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A CLASS OF FACTORIAL DOMAINS

LACHEZAR . AVRAMOV

In this complement to recent work of H. Kleppe and D. Laksov (1979) and of V.
Marinov (1979), we record the factoriality of the coordinate ring of the affine variety.
defined by the vanishing of all the subpfaffians of order 2¢+2 of an sXs matrix of indeter-
minates (2=2t--2<5)

The proof uses a pleasantly unsophisticated variation of an argument
appearing in a particular case in [2, § 14}, and developed in full generality by
Bruns in his computation of the divisor class groups of the generic deter-
minantal varieties [1]. Our reference for the theory of class groups is (2], and
we refer to [4] for the results on pfaffian ideals.

Theorem. Let R be a commutative Noetherian ring and X={X, 1zi<;=s
be a set of indeterminates. Let S denote the factor ring of the polynomial
ring R|X| modulo the ideal I, generated by all the (2t+2)x(2t+2) subpfa-
ffians of the alternating sx<s matrix X, having X,, as above-diagonal ele-
ments.

Then S is a normal domain iff Ris a normal domain. In this case,
Cl(S)=~CI(R). In particular, S is factorial iff R is factorial.

Corollary. S is Gorenstein iff R is Gorenstein.

For a completely different proof of the corollary see [4, § O]

The homomorphism R — S being faithfully flat {4, proposition 4], it trans-
ports up and down both the Gorenstein [6, theorem 1’| and the normality
[3, (6. 5. 4)] properties, provided the fibers satisfy the corresponding condition.
Hence, noting that the property of being a domain passes from R to &
(4, theorem 12}, the corollary (resp. the first assertion of the theorem) will follow
if we show that in case R is a field, S is Gorenstein (resp. normal). Goren-
steinness is a consequence of Murthy’s theorem [2, (12. 3)], since S is a fac-
torial (by the theorem above) Cohen-Macauley [4, theorem 15] homomorphic
image of the regular ring R[x]. As for normality, we have by [4, theorem 17]
that S is Cohen-Macauley and regular in co-dimension 2 (s— 2f)>- 4, hence Serre’s
criterion applies. All that remains to be proved is the isomorphism of the class
groups.

We write X(i,,..., s for the alternating submatrix of X, formed by the
elements lying on the intersection of rows and columns with indices i, <i,<

<i,; its pfaffian is denoted p(i,,..., i), with the abbreviation p=p(l, 2,
.., 2f). For §,<s,<---<8<8t+1=5 such that s;=2j—1, Pf(X;s,...,580) s
the ideal, generated by all p(i,...,4,) with i;ss;, in particular, when
sy=2j—1 (1sj=f)one gets I=Pf(X;s,,...,s,). Weset T=R|{X, hzic/ss izl
— R[X]. In order to establish our claim we shall prove the existence of the
tollowing isomorphisms :
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CI(S) % CI(S[p~1) 4 CUT p~) = CUT) & CLR).

a) Setting s; —2j—1 for 1<j<¢t, s,=2t, we obtain /4-(p)=Pf(X; sy - .-,
s,). It follows from [4, theorem 12| that p generates in S a height one prime
ideal, hence it is irreducible. Nagata’s theorem (2, (7.3)]implies that a is a natu-
ral isomorphism. ‘

B) Let T" denote the image of 7 in S under the natural map f. If i>j>2¢,
by expanding p(1,2,...,2¢ j,i) along the last row, one obtains the relation

Xyp=St (=1 Xpp (L, . k., 20),
which implies 7’[p~'|=S [p~']. On the other hand, f is injective, because

of the equalities dim 7—=dim R+(; _(s;?t - dim S (the second one holding by

4, theorem 12]). We conclude that 7' [p—']=S[p~']. Note that this isomorphism
can also be obtained by specializing (4, proposition 10].

») The indecomposability of p in the polynomial ring is classical, but can
also be deduced as in a) by remarking that (p)=Pf(X(1,2,...,20):@,...,8t)
with @;=2j--1 (1=j=t¢—1). Once more apply Nagata’s theorem.

) This is of course Gauss’ lemma [2, (8. 1)]. :

~ In conclusion we note that dropping the Noetherian assumption, only
minor changes in the proof are needed in order to establish a similar result
for Krull domains.
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