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BETWEENNESS AND TERNARY OPERATIONS
ON PARTIAL LATTICES

JUHANI NIEMINEN

A partial lattice structure with the ternary operation of betweenness is constructed. The
structure found in the paper generalizes the structure of simple graphic algebras.

1. Introduction and basic concepts. The purpose of this paper is to ge-
neralize DraSkoviCovd’s considerations on betweenness and ternmary relations on
lattices [3] for partial lattices. This work is also a generalization of the paper
[5] on simple graphic algebras. All the results here are based on the paper [3].
As a general reference we have used Birkhoff’s monograph [2], to which
the reader is referred. The ternary operations on modular lattices are also
considered recently by Kolibiar and Marcisova in [4]

Let S be a join-semilattice, briefly a semilattice. The set [a)={x|x=a,
X, a¢ S} is called the principal filter of S generated by a. If for each a¢S,
[a) is a sublattice of S, then S is called a partial lattice. The observations of
the following paragraph are from DraSkovicova’s paper [3].

Let (M, d) be a metric space, a, b, ¢, x¢ M, and let us denote: [x; a, b, c|

-d(x, a)+d(x, b)+d(x, c). V(a, b, c) is the set of all elements x¢ M for which

the function f(x)=[x; @, b, ¢] reaches its minimum. In a metric space (M, d)
the relations abc and d(a, b)+d(b, c)=d(a, c) are equivalent and moreover, in
a metric lattice the relation abc is equivalent to the relation
(1) (@anb)\/(b/N\ec)—b=(a\/b)/\(b\c).
As in [3], we write abc also then when (1) holds in an arbitrary lattice L
where B(a, b) denotes the set { x| axb} and B(a, b, ¢c)= Bl(a, b)n B(a, ¢) N B(b,c).
In a metric space (M, d), B™(a, b, c) denotes the set of all elements x¢M for
which axb, bxc and cxa bold. Accordingly, B(a, b, ¢)=B™a, b, ¢) in a metric
lattice. We collect the three first theorems of DrasSkovicova into a
lemma:

Lemma 1. (i) In a metric space (M, d), if B™ (a, b, ¢)-+ @), then B™(a,b,c)

V(a, b, c).

(i) A lattice L is modular iff B(a,b,c)--() for any three elements
a, b, ccl.

(iiiy /n a metric lattice L, B(a, b,c)=Va,b,c) for any three elements
a, b, cel.

As it is well known, a metric lattice is also modular.

Let S be a partial lattice. If S can be embedded into a metric lattice
L(S) such that for any three elements a, b, c¢S, Bj (a,b,¢)N S+, where
the set Bjis (a, b, ¢) is determined in the lattice L(g'). then the betweenness
relation Bysy(a, b,c) of L(S) determines a betweenness relation Bs(a, b, ¢)
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=Bys)(a, b,c)n S in the partial lattice S. In the following we shall consider the
structure of a partial lattice S for which the betweenness Bs(a, b, ¢)
=Bys)(a, b, c)n S satisties: Bs(u, b,c)- @ for any three elements a, b,ceS.

2. The betweenness relation and partial lattices. We describe the pro-
perties of S in a serie of lemmas.

Lemma 2. Let S be a partial laitice such that Bs(a, b, ¢)- Bys)(a, b, c)
NS for any three a,b,c¢S. Then |p) is a sublattice of L(S) for
each pec S.

Proof. Let a, b¢|p). According to |2, Chapt. V:7, Ex. 1}, d(a, x)-+d(b, x)
= d(a, b) in L(S) iff xc[aAb,aVb]; we denote in this proof the meet and
Jjoin of L(S) by A and V, respectively.

Consider the triplet @, b,a/A\b of S. li x¢Bys)(a, b,a/\b), then x¢laAd,
avb) n[aAb, a)n[aAb, b]. 1f x & alAb, there would be a common lower bound
X of a and & in L(S), x>aAb, which is a contradiction. Hence x=aAb. But
because {x! - Bus(a, b, aAb), then aAb¢S, as Bs(a, b,alb) - . Clearly
alb—aAb. The prooi is similar for a\/b. Thus | p) is a sublattice of L(S).

Lemma 3. Let S be a partial lattice where Bs(a,b,c) Bys)la,b,c)
NS5 for any three elements a,b,ccS. Then there is for any three
a,b,ccS an element pc S such that(aV o)A@V ec)Ab\Ve)€E[p)cS.

Proof. As before, if x¢Bys(a,b,c), then xc[aAb,a\/blnlaAc, aVe]
N{bAc, b\/c). Accordingly, x=(aAb)V(a/Ac)V(c/Ab) and, on the other hand,
x=(a\Vh)A@Ve)AbVe) Sofor each x¢ Bs(a, b, c)=Bus(a, b,c)nNS it holds
(@\/b)A(aVe)A\(c\/b)¢|x) because x¢ S, [x) is a sublattice of S and because
X<a\/b,a\/c, b\/c. Hence the lemma.

As L(S) is a metric lattice, it is modular. The following lemma gives a
class of partial lattices which can be embedded into a modular lattice.

Lemma 4. Let S be a partial lattice. The lattice F(S) of all filters of
S is modular iff [p)c S is a moduiar sublattice of S for each p¢S.
~ Proof. We previously defined the principal filter [@) of S olny. By a
filter 7 of § is meant a non-empty subset of S such that (i) if @ ¢ F and
X>a, then x¢F, and (ii)if a,0¢ F and a/\b¢ S. then aAbc F. Let F, K¢F(S).
The meet FAK is defined to be the set theoretical intersection of F and K,
and the join F\/K is the smallest filter of S containing the filters < and K.
F\/K can be characterized also as follows (see Abbot [1, Sect. 5]): FVK
={x|x=fAk, f¢F, k¢ K and fAke¢S}. If F and K are iilters of S, then
FVk¢FAK, and hence FAK exists for any finite meet of filters of S. Clearly
F(S) is a lattice. So we must show the modularity of F(S): if F,K,/¢F(S)
and Fc/ then (FVK)AJCFV(KAJ).

Let je(FVK)AJ <= jeJ and jeFVK.So j=f/k ior some j and &, f¢F
CJ and k¢ K. As J, j=J Nk, fAj exists and it belongs to J. Then RV (/A J)
IS in K and / according to the definition of a filter, whence it is also in
KAJ. According to the modularity of [fAk) in S, FAMRV(fAJN=(f Ak)
V(fAj)-j, where fARN (f ANEFV(/\VK). Hence je FA(/VK), and the
Modularity of & (S) follows.

Conversely, let F(S) be a modular lattice. Clearly [p)c.S is a sublattice
of (S)for each p¢.S. If [p) is not a modular sublattice of S, then it, and so
S0 & (S), contains a non-modular sublattice, which contradicts the modularity
Of & (S). Hence [p) is a modular sublattice of S.

If there is a greatest element 1 in S, then [1) is the least element of F(S)
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In every iinite modular lattice L the height function %[x]| (the length 4 of
the maximum chain 0< x,< X,< - -+ <X,—x; see [2]) determines a valuation
on L such that k[x] defines a distance function with respect to which L is a
metric lattice. The observations above suggest the following theorem:

Theorem 1. Let S be a finite partial lattice. If |p) is a modular sub-
lattice of S for each p¢S and there is an element q¢S such that a\/ b,
a\/c, b\/c€|qg) for each three elements a, b, c€S, then the betweenness rela-
tion Bm™(a), |b), [¢) of the lattice F(S) induces a betweenness relation
Bs(a, b,c) in S such that Bs(a,b,c)+ Q) jor each three elements a, b, c¢ S.

Proof. #(S) is a metric lattice with respect to the distance function
generated by the height function %|x] in F(S). Then ([a)\/[6) A @) \/ [e) A\ ([6)
V/[€)) € B5 s, ([@), [b), [)) for any three [@), [b), [c)€F (S). But then the assump-

TS
tions of the theorem imply that Bs(a, b, )= for any three a, b,c€S.
3. A ternary operation characterization. Let N be a set with a tfernary
operation (abc). If (abc) satisfies in NV the formulas

(baa) —a, ((ade)b(cde)) = (a(bed) (ced)),

N is called a ternary modular semilattice, briefly a 7MS (see [3, sect. 5]). As
proved by Draskoviéova [3, Thm. 6], if Vis a TMS with a least ele-
ment 0 and where there is an element u¢N for any two elements a, beN
such that (0az)=a and (0bu)=b, then N can be translated into a modular
lattice L— (N, A\, \/) with O as its least element. Conversely, if L is a modular
lattice with a least element O, then it determines a TMS with respect to the
operation
(abc)=((b\/ )AN@)V (b \c)=(bV ) A\(aV (b/c))

In the following we shall show what kind of a ternary subsystem S gene-
rates in the 7MS of & (S). This will be done in two theorems.

Theorem 2. Let S be a partial lattice such that 1¢S, |p) is a modu-
lar sublattice of S for each p¢S, and for any three elements a, b, ceS
there is an element q¢S such that a\/b, a\/c, b\/ c¢[q)CS. Then the ele-
ments of S constitute a subalgebra of the TMS generated by the modular
lattice 5 (S) with the least element [1).

Proof. We must only show that the elements in S are closed under the
operation (abc) of the TMS of F(S), i e if a, b,c¢S, then (la) [b) [¢)
~([B)A[e)V ([@)A([b)\/[c)- [n) for some element 2 of S.

According to the definition of a filter in S, [p)Ale)=[bVe). We obtain
two cases for [B)\/[c): 1°© bAccS and 2V bAcCES.

19 1f bAcES, then [b)\/[c)~[bAc) and [a)A([6)\V/[c))=[a\/ (b A¢)). Further,
(O ANV (@) A(DV[) 6V )V [aV (b AC)=[(BV ) AlaV (BAc)); the ele-
ment (b\/c)A(a\/(bAc)) exists in § according to the properties of S.

206)\/[c) {x x=-kAg K=-b, g=c and kAGES].

Ii now a=kAg for some kAge[b)\/[c), then [a)A([b)V[c))=[a) and then
byctlay or at(bve). So (BIAIENV (@)A()V[0)=[b\e)[a)=[(bVc)Aa)
=[b\/c) ot [a), and the lemma is valid in this case.

Obviously [a)A([6)VI[e)={y y=aVx, x¢[b)Vec)=T. aVb, a\/c¢la),
and as [a) is a sublattice of S, (a\VVh)A(a\Ve)e€ a)cS. On the other hand,
a\vbé|b) and a\/ce[c), whence (aVVb)A(aVe)e|b)V(e) Consequently, [(a\/b)
Aave)c T. Let z¢ T. Then z=a\/xzaV(kAg), where x=kAg, k=b and
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g=c. Assume now that a=a\/x<(a\Vb)Aa\/c). Then kAgl>a, as in the
other case (a\/k)A(a\/g)<(a\/b)/\(a\/c), which is a contradiction. The case
kA g<a leads also to the desired result. So it remains only the case k/\g and
@ are non-comparable.

i a\vb a\ec-bve, then a\yx=x and [a)/((b)\V]c))=[x) or we find a
non-modular sublattice of S with five elements. Thus &\/c¢[x) and so ([b)
Ale)Vix)=[b\/c), wh te b\/c¢S. The case a\Vb--a\Ve>b\c is obvious. It
aVb--a\Ve, then avVb>k>k/g and a\Vb>(b\a)Na\ec)>x\/a>k\/g con.
Stl‘tute a non-modular sublattice of S, whence x\/a -(b\Va)A(a\/c). Thus in
this case 7c|(a\/b)A(a\/ ), and so T=[(a\/b)/\(a\/c)). But then ([bYAle))
V(a)A([b)V[e)=[b Vo)V [@\Vd)Alave)=[bVec)A@V b A(aVc))=|n), where
n¢S according to the properties of S. This completes the proof.

Theorem 3. Let a set N be a TMS with respect to theternary ope-
ration (abc) such that it can be translated into a modular lattice L=(N, \,\/)
With the greatest element 1. Let SN (1¢S) be a closed subset under (abc).
Then the elements of S can be translated into a partial lattice, where for
each p¢ S, the set | p)c S is a modular sublattice of S and where there is an
elel:nent Q¢S such that a \/b,a\/c, b\/c€[q)c S for each three elements
a b, ccS.

Proof. We shall show the existence of the element ¢¢.S only; the other
assertions hold obviously.

Let a,b,ccS. As S is closed under (abc), then (abc) and (bca) belong to
S. Moreover, ((abc) | (bca)i ¢S and

((abc) 1 (bea)) — (abe)\/ (bea)=((b\/ c)Aa)\/ (b Ac) V(e a) Ab)V (aAb)=(bAc)
VicVa)A(b\e)A(a\ b)V(aNb=(c\Va)A b\ c) A(a\ b).

By putting this element equal to q, the theorem follows.
The two theorems above characterize S in terms of ternary operations.
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