...,). To show the
normal convergence of X;_;U, we use the normal convergence criterion of
Loeve (6, p. 307]:

Let be F, the distribution function of U, There has to be

n

gn(‘)’ = f w ~U¥Fu— 0.
k

This criterion is fulfilled if

(4.5.1) Upe ?—0 and

| 14=
Gz

k=1

(4.5.2) lims: - lim N Var (Upn) exists and is greater than zero.

n-—oco n—oo k=1

With the Minkowsky inequality we reformulate these conditions in terms of Xjn:

1

[ i
S| Un (Y i (8 Xime P)'P)’=( ;l!a.‘ )P max & X ®.
i

=1 i=

Now we see that (4.4.2) implies (4.5.1). The relation Var(Uy)- a’C"®a to-
%;ther with (4.4.1) implies (4.5.2) and Y, is proved as normally distributed in
e limit.

- Theorem7. Let X\, X,,..., X, ¢ R? denote continuity points of f") and (/)"

With f(x,)>>0 i=1,2,... 1. The covariance matrix C(x,) of z4(X,) is assumed to be
Strictly positive definite and continuous in a neighbourhood of x;. Further it

is supposed that a bounded version uyx)(g-dimensional vector) of the condi-
tional third absolute central moment of Y exists and is continuous in a
neighbourhood of x,.

Then (z,(Xy), - - ., 2.(X1)) is asymptotically normal with expectation zero
and covariance matrix C* which is block diagonal with block matrices C(x):

| gl("t)

B (0. (%) |
(4.6) C(x)= I g ()

lg(x) .. g0 ()]
va(x) O'I‘(x) '*'A"('\‘)gll(x))'

- Proof. We apply theorem 6. Let /(X|U) be equal 0 if X<<U/ and equal
L il X/, then

W f(x) I [(B](t))t,
j=1°

1
n

ANF, - F) fld(i)(/(- Us) - F).
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U, ...,U, are the sample variables, x;¢R? Then the r. v. of theorem 6 are:
Xjns — n=Y(nh9)\ 2h—1 X,k (x;, 0)A(i) (I(-| Us)—F),
resp.
n=\(nh?) 2h=1 X RO x ;, 0) (Vg —g(E A - | Us)
corresponding to f\") resp. y\n.
EXns=0.

(> is already given in the above theorems. Only the zero's outside the
block diagonal have to be proven: let be x+v
Cov (mhN'V2h17147)(x), (nh9)' 2k 7 157) (D))
k=X RO (x, i) XEO(D, j)X (Vi ADFn ~ g ENAG)F) X (Y 5N J)Fn
i
—&(ENA())F))-

Like in the proof of theorem 3 it follows:

h=a X kO (x, YN v, j) [0,,n,) AEF + g(E)(EDMDF( — AHF)).

LLemma 5 implies that this sum converges to zero.
Cov (nh9)12h'  1y\D(x), (nh7)'2h! 7' f)(v))

= 8 nh=9X XRO(x, i) X B, [)X (Y A () F—guE)A@)F)
T

X (A ) Fa—ADF)]
The proof of theorem 4 and lemma 5 show that this sum converges to zero.

This proves the block diagonal form of C*. C* is positive definite because ¢
is it. This is the proof of supposition (4.4.1).
Now we show (4.4.2):

S, vyu|Us) =8 ADI(-|Uy) — F X Mo)(- Us)—F|x Aw) I(-| Ug)—F),
Sglly v, u | Uy)
=8 YVis—8(Ei5) X' YVos—8(5vs) | X Yus—8(Eus)| DI | U)A(0)I(- UpA@)/(-| Uy,)).

There are three cases to be distinguished.
Case 1. i=v-—=u, let p=A(i)

E AU =F) P =p(1+0(p)), & Yis—8(&1w) P+ Uy))* = ug(nye) X p-
Case 2. i=v,u i, let p,  AF, p,— Au)F
iy byu Uy)= pypd) +O(p)+0(py))y 84l iy 1| Us)= 0¥nis)uay(n5) -0 - 0.
Case 3. ,u, v different, let p, = A())F, pg— MO)F, py - Au)F
Syl u, v Uy) = p, papa(1 +0(p )+ O(p)) + O(py), 8ol u, v U) - 0.
If X),, denotes a component corresponding to the density estimate:
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8| Kjns * = (mRYY=52 [ X B (x,, i) BAHF(1 + O(B7))
13X Y N(RN(x), D)) (RD(xp, w) | AGFA@)F(1+ O(B7))
ik

+ X X XRO(x5, HEO(x ), 1)k X, @) MDFA@)FA@)F(1 4 O0B7),

8| Xins 13 n=Y(nh9)—12|const + O(h7)).

Similarly we have in the case of a component corresponding to ;"
& Xpns P (mh0)—32 X RO(x;, i) Pug(nis) AOF < n—"(nh?) 17 . const.
i

Y]

Now it follows X7 ;max&|X,,, 3= (nkh9)"?[const.+ O(h?)]. The righthand side
i
of this inequality converges to zero because lim n4%2 7' - oo implies lim nk? = co.

n— oo n—oo

Theorem 8. Let x¢R? with [fO(x)=+0, f(x)>0. If limnkho+ir

<max {by0], B fO)} O then gu(x)=(nh?)\Ph " (AD/[fO—(2f ) f) is asymp-
totically normal with expectation 0 and covariance matrix

(&) x)

| Z5(X) Zul®) (gN"x)
(4.7) (0, u(x)+ 3 (g.(x) ‘W)+ ‘“-2—' (g.(x) -f—”—‘;;_,)
fx) q (r) <
— 2L I [RY7(y)2dy.
Fogar < SR,
Prooi. We consider the mapping
0

" iy
. 7;(_) — ('): .
D
f:rq) "nc/fn
In

According to theorem 7 (nh?)'72h’ Zn—(nh9)\ 2R "IN, . .., yfu’,?,j}‘”) is asymp-

totic normal and Z, converges in probability to ((gf)‘,",...,(gf)‘;,’—’,f‘") under
the assumptions on 4 and §. »

As one finds, e. g. in Witting [18,p. 49] (nh?)'?h "(V(Z,'.)—(g/)")/f ) is
also asymptotic normal with expectation zero and covariance matrix
E’((gf)‘’*/f"’)@(x)ri((g/)m/f"))’. F((gf)n/fn) is the functional determinant of the
mapping V that is 7(c) - (0V;(c)/0z)). Some computations yield (4.7).

Theorem 9. Let Zn— VA(Fa(x)—8Fu(X)), - .., Fa(%)— 8F(x,)). It is as-
Sumed, that x,,...,x, are continuity points of F and F(x)>0, j=1,2,..., 1.
Then Z, is asymptotic normal with expectation 0.

Proof. To prove the asymptotic normallity we apply theorem 6. Xju
= n12% k-N(x,, A@) (/- Us)—F). The third moment is computed according
to the proof of theorem 7 and thereof if results:
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8 Xjng 3—mn—12 [- B (x5, i)l‘i.J(i)F—f-O(h‘l)J.

According to the proof of (3.22) we obtain I kD(x;, i) |2 A F
NoFUR) (R (myy £))P))(B/5)?. This quantity converges and we get (4.4.2).
5. Minimizing the mean square error. The aim of this part is to obtain

the parameter £ as a function of the sample size n in order to minimize

E(Zn(x) - Z(x))?=Var (Zu(x))+(b[Zu(x)])*.

For Z, we take each one of the estimators F,, f\), »7, y)/f(0. The above for-
mulas of the bias show that there is not such a simple expression as in the
case of the usual kernel estimate. The reason is that we use certain Riemann
sums which give the additional terms of the bias.

Further we assume g- 4% with «>0 sufficiently large. Therefore we use
only the large terins of the bias and we assume

(5.1) blz\(x)))2~BX(h*+ O(R*)) 6,0 >0, & >0.

The variance is assumed to be

(5.2) Var (Z,(x))~An—"h—%, w>0.

Using lemma 4a of Parzen [I11] we get

(5.3) r:)l(r} (An—"'h—* + Bh%) = (8 + w) (B/w)*(An—1, )/ +@)

for h=n"1w+) (wA/SB)@ 9. If we require lim,owo(nh?)?h 71 o to achieve

pointwise consistency then we have the condition e<(g+2|r|)~" for h=~Cn—.
This is fulfilled for the % in (5.3) because in this case w-¢qg+2|r|.

If we require lim, ,.(nh?)"?hA'71h*2-—-0 to achieve asymptotic normalily
with expectation lim, ,.. 6Z,(x) rather than &Z,(x) then we have the condition
e>(q+2 r|+0) " & for h=~Cn—. In this case we have to consider the fol-

lowing minimum problem

mm( J 14w 4 BCon—+) = min b(e).

pIT & >80

b(e) is a monoton increasing function for e — ¢, and large n. Clearly the mi-
nimum is attained for e=¢, Moreover it is possible to fulfill the two con-
ditions e< (¢+2 r)~' and e>(¢+2 r +4)' simultaneously.

6. Estimation and test of certain curve characteristics 6.1. Linearity
of regression. We assume that the density f of X is known and that both
random variables X and Y are one-dimensional. The density of X is known
for example if the experimentator can choose X arbitrary and he may choose X
at random in an interval [A, B]. Then f(x)- (B—A)"'. In this case »/fis an
estimator for g. If g is linear, then the second derivative is zero and
m(x) 0%,(x)/0x? is asymptotically normal with expectation 0. The random va-
rfables m(x)),...m(x,) are stochastically independent in the limit. About half
of the values of mi(x)),..., m(x;) are greater resp. less than zero if one
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chooses x,, ..., x; at random. The limiting independence yields now that the
relative frequency of the positive values are nearly normally distributed for
large /. If [ tends to infinity this relative frequency is about the area of
{x: m(x)>0, x¢[A, B] divided by the interval length B—A.

This fact may be used to test linearity. In the case of higher dimensions
there have to be considered matrices of second order derivatives. Moreover,
the second order derivatives may be used to research convexity of regression.

6.2 Characteristics defined by equations. For instance the
mode may be defined by grad f’()) -0 and, therefore, the sample mode by
grad f'(4,) 0. The sample fractiles are defined by Fa(x..)=n.

Let ¢, be the estimator of a certain curve ¢, resp. ¢ the estimator of
the derivative @(”. We consider the equations ¢("(,)=a and ¢"(8)=a. Further
we assume H to be unique at least in a given finite interval [A4, B].¢'") is as-
sumed to be uniformly continuous.

Then the convergence of 6,—6 is equivalent with the convergence of
®'7(b,) to ¢"(B). The relations | g(8,)—@"(8) |=| () —@(Hn) | =sups | @(X)
~@{(x) | show, that this convergence can be proved if sup. ¢(x) —@N(x)
converges to zero (see theorem 10 below).

The asymptotic normality follows from the equation

o Opy)  agy) | .
a tp(,,’/’ (”n) q{y’f)(e)_‘("a:l' Tt 0\’,,) :x=0' (h_en)o J= ]' ey q,

for a certain 0%. If there exists an inverse of the matrix (dg(,//0x;) then
0fr('l') —-H‘
tnt (r)(f) — r,)(6) —a)7”
bt () | @) —a,. ., () —a)".
The asymptotic normality of the random variables (@{’(4) -a,..., 7'rPh) —a)

(see the above theorems) yields the asymptotic normality of 6—0, if the uni:
form convergence in probability of dg{",)/dx; is proven (see theorem 10).

Theorem 10.

(6.1) lim P (sup | Fu(x) ~F(x) =>¢) 0 7 e>0.
If lim nh?9+ 7D cc then

n-co
(6.2) lim P (sup f(x)—f")(x)|>e)=0 7 &e>0.

Proof. (6.1) and (6.2) are proved according to the same scheme :

SUp @a(x) -~ p(x) | < V14 V2 Vi=sup | @, (x) —p,(x) |, V=sup Egn(x)—a(x)].

Taking into account the proofs of the above sections V? tends to zero as
n— oo (V2 is not a random variable). To prove the convergence of V! we
apply lemma 1. N

bt The structure of g,(x) — &pu(x) is like X; v (if) A (i) (Fa—F). By lemma 1 we
Obtain
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(—=1) -:-:(Fn(iﬁ)"' FUB) i+ 1)o |~ (sup | Fu(x)—F(x) ) = A+ ol

From Kiefer and Wolfowitz [5] we know that for the empirical distri-
bution function of vector chance variables

P(sup, F(x)—F(x)|>i/n'")=Ce="
If 8, supxZ, | 4(i+1)o| then
p(v’lf \/6) Aé:P(suP 't FI'('Y) .F\'\’) 6,{);) \'Cl eXp [ “(1[16’,(3,;2]_

~

Case |, o, =F, then 8, > 1;
Case 2. g, =f then 8, — k=717 117_, [ R",;*D(y) dy.
Here of (6.1) and (6.2) are obtained.
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