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ON THE CAUCHY PROBLEM FOR SYSTEM OF FIRST ORDER PATRIAL
DIFFERENTIAL-FUNCTIONAL EQUATIONS

Z. KAMONT

Consider the Cauchy problem

200, V)y=fx, ¥, Zix, Y), 2 .). 2%, Y)),

a)

) . i=1,....m,
29 x, ¥)- ax, YY) for (x,Y)EE,,
where «'f), i=1..... m, are given functions defined on the initial set £, Z(x, Y)—(z"(x, ¥)
2 vy Z0)=00), 27 () and 2P(x V) (zﬁ,‘:)(.\-, Y).o.o.. z'y“(,\'. YY) We

prove theorems concerning the estimation of solutions of partial differential-functional equa-
tions (a) and formulate a criterion of uniqueness of solutions of (a). This will generalize the
results of Zima (1969) as well as of classical results concerning first order partial differential
equations. If we assume in the theorems of this paper that the right hand sides of the sys-
tems of equations and the right hand sides of the suitable comparative systems do pot include
a functional argument, then we obtain more general theorems than those of Szarski (1967)
and more exact than those of Laksmikantham (1969).

Equations with partial derivatives of the first order have the following
property: the problem of existence of their solutions is strictly connected with
the problem of solving of systems of ordinary diiferential equations. The in-
vestigations of properties of solutions of partial equations of the first order or
their systems is also strictly connected with properties of characteristic systems
of ordinary differential equations [1; 5; 8—10; 15; 17; 20; 21; 24]. Ordinary
differential inequalities find numerous applications in the theory of first order
partial differential equations. Such problems as estimations of solutions of par-
tial equations, estimations of the domain of the solution, estimation of the
difference between two solutions, criterions of uniqueness, are classical
examples however 1ot only ones [16; 23; 25].

A similar role in the theory of differential-iunctional equations with par-
tial first order derivatives is played by differential-functional inequalities with
ordinary derivatives. Some results in this field for partial equations with a re-
tarded argument can be found in papers [29; 30].

The problems of existence of solutions of differential-functional equations
were investigated by many authors. Among others, in papers [6; 7| the au-
thor tried to apply the method of characteristics to equations with a retarded
argument. Certain types of differential-integral equations were considered in
[27). The paper [26] contains sufficient conditions for the existence of solu-
tions of generalized Cauchy problem for differential-functional equations. In pa-
pers [11—13) the method of successive approximations is considered for par-
tial equations with a retarded argument (see also [3: 4]). The paper [1] (see
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328 Z . KAMONT

also [19]) contains sufficient conditions for the existence and uniqueness of
continuous solutions and solutions of class C!' of an initial-bcundary problem
for almost linear partial diiferential-functional systems in two independent
variables.

In this paper we shall demonstrate theorems concerning the estimation of
solutions of partial differential-functional equations with the help of solutions
of systems of ordinary differential-functional equations. The theory of difie-
rential-funciional inequalities will be applied for the estimation of the diffe-
rence between solutions of two systems of partial differential-functioral equa-
tions and to the formulation of a criterion of uniqueness of solutiors cf such
systems. This will be a generalization of the results published in [30] as well
as of classical results concerning first order equations with partial derivatives.
If we assume in the theorems of this paper that the right hand sides of the
systems with partial derivatives and the right hand sides of the suitable com-
parative systems do not include a functional argument, then we obtain more
general theorems than those results in [25. Chapter VII] and more exact than
those in [i6, Chapter IX].

Let C(E,||E, R) be a class of continuous functions from E,JE into R
where R=(—oo, +o) and

Ey={(x, Y): xo—te=x=X0 76=0, Y=(y1, ..., Yn)
r(xX)Sy<six), i=1,...., n},
E={(x,Y): x;sx<X,+a, a>0, rn(x)sy,<s(x), i=1,..., n}.

Assume that

(i) 7; and s, i-1,..., n, are continuous functions on [x,—7, X,] and
f,»(.V)}iSjg), xé[f(»”"'ﬁ '\'0]’ - -

(if) r; and s £=1,. <.y ny are of class C' on |x, x,+a) and r;(x)<<six).
for x€[x,, Xo+ @), ri(Xo)=ri(x,), si(xo)=Si(x;).

Elements of C(E,|UE, R) will be denoted by 2(-), u(-), v(-) and the like.
et Cm(E,UE, R) be a set of all vector functions U(-)=(u"M(-),..., at™(-))
where ud(-)cC(E U E, R). )

Let A—-(a,..., ap), A—(a,,..., ap) be two points of the p-dimensional
Euclidean space. We will write A< A if a;- a; for i=1,.. ., Py and A< A if

a, <a; for i—=1,..., p. The index i being fixed we write A<~A if a, ~a; for
j=1,..., p, and a;,=a,.

Suppose that functions f, i=1,..., m, of the variables (x, ¥, Z, U(-),Q),
where Z—=(z, . .., z(m) Q-—(q, ..., q.), are defined on EXR™<Cm™(E,u
E, R)>% B, where B is a domain which is contained in R

In this paper we discuss a number of questions referring to the Cauchy prob-
lem for systems of first order partial differential-functional equations

200x, V)=/Ux, Y, Zx, Y), Z(-), 2P(x, Y)), i=1,..., m,
20(x, Vy=aO(x, ¥V) for (x, VEE,, i=1,..., m,

where a'’', i=1,..., m, are given functions defined on the initial set £, and
Z(X. Y):lz«)(x, y)- ) Z(")‘x, Y))0 Z( ) = (2“‘( )v N Z‘m) ())0 Z!/‘"{X, Y)

(1)
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(zy)(x, Y), ..., z;j)x(x, Y)). In particular, we will give applications of the theory
of ordinary differential-functional inequalities to questions like : estimatles of
the solution of (1), estimates of the difference between two solutions, unique-
ness criteria and continuous dependence of the solution on initial data and
on the right hand sides of the system.

1. Assumptions and Lemmas. Assumption H, Suppose that

1. 0=(04,-- ., 0,) is @ non-negative and continuous function of the va-
riables (t, Z, W(-)) defined on R.XR7TXC™(|—1y, a), R.) and R. =[0, +0),
Cn(|—1,, a), R.) is a set of all vector functions W(-)=(@ (), .., Wnl-)
where w,(-) are continuous and non-negative on [—1,, a),

2. o; satisfy the Volterra condition, i. e. if W(-), W( }¢C™([-— 10 ), R:)
and W(r)=Wi(x) jor tc|—1, t| then o, Z, W(-N=o,t, Z, W(-)),

3. for every fived j, if Z:_’j;,Z then oy (t, Z, W (-))=o4(t, Z, W()),

4. o, i=1,..., m, are non decreasing with respect to the functional ar-
gument W(-).

Assumption H, Suppose that

1. the non-negative function g=(g\",..., g'™) of the variables (x, Y, Z,
W(-), Q) is defined on EXRTXC™([—1, a), R+)XR",

2. g _satisfy the following Volterra condition.
if W(-), W(-)Cm(|—1o a), R:) and W(x)=W(x) for rt|—1o t]
then g(l)(x(l+t; Y9 Z’ W( . )1 Q):g(i)(xo+tv Yv Zy W( )! Q)'

3. for each point (x, Y)XE there exist sets of integers 1y, 1y, 1y such that
Lulul={l,..., n} and y,=r(x) for jel, yy=sAx) for jebo 1y (X) < Y1
<s,(x) for jely; we assume that

gi(x, Y, Z, W), Q)— X ;}(x)q,—}- X .;;(x)q, o(x—xa0 Z, W(-)), i=1,..., m,
J€1, 7€l

where Q-(qy,---, Q) and q; -0 for jcls,
4. the function 6~ (oy, ..., om) satisfies Assumption H,.
Remark 1. If E is the Haar pyramid

0
(2) {(.\', Y} Xy :X<x07_a1 Yi—Yi sa,—Li(.\'—Xo), i 11-' g | ’l},

where O<L,< + ., al,<a;, and

gx, ¥, Z, W), Q) odx— X Z, WD+ = Lugs

then condition 3 of Assumption A, is satisfied.

Lemma . Suppose that

1. Assumption H, is satisfied

2. ©=(gy, ..., ¥m) IS @ continuous and non-negative function on | =10 @)
andl 'l:(t)<]h’(t) for t¢[ -ty O), where H=(n, ..., nm) and n, are continuous
on [—rz,, 0]

3. Lt Hy=(aw(ts H), ..., w,(t; H)) is the maximum solution of the ini-
tial problem
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(3) WD o, WAR), W), 0, a),

wt(t’ : 'li(t) .for f&[ T Oly

this solution is defined on | -z, a),

4. let BY-—={tc(V, a): D(t)~ Xt; H)} and for tcBY D _gt)<oyt, D(t), D())
(D_o(t) is the left-hand lower Dini’s derivative of @ at the point t).

Under these assumptions we have D(t)<((t; H) for t[0, a).

We omit the simple proof of this lemma (see [16, 28]).

Remark 2. In Lemma 1 we can assume that Q(¢; /) is an arbitrary so-
lution (not necessarily maximum) of the initial problem (3) defined on [—z,,a).

In the sequel we will use the following

Lemma 2 (see [29]). Suppose that w is a continuous function on | 1, a).

Then for each t¢(0, a) there exists atc|—rvy, t| such that max w(r) w(t)
T Gl" Fos ”

and the function p defined by
Aty=intlt: max  w(r)=w(f)), (0, a),

r€[—x, ]

is non-decreasing on (0,a) and for each ?e(O, a) lim p(t) :ﬂxi).
I

We define
Si={Y: (%o+¢ YE,UE}, —1,=t<a,
S={(x, ¥)¢E: there exists j, 1<j=n, such that y;—si{x) or ¥, r/(x),
He={(%, 0): (5, OKE,UE, :<x},
K={(x,Y): x=x,, rdx,)<=yi=sdx,), i 1,..., nl.

We shall denote a function @ of the variable 7 for ¢ belonging to some in-
terval (a, #) by the symbol w(-) or (@(r))., -
For a function U(-)C™(E,UE, R), U(-) (u(-),..., u(-)) we define

Ulx, Y)|=( u‘“(x, Y)i..., u™(x, ¥) )
ud(x. V)l ( u‘v"“(x, ..., u}y"’(x, Yy,

and
( max | U(xo+7, Y))— a)
Vs,

((max u'(xy+1, V) )\ oy ..o (max|a'™(xo+1, V) )0 o)
VEs, VES,
Definition 1. A function u of the variables (x, Y) will be called the
function of class D in EqUE if u is continuous on E,UE, possesses Stol>'s
differential on S and has first derivatives in an interior of E.
2. Comparison theorems for systems of partial differential-functional

inequalities.
Theorem 1. Suppose that
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. Assumptions H, and H, are satisfied,

2. the function U-—u\V, ..., u™) of the variables (x,Y) is defined on
EyUE and u» are of class D in EqUE,

3. the differential-functional inequalities

(4) ui(x, Y)
<gi(x, Y, U, Y), (Té“é‘ UXo+7, ¥) )i—uw ayy 8Y(x%, V),
(x, YeS!)ZE, ) PR
and the initial inequalities
() 14O(x, V) |=n(x—xo), (x, V)eEgy i=1,...., m,

are satisfied,

4. the maximum solution t; H), H= (ny, .., nm), 0f the initial problem
(3) is defined on |14, b), where b>a.

Under these assumptions

(6) Ux, )= 2Ax—x,: H)
for (x, Y)CE. 7 -
Proof. Let us define w,(f)=maxyes, | ux,+t YY), tel—rpa) i=1,. .,

m, and W( )=(w@y(-),..., Wm(-)). It is obvious that the estimation (6) on
E is equivalent with

(7 W(t)<t; H), te0, a).

For &0, denote by Q(t; H,&)=(w,(t; H, e), ..., wy,(t: H, ) the maxi-
mum solution of the problem
(8) d'f'({’t&t) :d,‘(t, W(t)' W( ’ ))+€v wi(t)" ”i(t) &, tEl*'o’ Olo

i 1,..., m.
For &>0 suificiently small, €(¢; /, ¢) is defined on [—z, @) and
lim Q(t; H,e)=Q(t; H) on [—z,,a).

«—0

To prove (7), it is sufficient to show that
9) WA(t)<Q(t; H,e) for &0, a)
Now, we will prove (9) using l.emma 1. Suppose that for some {0, a) we

have Wd)~' .Q(f; H, ¢). It follows from the definition of Q(¢; /7/,#) that
w/(#)>0 and that there is an ¥=(y,..., y,) such that

(10) @)= uN(x, V), X=x,+L.

Suppose that (x, V) is an interior point of £. Then a(x, ¥) = 0. From
this equality, from (10) and by Assumption H, it follows that
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D_wit) av(x, V)
gu(x, Y, U(}, Y, (max Ulx,+1, Y) ). ay, u(,/.’(;, Y))
YGS

- gx, T, W@, W), 0)=o,(f, W(2), W(-))-+e.

Suppose that (x Y)(‘S We can assume (rearrangmgthe indices if neces-

sary) that we have y,A—r,(x) fori—1,..., 5,y c(v) for ¢ s41,...,p,
r(x)/y,<s(x) for i—p+ 1, n.
From (10) it follows that lhere are two possibilities
(1) 70;(!)»——11"‘(x .
(11) w,(f)— —uU(x )7)

Let us consider the case (i). We have

(1) @ V)0 dor =1, s @)@ V)20 for i=s+1,....p.
uP(x, P)=0 for i=p+1,...,n

Let )_’(x)-(;l(x), e, FelX), s:ﬂ(x) B s,(x) y,,+1, T and consider the
composite function u(x, ¥(x)). We have uNx, +t, V(x, +D)=w(), ur(x,

br, V(X +1)) = wy(x), 6| 14, £], and therefore
D wit)=D_[a(xy+t, Y(xXe-1)] , -

From Assumption H, and from (11) it follows that

~ ~ ~ § ~ o~~~ ol ~ ~ o~y o~
D wyy -uf(xo+h Y S upE VAo E api, Pk
=] 4 s i

i +1
gNx, Y, Ux ), (max Ulxott, YY) a af(x, V)
YEs,
¥ ~ P -~ e -~ -~ —_— -y
L (-a(x, POrix)+ X uP(x, V)sj(x)<o,t, W(E), W(-)) +«.
=1 ‘ (g ] '
Suppose that the possibility (ii) holds. Then we have
(12) u(‘{’(;. )7) 0 for i=1,...,s, uy’(}, Y)<0 for i=us- L ..., p
u(x, P)=0 tor i-ptl,. .., n

and

(13)  —a(xo +1, V(xo+ D) =wff), —aD(xy+ 1, Plxe+ N wlr), €| -, 1.
We have

(14) D _w/ =D | - aMxgtt, V(xg+ 1)) —
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From Assumption H, and from (12)—(14) it follows that
D _w(t)
gNx, ¥, Ux, P), (max Ulx,+ 1, ¥))m oy 82X, V)
YES

- 3 u}vj,)(}' )7)7"(})*

Y4
)
i=1 i=8

= u;’l‘.)(}’ y));,,'(;)<\ ’7[(2, W(Z)' W( 2)) e

1

It therefore follows that, in_any case, the assumption (10) implies the differen-
tial inequality D wy(t)<<o(t, W(£), W(-))--e Since w;(f) < nif) + & for
te|—1o,0)i 1,...,m it follows that all the assumptions of Lemma 1 are sa-
tistied. From this lemma we obtain (9). From (9) we obtain in the limit (lett-
ing ¢ tend to 0) inequality (7). This completes the proof.

In the case when E is the Haar pyramid defined by (2) and

o

(15) Ey={(x, Y): Xg-—T=X -Xo, Yi—Vi =@y, i-1,..., n},

we have the following

Theorem 2. Suppose that

1. the function U=(u'", ..., u'™) of the variables (x,Y) is defined on
E,u E, where E and E, are defined by (2) and (15) respectively,

2. ud, i 1,..., m, are of class D in EyUE,

3. the function o =(a,, ..., o) satisfies Assumption H,,

1. the differential-functional inequalities

(16) u(x, V) sodx—xq Ux, Y), (max Uxo+5Y) ) . a)
)‘GS‘
S Lk, ), (x YEE, i=1,..., m,
k=1 3

and the initial inequalities

(17) ux, V) l=ndx x,), (x, YXE, {-1,..., m,
are satisfied,

5. the maximum solution At H), H-=(n,, ..., n,), of the initial problem
(3) is defined on | —r,, b), where b >a.

Under these assumptions

(18) Ulx, Y) —Q(x—xq: H) for (x, YV)E.
Remark 3. Suppose that for (£, Z, W( )R X R™XC™(| —1o a), R+)
(19) odt, Z, W(-)) odt, Z, max w(r),..., max w,(r))
v€[—re t) s€[—ve 1|

and for (x, Y, Z, W(-), QEXR? < C™( —1q, @), R)>XR"
A"”(X- yp Zv W( “ (\))

gn(x, Y, Z max Wy(T)s o - oy max Wml(T), Q)
v€[—v r—x,| €l v
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et

max U () = ( max u(E @), ..., max  (u'™(E6)).
(L E)EH (&, A EH (5, EH

Then assumption (4) in Theorem | has the following form:

(21) ui(x, V) g, ¥, Ux, ¥y, max [Ug®), aPxY))

(5 6)eHx
(x, Y)EE, i=1...., m,
and condition (16) irom Theorem 2 is

(22) uix, ¥) —o(x—x, Ulx,Y), max [UE®6))
' (5, 6) eH"

n

r*k.;.a‘l Lk]u;”:(x,y) , (x, Y)E, i=1,..., m.

It follows from Lemma 2 that there exist functions B, ..., §» such that
'0"':.ﬁi(t)':‘~t7 télov aj, max wi(t) w,(ﬁ[(t)). lim .Bl(t) ’Bi(t)' té[Uo a)'
c€[—z €] tat
In this case we can assume that the comparison system (3) is the system of
differential equations with the left-hand derivatives and with a deviated ar-
gument ™~

(23) (wi(1))’_=odt, W(t), W(B(2)), ¢te(0,a),

w,(t)=ndt) for t[—x, 0},

where W(5(£)) = (@y(81(2)), - - -, Wm(Bm(?))). Lemma 1 is true if we introduce in-
stead of (3) the above system with the left-hand derivatives.

3. Estimation of solutions of differential-functional systems. In this sec-
tion we give an estimation of solutions of the system (1) by means of solu-
tions of a system of ordinary differential-functional equations.

Theorem 3. Suppose that

|. the functions f©, i 1,..., m, of the wvariables (x,Y,Z U(-), Q) are
defined on ExXR™<Cm(E,UE, R)X B, where Bis a domain which is contain-
ed in R,

2. f, 0 1,..., m, satisfy the Volterra condition, i.e. if U(-), V(- )¢
C™(EyUE, R) and U(& 0)— V(5 6) for (z,O)H, then f(x, Y, Z U(-) Q)
—fO, Y, Z V() Q) i1, ..., m,

3. the estimations

(24) fioux, Y, Z, U(), Q) —g¥(x, Y, Z,( max Ulx,+1,Y) ). an Q)
YES,

are satisfied on EXR™ < C"(E,UE, RyxXB fori-1,..., m,
4. Asmptions H, and H, are satisfied,
5.0 =M. .., u™) is a solution of (1) in E, U E and uy are of class [
in E,UE, li‘,‘l’(x, Y)B for (x, Y)EE,
6. for (x, Y)E,
(25) Ulx, Y) | Hx—Xx,)
where H (n,,..., n,) and n, are continuous on [—rt,, 0},
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7. the maximum solution ((t; H) of the initial problem (3) is defined on
[ =1, b), where b>>a.
Under these assumptions

(26) Ux, Y) —Q(x x4 H), (x,Y)E.

Proof. By (24), (25), the solution U satisfies all the assumptions of
Theorem | and, hence, inequalities (26) hold true.

Remark 4. Suppose that

1. the sets £ and E, are defined by (2) and (15) respectively,

2. conditions 1, 2, 5- -7 of Theorem 3 are satisfied,

3. the estimations

fx, Y, Z U(), Q) <solx— xp ' Z|, (max | U(xo+7, ¥Y) )i, a)
YES,

n

+ S Leiqe, i—1,...,m,
k=1

are satisfied on £ R™ xXC"(E U E, R)x B,
4. Assumption H, is satisfied.
Under these assumptions | U(x, Y) = x—xq; ), (x, Y)EE.
Remark 5. Suppose that
1. the conditions 1, 2, 5, 6 of Theorem 1 are satisfied,
2. the estimations
f(‘)(xv Yv Z’ U( . )v Q) ’Z>_g‘i)(X, yv 1 Z , Inax U(fy (-)) ) Q l)7

(S.G\GH‘
(x, Y)EE, i 1,..., m,

are satisfied on EXR" < Cm™(EyUE, R) < B,

3. the functions o, and g©, i—1,..., m, defined by (19), (20) satisfy As-
sumptions H,, H,,

4. the maximum solution Q(¢; H) of the initial problem (23) is defined
on | -1, ), b>a.

Under these assumptions [ U(x, Y) = (x—x,; /1) on E.

Remark 6. It is easy to formulate a theorem analogous to Theorem 3
in the case when E and £, are defined by (2), (15) and the functions o,
i=1,..., m, are defined by (19).

4. Estimation of the difference between solutions, uniqueness criteria.
Let us consider two systems, (1) and the system

20x, Y)=FU(x, Y, Zx,Y), Z(-), 29(x, Y)),
20(x, YY) B9x,Y) for (x, Y)E,. A

(27) I,..., m,

We have

Theorem 4. Suppose that

\. the functions fO, F, t--1,..., m, are defined on ExXR™ < C"(E,uU
E, Ry < B and satisfy the Volterra condition,

2. Assumptions H, and H, are satisfied

3. the conditions
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(28) Af“l(x’ y' Z' U‘ ) )v (\))V F'i)(xl Yv Zu V( '), Q)I
“*g(”(xv yv Z—Z ’ ( max U(x1)+t; Y)_V(xl)+t’ Y) !)l—x‘,. a) Q - Q')
)’55’,

are satisfied on EXR™" XCm"(E,UE,RXB for i 1,..., m,
4. U=(aM,.. u™ and V- (vV,..., v'™) are solutions of (1) and (27)
respectively and

(29) Ux, V)-WV(x, YY)  Hx—x,) for (x,YXE,

5.0, v are of class D on E,UE and ul(x, Y), v(x, Y%B for
(x, Y)E,

6. the maximum solution (Xt; H) of (3) is defined on [—1y, b), b>a. Un
der these assumptions

(30) Ux,Y) -V(x, Y) =O(x xo; H) for (x, Y)E.

Prooi. If we put Ulx, ¥) Ulx, Y) WV(x, Y), then U satisties all the
conditions of Theorem 1 and, hence (30) holds true.

Remark 7. (see Th. 2) If

1. E and E, are defined by (2) and (15) respectively,

2. Assumption H, is satisfied,

5. the conditions 1, 4 -6 of Theorem 4 are satisfied,

4. the estimations

f‘”(xv )’, Zr U( : )s Q)——F(i)(x, y’ Z~ V( 'v Q)
o(X—Xo, | Z—Z, (max [ Uxo+z, ¥)=V(x;+1, V) ) )

VES,
n i
‘Lk'\-x L, g,—qr, i=1,..., m,

are satistied on ExXRm xC"(E,uE, R xB, then U(x,Y)— Vi(x, Y) = (x
~x,; H) for (x, Y)cE.

Theorem 4 implies

Theorem 5. Suppose that

1. Assumptions H, and H, are satisfied,

2. the functions [\O, i =1, ..., m, satisfy the Volterra condition on
Ex Rm><Cm(E, ) E, Ry XB and

/‘(,)(x' yn zv U‘ ‘)v (\))'_f(”(v\-v Y- Zl ‘/" )o (\))
oy, Y, Z-Z), (ma;( U (xo+1, Y)=Vixgr1, Y))cay, Q- Q1)
VEs,

(31

3. the function (wy(?), ..., wm(f)  L2t) =0 for L¢[—1y, | ) is a maximum
solution ot the initial problem

@2 1D, WA, W), ()= 0 tor te] 1, O i1, m.
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Under these assumptions the Cauchy problem (1) admits at rniost one
solution U on E with u® of class D on EqUE (see analogous theorem for
ordinary differential-functional equations [14]).

Remark 8. If £ and E, are sets defined by (2) and (15) respectively
then in Theorem 5 we can assume that

(33) f(i) (x' y! Z’ lj( . )v Q) '—.f/” (.\', Y, 29 V( ) )’ 6)

“oi(x—x, Z Z,(max |U(x,+1,Y)—V(x,+r, Y)i)[,,,,i__,,\)—}—% L, qx—qx
k=1

YeSt
i—1,...,m,

where the function 6=(o,,. .., g,) satisfies Assumption /7, and condition 3 of
Theorem 5 (see Th. 2).

Remark 9. If we assume instead of (31) in Theorem 5 that

.f(i) (X, Y) Z’ U( : )v Q) "f“.)(xr Yv Z! v( ')v Q)

<o, (x—xp Z-Z,max |(UE 0)—-V(EO)+HZE L, g,—q,

(5. 0)€H, k=1
then there exist functions 8,,..., 8, such that the comparison system (32) is
of the form (w:(?)) =0, (¢, W(b), @, (61(2)), . . ., W, (im(®)), i=1,..., m, where
~1o=p; (t) =t for £¢|0, a).

5. Continuous dependence of the solution on initial data and on the
right-hand sides of system.

Theorem 6. Suppose that

\. Assumptions H, and H, are satisfied,

2. f® and FD, i—1, ..., m, satisfy the Volterra condition and estima-
tions (31) hold true,

3. U and V are solutions of (1) and (27) respectively, u'), v\ are of
class D on E,UE and u®(x,Y), v (x,Y)eB for (x, Y)¢E,

4. the function O(t) 0 for t¢|—1,, + o0)is a maximum solution of (32).

Under these assumptions, to every «>0 there is @ >0 such that if

(34) fix, Y, Z U-), Q—Fix, Y, Z,U(-), Q) <, i=1,...,m,
on EXR"<Cm"(EqUE, RyYXB and

(35) a®(x, Y)--BO(x, Y)|<d, i 1,...,m,

on E, then

(36) ud (x, V)~ (x, Y) <& i-1,...,m, for (x,Y)¢cE.

Proof. For ¢>0 we can choose 4>0 so that the right-hand maximum
solution (¢t H, 8) =(w, (t: H,d),. .., wx(t; H,8)) of the problem

.tu;’(f) =0, (¢, W(t), W(+))+8, w,(t)=n,(t) for te|—1,0], i=1,...,m,

where H=(ny, ..., nm) and 0z n(f)=48 on [—1, 0], be defined on [0, @) and
(37) wy (t; H,8)<e for tc|0,a), i=1,...,m.
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Suppose that (34) and (35) hold true with the above choosen d. Then we define

ni(H-—max a®(x,-t, Y)—pD(x, -, Y), tc|—1,0|, { 1,...,m.
VES,

From (31), (34) it follows that

fO Y, Z,U(-), Q—Fx, ¥, Z, V(+), Q)
oh(x, Y, Z Z, (max Ulx,+1. Y)—Vix, 0, Y) Y—r oy Q—Q )+0.
VES,

[Hence, by Theorem 4 inequalities
(38)
hold true in £. From (37), (38) follows (36).

L £.
. 2.
v Z.
« V.

u(x, Vy—-o9(x,Y) o (x—x.; Hd,i 1,...,m,
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