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DENSITY PROPERTIES OF MELLIN TRANSFORMS
ROLF TRAUTNER

1
Let »(¢) BV [0, 1] and deaote [)(z)= [t?dy(t) its Mellin trausform. It is well known that
0

(1) D(z) | =Mo®, Y — o0 (2=x+1y),

for some 0< o<l implies
1
(2) fldﬂth:(l
“¢
It is shown in the present paper that (2) may be deduced from (1) if z runs through a sequ-
ence {zp}— |Xp+iye} satisfying a Mintz condition

oo

-1

3) 2‘ X = ou

( Rl

and

4) Xp— Xy | >0, | v [< M| xp .

where (4) may be slightly weakened.

1. Introduction and historical remarks. Lel x(/) be a complex valued
function of bounded variation for O=s£--1 with x(f+0)—= x(¢) for O=¢<1.
Denote by

1
[N(z)  [tzdx(t), z-=x11iy,
0

its Mellin transform which is a bounded analytic function for x~>0. The num-
ber o=p(x) inf{t x(s)=x(1), for £--s=1} is called the order of x (and of D)
There exists a close connection between the rate of decrease of D for

x —» oc and the order o(x). If
(H o(x)=a=l,

then we may write [)(2) - Jt‘dz(t) which implies

(2) D(z)=0(a*), x — oo.

The converse conclusion from (2) to (1) also is true. Here it is not necessary
to assume that z runs through the whole set {x>>0}.
Theorem A (Picone (7], Mikusinski [4]). /f

(2a) D(n)=0(a"), neN, n — oo,
then 1) holds
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DENSITY PROPERTIES OF MELLIN TRANSFORMS 293

Meanwhile various proofs have been given (see for instance Hardy (2,
p. 267}, Yosida [13, p. 167]), Polya [8, p. 777] states without proof the
following

Theorem B. Let f(2)=X2 a,z" be analytic for |z|<R, R>1, except
for 1= x=R possibly and let f(2)=0(e""), 0<a< |, where & denotes the
distance from z to the line 1 ~x=R. Suppose a,,k=0(a""), for 0<a<1 and
Some subsequence (n,). Then either a,—=O(a") for all n¢N, n— oo, or
limg o k/n,— 0 (i. e. (n,) has density 0).

Applying this to a,=D(n), f(2)—=X 2 D(n)z"— [)(1—zt)~'dx(t), one gets

Theorem C. If (2a) holds for n.tN satisfying lim sup k/n,>0, k — oo,
then (1) is walid.

The above density condition still may be weakened.

Theorem D (Levinsion, Boas, Mikusinski, Ryll-Nardzew-
ski). /f (2a) holds for nN satisfving

o

3) Y 1/n,= oo,
=1

then (1) s walid.

This result was first formulated by Boas [1] (for the case dy(t)=x'(f)d?)
as an immediate consequence of a density theorem of Levinson [3, p. 107]
(which covers also the case of gene:aﬁl dx(t)). Simultanously Mikusinski
Ryll-Nardzweski [5] proved a somewhat different result but from which
theorem D easily may be deduced. An independent proof was given by Trau-
tner [11], see also Schroeter [9]. (The author regrets for not having cited
the papers [1],(5] in [11]).)

Theorem D has several applications in summability theory (for Hausdorff
methods see Trautner [12], for power methods see Ziv [14; 15]), it also
covers the Titchmarsh convolution theorem which is fundamental for Mikusin-
ski operational calculus.

In this paper we state an extension of theorem D, when (2) is satisfied
by more general sequences (z,). We first remark that condition (3) is best
possible if z, ~n N [5; 11].

We will consider complex sequences (z,) with

(4) arg 2x|=a, a<n/2.

The analogue of condition (3) becomes

(5) S 1/xp= co.
k=1

In addition we must require that the (2,) are not too close to each other,
for instance

(6) Xps1 = Xp+c, >0,
b_Ut (6) may be considerably weakened. Then (1) remains valid if (2) is satis-
fied for (z,).

As applications we get that lim,,. r—'log D(re’) exists in any sector

Bi<argz<pB, -~n/2<B,<Py--n/2, in which D(z) has no zeros, or that the
type function
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log D(re'?)

, p <n/2,

hp(e) lim sup
satisties the relation hp . n(q)=hn (@) +hap(r)
The known proof of theorem D do not seem to admit a generalization to
complex (zx) with (4) (Levinson [3] allows arg zx +=0 but requires arg 2,
50). We will follow the proof of Szasz's extension of the Miintz appro-
ximation theorem (see Szasz |10}, Natanson [6].
2. Statement of results. Our main result is the following
Theorem 1. Given a complex scquence (2x), 2z =Xe + Vi, Xa == Xi+1s
satisfying the conditions (4), (5): arg zx —1q a<<n/2, Ty 1/ X = oo, and
(7) there exists a decreasing sequence (q ), O<qr <"1 with

(7a) 2,—2, k—j .q, forall zj with z; "2 2.,

(7b) 2 logme=0(), ko,

where A, is the number of z; =2 2,, 2,7+ 24

If
(2b) Xz, ()(a"@, ks o,

then (1): oly) -a.

Remarks. 1. Condition (7a) guarantees, that the z, have no finite limit
point. The theorem becomes wrong it (7a) is cancelled. To see this take a
Mellin transform [(z) of order o>0, having a zero 2’ X ~iv', x>0, and
choose (z, converging sufficiently fast to 2’ such that (2b) holds with
0 a<o. By (7a) and (7b) the “velocity” ¢, with which the z, may approach
cach other, and the “density” A,2 z, are put in relation. Clearly the theo-
rem also becomes wrong if we only require that the z, have no finite limit
points.

. Condition (7b) implies A, z, ol), i.e. the z, have density 0. If
?, ¢, O<_c<1,in particular if (6) is satisfied, then condition (7b) may be
omitted. For it is always possible to find a subsequence of (z,) with density
0, for which (7) remains valid [1: 11].

3. Under (4) the condition (5) is best possible. For if X® 1/ x,<2 0, then
it is possible to find a Mellin transtorm /Xz) with order o >0 and zeros z,.

We now state some applications of theorem 1.

Theorem 2. Given a Mellin transform [Xz)- [§t7dx(t) of order oly) a.
Then hp(®) —cosy .loga, o < a/2, holds.

Theorem 3. Given Mellin transforms D\(2), Dy2), DXz)=D\(2).DA2)
with orders v(xy), e(xa) o(x). Then

1) o(x) e(xy)-elx)

2 hpl@) holp)+ holp)
hold.

Theorem 1 (Hven a Mellin transform [)(z). Then

. | Dire'’
lim % r" ) _logacosy

rorwo
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exists in any sector ——a2<f,<op<Pa=n/2, in which D has only a finite
number of zeros. In addition the limit exists uniformly in any subsector
Bi=o<B, B<B<Bi<B,

3. Proofs. Proof of theorem 1. We shall show that the assumption
a<_p leads to a contradiction. Without loss of generality we may assume that

(8) 0o=1
and
(9) dyt)y=f(t)dt fel?0, 1].

For if a<o< 1, then we take the Mellin transform
1

Dy(2)= Dizje= - [(tioydx(t) - [s*dx(so),
0

which has order o, = | and satisfies D (z,) - ()(a;") with a,=a/e<1. If (9)
Is not satisfied, take x.,(f)- x(1) —x(f) and consider for x_-1 the Mellin trans-
form Dy(z) - D(z)/z - [it*'x9(£)dt, whichhas the same order as/[)(z) and satisfies

the conditions of the theorem.
For all sufficiently large x>0 we will approximate the function ¢ by a

polynomial P.(f) in £* in the L2-sense, i. e.

(10) (j t—Puty ) <t
Here 0<b< 1 and P.(¢) will be chosen such that also
(1) ;.[IP,(t)f(t)dt:' K- b

holds. (Here K denotes constants independent of x.) From
1 I 1
D(x) ([t f(t)dt|<|[Peld) f(t)dt + [ Py(t) —t*  f(t) dt
0 0 0

and by an application of the Cauchy-Schwarz inequality on the last integral
we get from (10), (11): D(x) —~K-b*. This implies o<1 in contradiction
to (8).

We omit from (2,) a finite number of elements such that (after new in-
dexing depending on x) x. Xx;, X, .... We write

Pt) u b unt L ut

where n n(x) will be determined later. For
1

1 z
[l tx —Py(t) 2dt ,or a4 L dugt " - Q,
0

we obtain, after putting z, ., 4, I, the quadratic form

5 1
(\)fl E ".vuu-“/n :'u ’ vy K 'Ov l; ceey N

v, =0 7,42 41
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The solution of the system of linear equations

—m, -+ Cioldy + Coolig = . .- + Cpolln = —Cpp
ity “+Coylly + ... + Cmldn ~ —Coy
C‘,,lll + c)nu_v ™ oo .L‘(Imun —Con

in the unknown variables m,, ., U, ..., 4, satisfies m, Q. (Here m, is the
value of best approximation [6], but this fact will not be used.)

If we denote by ¢, (cx), v=1, 2,..., n and ¢, (Cx,), y=0, 1, 2,..., n,
the column vectors of the matrix (cs,), runging from 1 and 0, respectively, we
obtain

det (¢p, C;, “oup [:,\ det (cy, M Co1r Cov Cogrr * s Cn)
det(cy, €ar -0 Cp) " K det(cy, €ay - - -y Cn)

,kR—1,2,..., n.

A determinant of a matrix of the form (a,,)=(1/(g,+7r.)), » n=12,..., 1
may be evaluated after Cauchy (Natanson [6], p. 40) by

I.n I,n
det (a,,) [ I (g, q.)(r, f,,)} L1 (g, ’u)}.

4oL

This yields

0,n I,n 1 0,1 Ln .
m, 7{ nz-z,?0 2+2z,+1 \[ nmiz,+z,+1 1 2 ,,z“,a\
»> LG v y .
1 ln | zv__x 2
Terl oy |z, 4541
U | o,n 0,7 ¢ . 0,7 0O,n
|k ___[ n z--z,%M0 z+z,+1 1]/[ I z,+z,+1 11 z,—z,"]

I Mn you v vtk v+
v, uthk

L oxn T TR 2
— |— | -
( " x.)rxk :v~z* 1

We first give an upper estimate for u,/m, . For this we split the set of in-
dices /=10<v<.n, »+k}, by

[,y n vk 2,2 2
ly={v—n, 2, 1>2 2 |}
From (4) we get [z, -~ K./ x, and so for vel,

142,42, 1+312,|= K. X

(i) () A

Clearly
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Dz ozl 24
ne o SISk Mo vk
B I\{,k 2,4*7 ,,} = M!(‘x,h 2‘&"&)"k ) X,
>( Pr ) F(A‘.;Q » 1\—((¢k-Ak) g(l+€)

for an arbitrary ¢>0, if x is sufficiently large.

Here we have used that by (7b) and remark 2 (A,/x,) (log ¢, +log A, /x,)
=o0(1) nolds.

With 1/(1—w) = 14+w/(1 w) <1+2 w!| for w| =1/2 we get

1+;A~ zZ, 12 ) z 4
- 11 |1 +—— 1, In1+K.* — exp (KyiLax,),
z

vel L 4 » vEl

where K, is a fixed constant and

”

(12) L~ % lix,

y=l

we now choose
(13) n=sup{ jL;=¢2K,},

‘Which implies H,s(l»rr)"'. Using (1 L2x,)<(1+e)* we get for sufticiently
arge x, x,>Xx
U, mg\ < (1 -+ 2x)01, . I1= (1 4e) %,
If £>0 is chosen such that (14 4ea ~c<1 we obtain
1 noy n
P.(1) f(£)dt N D(z) | =ma = e
0 3

- m -  p—
"ot |"m,

The supremum of .‘_‘;_,c"’ under the condition x, ~x, X7_/1/x,~¢/2K, may be
estimated by c¢*-x-¢/2K,<K, which gives

(14) | Oflp,(z) 70 di‘sK. e

We finally estimate m,. Using (4) we get
1—x/z, ' 1—(2xx,—x¥)/(x} + y}) =1 —Kx/x,,

n

m, - .i'll‘l — : o (l~ K:;) exp(—K-x z :—) -exp(—Kx-L,).

v y=1 v \ y==] %y
If we remember that the x, are renumbered for each x, and x=x, — oo, we
see that L,=2X7_ 1/x,~ La(x) converges to ¢/2K,>0. So we get for a suitable
0<b<1
1 2
{3 tr— P(t) ¥t =m, K.b".

Together with (14) we get (10) and (11) which complete the proof.
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Proof of theorem 2. Let g(x)=a, then
1
[)(Z) s{ Fad dx(t) Sl\’ﬂrf' Karco- T
which gives

L
“lg_Dr_‘" ! <loga.cosm, o <n/2.

hp(e)=lim sup
Assume that equality does not hold for all ¢ '<x/2. Then for some £>0
@y <72, r>Rye)

lf)gl{gi_he”f\ - (1—e)loga.cosg, I e.
D(retvo) —a*'') for r>R,(e). Taking =z, (R, + k)er, theorem | would imply
o(x)—~a'~9<a, which is a contradiction.

Proof of theorem 3. 1) is an immediate consequence of theorem |
and might also be derived from theorem C.

2) now follows from theorem 2.

Proofof theorem 4. We may assume g(z)=a=1, otherwise we con-
sider D(z)a—=.

We will show that for any >0 there exists R(¢), such that for z-re’?,
r>R(e), B;- @<, we have [Xz)|=e +'. Assume that this is wrong. Then

there exists an £ >0 and an infinite set
. iy
M, ={2,=Xp+iya=rne " By -qa=By 4Xn=Xnit)

such that [z, —e " for z.£M.

For each 2z,6M, we define the circle K,,={z 122, =j}, j=1, 2,...
Denote A(n) the number of circles K,, which are located in the domai
G, {z B, =p=pBy Xx,2<x<2x,}. Then the estimate

Aln) i min | x,, 7, sin(p’;—-ﬂ,), rasin(By - B} - €c.x, >0,
holds. Since D(z)-+0 for z¢U,, n- N, then by the maximum modulus prin-

ciple there exists a sequence z, (K, j= 1, 2,..., A(n) with

IXzn;) = N2 1) e = 1D(zpy) - D(z,) =€ *n,
Since x,; .2x, we get [XNz,;, =—e Y 1 we write  the Zn, [ An),
n=N, as new sequence (z,) k1, 2,... we have

o

X, .62
Z, ek j, D) -e ",

oo o A(n) o o0 .
TN A e § X
R o= 2x 2 Zyx,
frw | .t'h n:N,/'-lxn,/ ne= N, “*n n=aN,"n

From theorem 1 we¢ now obtain o(x) e %< 1, which is a contradiction.
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