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APPROXIMATION BY POLYNOMIALS WHICH KEEP THE MONOTONY
OF THE APPROXIMATED FUNCTION

GEORGI L. ILIEV

Let feC,, A=[—1, 1], —1=x<x,< - <x,=1; H, be the set of algebraic polyno-

mials of degree not greater than 7, ﬁ;:(f: Xg: Xii. .. X)={P:P€H, ; P'(x)=0 if f is mo-
notonely increasing for x€ [x, ,, x;] and P(x) =0 if f is monotonely decreasing for x€[x; .
X i=1,.. ., sy ES(fixg. . .;x)=inf{ f—PI:PEH(f; xo;...: %)

In the present paper the following estimation has been proved

ES(fix,;. .5 X)=C (s)ol f;n),

where w(f;d8)=sup| f(x')—f(x'") : x'—x" <4}
1. Let f¢Cy, 4=[—1,1] be a function monotonely increasing in 4, H,
be the set of algebraic polynomials of degree not greater than n, H!={P: P¢ H,,

P(x)=0, x¢ 1},
EL(N=int{|[f—P ,: Pc Hy)—inf{max{| f(x) - P(x) :x¢d}: Pe Hp}.
In[1] Lorentz and Zeller prove that

(1) Ex(f)~O(f;n),
where o(f; 4) is the modulus of continuity of the function f:
w(f; 8)=sup{|f(xN—fx")|:  x'—x" <4}

This result is remarkable with the fact that, in spite of the imposed addi-
tional condition on the approximating apparatus, the exact order for the uni-
form polynomial approximation, obtained by Jackson theorem, remains the same

Let — 1=x,<X%< - - - <X =1, Ha(X:s %,5 -7 X,)={P:
PcHye( -1)P(x)=0 for x¢[xi—, X}, i=1,...,8; e=+1}.

For f¢ C4 define the number:
Ei(f; Xo3 -5 X)=inf{ || f =P 4: Pe Hixq; -+ Xy)}.

In [2] the following theorem is proved giving an exact answer to the
problem for the order of approximation of partially monotone functions by
partially monotone polynomials.

Theorem 1. If f¢C, is monotone in any of the subintervals [x; X4
of A, changing its monotony at the points Xi, —1=X,<x,< - <x,=1;
i~1,2,...,58—1, then for every positive integer n:
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284 G. L. ILIBV

Ex(fi Xoi -1 Xa)<e(s)ol f3 n).

The problem for partially monotone approximations has also been consi-
dered in the papers [3; 4; 5; 6].

Let feCy, 1 Xolx,< - -<Xs—1,
Hi(f3 Xo3 Xy5 - =+: Xg) 1P: Pe Hy; P(x) -0

if / is monotonely increasing for x¢|x;—y, X and P'(x)<0
if f is monotonely decreasing for x¢|x;—q, x;), i—1,..., s}
ReLnark. When defining H3(f; x,; ---: X,) no conditions are imposed
on PCHWf; Xo: -+ 5 Xg) If in the subinterval |x,_;, x,| the function f is not
monotone.
Let

ENf: xo; -5 X =inf{ f— P ;2 PCHYS; X0 -3 X))

A basic result of the present paper is the following
Theorem 2 Under the above notations and assumptions

EXfi Xoi -3 X)=c(S)alfi n).

2. We will prove Theorem 2 in the particular case, when x,= 1, x, 0,
X, 1; f is monotonely decreasing in the subinterval [x, x;] and arbitrary in
[x), xg)- In the general case the theorem is proved by induction from this par-
ticular case and Theorem 1, by using the methods in [2].

Lemma 1. If f¢C, feLipyl, f(x)-0 for x¢[—1,0], then for every po-
sitive integer n there exists a polynomial P¢ H, such that P'(x)<0 for
x¢| 1,00 and [P ,~c,Mn-', where cy is an absolute constant.

Proof. It is clear that f is a function with a bounded variation and can
be represented in the following manner f(x)=f,(x) - fy(x), where f,(x)=/fa(x)=0
for x¢[—1,0], f,(x) and f4(x) are monotonely increasing for x¢[0, 1], f, € Lipy1,
f>€Lipy 1.

From (1) and [1] it follows that for every ~ there exists an absolute con-
stant ¢, and a polynomial P,¢ H,, such that

(2) fa—Py 4 cMn, PXx)=0 for x¢[ 1,1].

Theorem 1 and (2] yield that for every »n there exists an absolute con-
stant ¢, and a polynomial P, ¢ /1, such that

(3) fi—P, e Mn ', Pix) 0 for x¢| 1,0]

and Pi(x) -0 for x¢[0,1].
Let P=P,-P,¢ H,. From (2) and (3) it follows that

f P 1 ‘f| f_: ~~Pl*fp_‘ 4 - fl Pl a4 'fg—pg Atwsz’l -1

and, besides, P'(x)-- Pj(x) - Py(x)< 0 for x¢[ 1,0].

Thus, the Lemma is proved.

Thieorem 3. Let f¢C, A=[ 1,1}, feLipy 1 and let f be monotonely
decreasing for x¢| 1,0 Then, for any positive integer n there exists an
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absolute constant ¢y, and a polynomial P¢ H, such that for x¢A: f—P
=csMn' and P'(x)<0 for x¢|--1,0]

Proof. This theorem follows from (1) and Lemma 1. Assume first that
f(0)=-0. Then f can be represented in the following way

f(x) =@ (x)+gu(x), x€[ 1,1]:

0o xg]—l,()], ’”(x)__{ﬂx), xel 1,0],
flx), x¢|0, 1], 0 , x€[0,1].

From (1) follows that there exists a polynomial P,¢ H, for which

P(x) {

(4) o Py a==ceMn=t, Py(x)—- 0 for x¢[—1,1].

From Lemma 1 it follows that there exists a polynomial P, ¢ H, for which
) @ Pyl s cMn-1, Pix)—0 for x¢[—1,0].

If P—P,-+ P, then from (4) and (5) we obtain: | f—P ,~c,Mn—!, P'(x)--0
for x¢ |- 1,0].

If /(0)=0 we study the function y(x)=f(x)— f(0). From the above consi-
derations it follows that {here exists a polynomial Q¢ /,, for which

y—Qly—c:Mn—!, Q'(x) -0 for x¢[—1, O].

Then for the polynomial P Q + f(0) we will have | f—P |,=c-Mn"! P'(x)-0
for x¢[ -1,0].

Theorem 4. Let f¢ Cyyd=| - 1,1| and let f decreascs monotonely in
| —1,0]. For any positive integer n there exists an absolute constant cq and
a polynomial P¢ H, for which | f—P | 4= cqolf; n ") and P'(x)=0 for x¢[—1,0].

Proof. Without loss of generality we might consider that f(0)=0. Then
it is easily deducted that there exists a function f, for which

(6) f1(x) is monotonely decreasing in [ 1,0];
(7) F(x)-=0 for x¢| 82, 8/2), 0<8<1;
(8) Fux)—f,(—1) for x¢( oo, —1], fi(x) ~f,(1) for x¢[1, o);
(9) h—fla=alf; 0);
(10) ol fi; 1) ~w(f; 1) for any 0.
Let
1 .\‘~.¢|/'.’
(1 o(X)=+ [ fidat.
x—a8/2

From (10) and (11) we obtain:

X+4/2

s AD—h(x) dt

x—a8/2

(12) p(x)—fi(x)

1" O‘J/'I

25 o fi; t-xVdtso(f ; 0/2)=w(f; 872)
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The function ¢ is the first function of Steklov with a step d for the tunc-
tion f,. The function ¢ is differentiable in 4 and

(13) ¢'(x)={ fi(x+0/2)— f1(x ~9/2)}/8

(see [7, p. 188]).

From (6), (7) and (13) follows that ¢ is monotonely decreasing for
x¢[—=1,0} and [|¢’ h=0"'w(fy; d)=38""a(f; J).

Then @t Lipy 1, where M=d""w(f; 9).

Theorem 3 yields that there exists P¢ H, tor which

(14) lg—Pl 4=cgn™18 7 w(f; 9)

and P'(x)=-0 for x¢[—1,0]
From (9), (12) and (14) it follows that

15) P ama(f; 0wl f; 3/2)+egn 8l f3 ).

It 3—n—', from (15) we obtain the proot of the theorem since P(x)<0
tor x¢[—1,0]
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