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THE BEHAVIOUR OF CARDINAL FUNCTIONS ON INVERSE SPECTRA
CONSISTING OF TOPOLOGICAL SPACES

M. G. TKACENKO

Let S={Xa, wjf, af 4} be a well ordered spectrum consisting of topological spaces and @

be any cardinal function, defined on the class of topological spaces. Let further r be an infinite
cardinal and #(X,)<r for every ag A. For X=1im § there are given conditions under which

—
PH(X)<r. If nw (X)>R, but &Q(}nw(z\’) then one of E. Michael’s problems (1971) is an-
swered in the affirmative sense.

The aim of this paper is to study the behaviour of different cardinal
functions on the well ordered inverse spectra.

Later on considering the spectrum {X,, «# a<t} mentioned above, we
shall always assume that ¢ is a regular cardinal. Results will not lose the ge-
nerality because of the homeomorphism of limits of cofinal spectra.

Speaking on continuous spectrum we shall always assume that all non-
limit projections are mappings “onto”.

Cardinals are identified with the corresponding ordinals. An ordinal is
considered being a set of all the preceding ordinals.

In general our notations coincide with these in [2]. Namely, the weight,
net weight, z-weight, Souslin number, Lindeldf number and density of a space X
will be denoted by w(X), nw (X), =w (X), c¢(X), ic(X) and s( X), respectively.

For any cardinal function @ we put @(X)=sup{®(M): MC X}.

The function, which corresponds to the symbol A, was introduced by the
author in [3] and named a weak extensibility.

Definition O. A subspace Y C X is called weakly extended if there
are a family y of open subsetsof X and a bijection ¢: Y-y such that

(x) x¢@(x) for each x¢Y;

(xx) if x,y€¢Y and x-+y, then either xEq(y) or y¢o(x). We put
R(X)=sup{ Y : YC X and Y is weakly extended}.

1. Continuity of cardinal functious. Let (@ be any class of spaces and @
be a cardinal function defined on this class. Let D contain the limits of all
inverse spectra consisting of the spaces belonging to (.

Definition 1. A function ® is called spectral continuous in the class @
if for every well ordered inverse spectrum S={X,, o/, a<t} the conditions
X, €D and O(X,)<4 for every a<r imply that ®(limS)=A.

Let () be a hereditary class, i. e. the conditions X¢® and Yc X imply
that Y.

Definition 2. A function & is called continuous in a class @ if for
every X¢® and for every chain C of subspaces of X such that X=UC,
the condition H(M)< i for every M¢ C implies that (X))~
SERDICA Bulgaricae mathematicae publicationes- Vol. 6, 1980, p. 42—55.



CARDINAL FUNCTIONS OF INVERSE SPECTRA 43

Theorem 1. The functions c,s,ic, R are continuous and spectral con-
tinuous in the class of all topological spaces.

Proof. The continuity of the functions ¢, s and ic is proved in [3]. The
proof of this fact for the function R is similar to the proof just mentioned
and hence it is omitted. The proofs of the spectral continuity of these four
functions are also alike. Therefore, we only give the proof for the function c.

Let S—{X,, ¥, a<r},X~l£r_n S and w,: X— X, be a limit projection for

every a<<r. We assume now that aX,,)<). for every a<z. The sets of the
form w'(V), where a<<r and V is open in X,, will always be called a stan-

dard open sets in X =1im S. This agreement acts all over this paper.

Let Mc X and y be a system of open sets in X such that UnM=4
and UNnMnNV=4A for every U, V¢y, U= V. Without any loss of generality
one can consider a system y consisting of standard open sets in X.

For every U¢y over a(U) we consider the minimal element a<z such
that U=w_ (V) for some set V, whicl: is open in X..

Put y,={U¢y: a(U)=a}. Let us consider the set w, (M) and the system
(@) '9(U): Ut ya} of open sets in X.. It is easy to verify that

D (@) 'o(U)) Nw(M)=1 for every U¢y, and

2) ((w‘;(u))"‘tp(U))ﬂwa(M)ﬂ((wz\l,))—ltr(V))=A for all U, V¢y, where
U-+V —it follows from the fact that co:‘((wgw))—lzr(U)):U for every U¢€y.

As ¢(X,)<A for every a<r, one has |y. <A for every a<r. Further,
y= U{ya: a<t} and y.cCy; for every a, B<r such that a<p. Hence the condi-
tion r——1 implies | y|=4i.

Let Ai<<r. We state that ¢(X)<4. Indeed if |y|=4 there exists a subsys-
tem ucy such that u«|=A. The regularity of a cardinal 7, an inclusion y.Cy;
under the condition a<g<r and the inequality A<t imply that there exists an
ordinal a*<r such that uc y.. Consequently, A=|u|=|7.s. But we have al-
ready established that y./<i for every a<r. This contradiction completes the
proof of the theorem.

Remark 1. When proving the previous theorem we established the fol-
lowing fact.

If S={X,, w?, a<zr} is a well ordered inverse spectrum, @¢{c,s,ic, R},
D(X,)< i for every a< i, then the condition i<(r implies 45(1im S)<Z (the re-

gularity of r was assumed above).

Remark 2. The function ¢ is also continuous but it is not a spectral
continuous one. This corrects a false statement about the function ¢ in theo-
rem 2.3 of [3].

But the following result holds. Let S={X,, o’ a<tz} be a well ordered
inverse spectrum such that for every a<lr a limit projection ws,: X — X. is a
mapping onto X,, where X=1imS. If ¢(X.)<<A1 for every a<tr then c(X)=A.

—
One can prove it by the same method as it was done in the proof of the
theorem 1.
Remark 3. It is impossible to prove a spectral continuity of the func-
tion w, because in [4] V. I. Malihin, assuming AM, constructed a well or-
dered inverse spectrum (all projections in which are continuous bijections),



14 M. G. TKACENKO

consisting of regular spaces of countable weight, such that the =-weight of a

limit of this spectrum is equal to 2R,

So, if we assume that both AM and not-CH are satisfied, we get that
the functions w and =w are not spectral continuous ones. Moreover the func-
tions w and wmw can <“suffer a gap” even on coniinuous spectrums (under
additional assumptions).

The existence of a counterexample follows from the result of Malihin,
which was mentioned above.

Indeed, assuming AM he constructed a strongly increasing well ordered
chain C—{S,: a<2Ro} of regular topologies on a countable set N such that

w(V,S,) = Ro for every a<- 2o, One can assume that the following condition
is satisfied

(*) S, is not a m-base for a space (N, S,.,) for every a< 2o,

Now we assume that AM is satisfied (hence the desired chain {S.: a< 2o}
exists) and there exists an infinite singular cardinal which is less than 2R, The

last assumption is equivalent to the inequality x,,,<230 Then we enumerate
the elements of a chain C by means of all nonlimit ordinals which are less

then 2Ro; C- {Ss: ﬁ<2xf’,ﬂ is a noulimit ordinal}. Of course, we can do il
in such a way that Sz c Sy for p <5”<2“°

For every limit ordinal ax<2RO we put S,= U{S;: ﬁ<2x°, p is a nonlimit
ordinal}. Now we can define a chain C={S.: a<x$} Then the chain Cis con-
tinuous and @w(V, S,)<R. for every a<X’ because of cf(a)<<R. for every
a<RX*. At the same time mw (N, Sx+):x;- Let us assume the contrary, i. e.

aw (N, :SR*)' No-

Let 7“&“9?( be a n-base for a space (N,¢ ‘S‘x+) such that “Ro- As
‘SR;,: U{S.: a<yx}}, so for every Uty there are an ordinal a(U)<x* and
a set V(U)¢ Sy, such that V(U)CU V(U) Y|

Put A= {a(U): Uty}. Then |A =|7|=R..

The regularity of the cardinal x* implies that there exists an ordinal
a<R} such that a(U)<a for every U¢y. Then V(U)¢S, for every Ugy. Con-

sequently the system &, is a n-base in a space (N, $R+)' which contradicts

the property (*) of a chain C.

Now we put «f—idy for every a, S<R', a<<f, where »’ maps a space
X;=(N, Sp) onto a space X,—(VN,S.) (then «f is a continuous trivial mapping)

Then we immediately get the desired continuous well odered inverse
spectrum S={X,, f,a<<x’}, on which both functions w and =w “suffer
a gap”.

So, the point (¢) of the theorem 2.2 from (3] is not true in its “naive”
form. But it can be corrected by means of adding some set-theoretic as-
sumptions.

Theorems 2 and 3 show the way of this correction.

However, we first need
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Lemma 1. Let S={X., wf, a<t} be an inverse well ordered spectrum

consisting of Hausdorff spaces and R(X)=4i for every a<z. Then,
w(X)=exp (1), where X=limS.

Proof. First we note that an inequality w(}Y)=exp(R(Y)) takes place
for every Hausdorff space Y. It follows from proposition 2 of [2] because
s(Y).ic(Y)=R(Y) (the last inequality is proved in [3]).

Therefore, w(X.)=exp (1) for every a<.

Consequently, if t=4T, then w(X)<exp(4). Let i*<<z. Then the remark 1
(after the theorem 1) implies that R(X)=2 and hence w(X)=exp (4).

Theorem 2 [GCH]. Tke functions w and nw are spectral continuous
in the class of all Hausdorff spaces.

Proof. Let @¢{w,nw} and S={X, ¥ a<zr} be an inverse spectrum,
consisting of Hausdorfi spaces, such that @(X,)<<i for every a<lz If r=1
then &(X)=21, where X:l(iinS, which is obvious.

Let i<r. We consider two cases.

[.1—u* for some cardinal u. Then &(X,)=<u for every a<<r and lemma I
implies that @(X)=w(X)=—exp (u)=ut=4.

II. 2 is a limit cardinal. Then there exists a strongly increasing transfi-
nite sequence C={i,: a<cf(2)} consisting of cardinals, such that i,<<1 for
every a<cf(4) and i=supC.

For every a<cf () we put A, ={8<z: (X)=41.}. Then r= U {A.: a<lcf(4)}.
The regularity of a cardinal ¢ and the inequality cf(2)=2A<r imply that there
exists an ordinal a<lcf(Z) such that [A,|=7, consequently A, is a cofinal
subset in 7. Hence X;(li_m S, where S={X}, o}, B¢ A.}. We know that &(X;)=41.

for every ¢ A.. Applying lemma 1, we get the chain of inequalities DH(X)
<w(X)=exp(l)=4} <2 i. e. H(X)<A.

It is necessary to note that we can apply the lemma 1 because
R(X)=nw (X)=—w(X) for every space X. The theorem is proved.

Let FH mean that for every cardinal  there exists only finitely many
cardinals 1 such that r<<A<lexp (z).

Theorem 3 [FH]. Let S={X,, 0¥, a<z} be a continuous spectrum con-
sisting of Hausdorff spaces, ®¢{w, nw} and D(X,)<2 for every a<r. Then
D(X)=A, where X=1imS

-~

Proof. Let #¢{w,nw}. If z=1 then it is easy to see that &H(X)<Ai.
Hence we assume that 2<lt.

Now we note the following obvious fact: if there exists an ordinal a<t
such that for some (and then for any) base (a-base) y in X, the system
(@) ly= {(?)~'U: U¢y) is a base (n-base) in Xj for every g, where a<<f<r,
then w-'y— {w \(U): Uty} is a base (a-base) in X.

So, if there exists an ordinal a<(r, which has the property mentioned
above, then ®(X)< i. Therefore, we assume that there is no such an ordinal
a<r. This last assumption we designate over (¥).

For every a<r we fix a base (x-base) y, in X, such that |y.|—®(X,)<i.
The assumption (*) implies that for every a<(r there exists an ordinal p(a)
such that a< f(a)<r and («#?)"'y. is not a base (a-base) in a space Xg).

Put 3,=0. Let a<<r and for every O<a an ordinal §, has already been
defined. We put f,=sup{Bs: #<a} if a is a limit ordinal and B.=pg(B.) if
a=a +1.
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Let the set A={8,: a<{r} be already defined.

Then, firstly, a set A is closed and cofinal in = with order topology and,
secondly, if «, B¢ A and «<f then («#)~'y. is not a base («n-base) in a space Xj;.

We consider two cases.

I. 2 is a regular cardinal. Put B=Anp; and 3‘:{Xa, wf, a¢ B}. As aspec-

trum S is continuous and g, =sup{8,: a<<i}, so Xj, —1lim §. Without any loss
of generality one can consider a sysstem y, consisting of standard open sets

in Xg, i e s = {(&7,)"'w(U): Uty,,}, where a(U)¢ B and @(U) is open in
a space X, ) for every Uty;. We know that y,; [<<4 and % is a regular car-
dinal, hence there exists an ordinal a*¢ B such that a(U)=a" for every U¢ y;,.
But then the system (w‘fﬁ)“y"* is a base (n-base) in a space X,, which con-
tradicts the assumption (*).

II. 4 is a singular cardinal. Then there exists a strongly increasing trans-
finite sequence C—{4,: a<ci(4)}, consisting of regular cardinals, such that
i, <A for every a<cf(l) and i=supC.

Put A, ={B¢A: ®(X;)=1.}. Then A= U{A,: a<cf(4)}. The inequality
/<t implies that there exists an ordinal x<cf (1) such that A, =< There-
fore, A, is a cofinal subset in r. The cofinality A, in r implies that X=1lim S,

~ —
where S {X,, o ac A,}. Then for every a¢ A, D(X,)=4, —it follows from
the definition of a set A,.

Let @ —w. Applying lemma |, we get the inequality w(.X")—exp (4,). How-
ever, FH implies that there exist only finitely many cardinals which lie bet-
ween 4, and exp(4,). Further, 1,<1 and 1 is a singular cardinal, hence
exp (4,)<C4. So, w(X)< 4 in the case of a singular cardinal .

If & =w then lemma | implies that w(X)=<exp*(i.) because a space X.
is a Hausdorfi one and w(X,)=exp?(s(X,))=exp®(nw (X,)) for every a<r.
Applying FH as above we get the chain of inequalities =w (X)) =w(X) = exp* (4,)<i.
Thus the theorem is proved.

Definiton 3. A system y of subsets of a set X is called T, -separ-
able for Xif for x,y¢ X, where x=+y, there exist U, V ¢y such that xcU, y¢ V
and UNnV=A.

Further we need

Proposition 1. Let X be a Hausdorff space and y be T,-separable
system for X, consisting of open sets in X. Then there exists a subsystem
wCy such that uis Tyseparabte for X and u =ic(X*\ 4), where A={(x, x):
xeXjc X2

The proof of this proposition is omitted because of its simplicity.

Definition 4. A mapping f: X Y is called nontrivial if there exists
a point y¢Y such that |f71(y) >1.

Lemma 2. Let v be a regular cardinal, S—{X,, w?, a<t; be a well
odered inverse spectrum, consisting of Hausdorff spaces, in which all limit
projections w,: X X, are mappings onto X,, where X=limS. If nw(X)<x,

then there exists an ordinal a*<t such that a mapping .. is a trivial one.
Proof. The system y={w (0): a<_r, O is an open set in X,} of open

sets in X is T,-separable for X.
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Proposition 1 implies that there exists a subsystem wucCy such that u is
T,-separable for X and | u |=ic (X2\_ 4). However, ic (X?\ M) <ic (X?)<nw (X) <z,
i. e, wu <z. This last mequallty and a regularity of r imply that there exists
an ordmal a*<zr such that uc{w'(0O): O is an open set in a space X}
Consequently, w,.« is a trivial mapping.

Lemma 3. Let S={X,, w? a<t} be a well ordered inverse spectrum con-
sisting of Hausdorff spaces and for all a, <1, where a<p, a mapping
®? is nontrivial and onto one. Then for every cardinal A<t there exists an
ordinal a<tr such that 2-—-nw(X,).

Proof. Let i<z and nw (X,)<i for every a<.

We consider two cases.

a) A—=ut for some cardinal u;

b) 2 is alimit cardinal.

For every set Acr and every ordinal a<r we put A*={8¢A: f<a}. In
the case (a) we put B=71and S={X,, @ a<i1}.Now we consider the case (b).

Let C={4.: a<<cf(4)} be a well ordered strongly increasing transfinite
sequence consisting of cardinals, which are less then 4, such that 2=supC.
For every a<<cf (i) we put A,={<t: nw (X;)=21.}.

Then r= U{A.: a<cf(4)} because nw (X;)<1 for every f<r. Further, so
as cf (1) =4i<z, there is a*<lcf(4) such that A.|=r. We put now ¢*=min{o
€A | (Aax)e | >Aas), B=(Au)e" and S={X,, o’ a¢ B}

So, a subspectrum S of a spectrum S is defined in both cases. We put
Y——limS For every a<r such that a«*<a, in a natural way a continuous

mappmg fo: Xo— Y arises, namely f,,fllm {wj: B€ B} or, which is the same,

fa=4 {wj: Be B} is a diagonal product of the family of mappings {wj: B¢ B}

Let us define a cardinal as

) u, in the case (a);

"*--{la., in the case (&).
The central point of our proof is the equality f.(X.) =Y for every a<z such
that a*<a and nw (X, =1,.

It is obvious that f.(X.)c Y. We will show that f, maps X, onto Y. Let
veY. For every p¢ B let 75 be a limit projection from Y into X, It is easy
to see that the family {(w})~'(s(y)): B¢ B} is a decreasing sequence of non-
empty closed subsets in X, of the length i (the fact that these sets are
nonempty follows from the equality wj(X.) =X, for all q, 8, wherea< g). How-
ever, nw (X, =4,, therefore, there exists an ordinal y¢B, such that

£ (o)~ '(m(y)) = (@3}, y)) for every B¢ B, where y=p.

Hence for every point x¢(wp) () we get wi(x)=axy), s0 fu(x)= _V
In such a way f.(X.) =Y. However, f, is a continuous mapping and nw (X,)=
therefore, nw (1) =4,. We must note that =4 Y)= X, for every g¢ B because
U"—nﬁ ofuv " €. Xd "Uﬂ(X") "lf(fa(X ))=n‘,(Y)

Applying lemma 3 to the spectrum S we get nw (Y)=4i7 (ifnw (Y)=4, then

the spectrum S would have a trivial projections). This contradiction completes
our proof.
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The next theorem is the reformulation of lemma 3.
Theorem 4. [et S={X,, w?,a<t} be a well ordered inverse spectrum

consisting of Hausdorff and for all a, <z, a<p, a mapping «? be nontri-
vial and onto one. Let ®¢{w,nw} and D(X.)<i for every a<lr. Then
@ (lim $) = .

"Corollary 1. Let S={X., o a<t} be an inverse spectrum consisting
of Hausdorff spaces and for all a, <z, where a<p, w? be quotient mapping
onto X.. Let ®¢{w,nw} and d(X.)<i for every a<r. Then D(X)=—1, where
X=1imS.

Proof. It is obvious that a quotient one-to-one mapping is a homeo-

morhism. Therefore, either there exists an ordinal a<t such that a mapping
w? is a homeomorphism for every f>a (then X is homeomorphic to X, and

consequently @&(X)= ®(X,)<<1) or there exists a cofinal subspectrum S={X.
w?, a¢ B} of a spectrum S, where BCr, such that of is a nontrivial mapping

for all a, 8¢ B, a<p. Then theorem 4 implies an inequality @(.X)=A4.
Corollary 2. Let S={X,, of, a<z} be an inverse spectrum and all

projections «? are either a) open or b) closed. Further, let &{w,nw} and
D(X,)<A for every u<r.

Then ®(X)=J, where X=1imS.

Proof. The case r=—1 is a trivial ome. Let 1<{z. a) Let the projections
w? be open. For every a<r we put X = N{wf(X;):a<p<z}. However, for
every a<{r a decreasing sequence {w’(X;):a<<f<tr} of open in X, sets is sta-
bilized because s(.X,)<nw(X,)<r and r is a regular cardinal. Hence X is an

open set in X, .
We state that wf(X;)=X: for all «, B<r, a<pB. Really, the inclusion

wh(X,)c X follows from the fact that f(ny)yc n{f(M): M-y} for every mapp-

ing f:A— B and every system » of subsets of A. The inverse inclusion
follows from the fact that there exists an ordinal y>p such that «’(X;) =X,

and, therefore, w?(X))=wlwy(X,)=w}(X,)D X . The equality (X )=X, is prov-
ed. Put S X, of| X, alt} Then S is a spectrum with open projections,
which are mappings “onto” and limS-=1imS. The proof is completed by ap-
plying corollary 1. - -

The case of closed projections is completely analogous to the case of

open projections.

Proposition 2. Let S={X,, o’ a<z} be a well ordered inverse
spectrum and o?(Xz)=X, for all a, <t such that a<B. Let t be a regular
cardinal and 7 ic(X) 1, where X=Ilim .

a) If the mappings o’ are quotiefr_z_t. hereditarily quotient, open or closed,
then the limit projections w,: X — X, are the same;

b) if f:X — Y is a continuous mapping of X onto a space Y and

w(Y)<rt, then there exist an ordinal a<<v and a mapping g:X, =y (not
necessarily continuous) such that f—gow,. If w. is a quotient mapping then,
of course, ¢ is also continuous.
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Lemma 4 |GCH|. Let X be a Hausdorff space and y be a chain of
sub.i(,)aces of X such that X- Uy and nw(M)<z for every Mcy. Then
nw(X) =z,

i.e. the function nw is continuous in the class of all Hausdorff spaces.

Proof. Primarily we separate the canonical (see [2]) chain u of a chain
y, uCy. The case u —t is trivial. Let z<|u|. The point (b) of the theorem
3 from [2] implies that ic (X)<rt, thetefore nw(X) =| X |=exp(ic(X))=w Thus,
the Lemma is proved.

Before formulating the further results we deduce some consequences from
the facts which were already proved.

I. Comparing remark 3 with theorem 2 we conclude that the assertion
about a spectral continuity of the function w in the class of all Hausdorfi
spaces does not depend on the usual axioms of set theory.

II. Comparing remark 3 with theorem 3 we conclude that the assertion
about a spectral continuity of the functions w and zw on continuous spectra,
which consist of Hausdorff (and also even of completely regular) spaces does
not depend on the system of axioms ZFC.

1lI. Assuming GCH in the theorem 2 we proved the spectral continuity
of the function nw in the class of all Hausdorff spaces. Under the same
assumption in lemma 4 we proved the continuity of this function in the
same class.

Moreover, the following implication takes place: if the assertion about a
spectral continuity of net weight does not depend on ZFC then the assertion
about a continuity of net weight does not depend on ZFC also (both
continuities are in the class of all completely regular spaces).

Indeed, we will prove the following.

Assertion 1. If the function nw is not spectral continuous in the class
of all completely regular spaces then this function is not continuous in the
same class.

Proof. Theorem 4 implies that if the function nw <“suffers a gap” on
some spectrum S—={X,, o}, a<z}, consisting of completely regular spaces

(that is nw(X,)<4i for every a<lr, but nw(X)>i, where X=I1imS for some
cardinal 1), then there exists an ordinal a*<r such that a projé—ction wf is a

trivial mapping for all a, 8, such that a*<<a<p<r.

Let S be namely such a spectrum. Without any loss of generality one
can consider all the projections of this spectrum to be trivial mappings. As
above we suppose that v is a regular cardinal. It is obvious that z>1 (if
r=J then the condition nw(X,)<i for every a<r implies that nw(X)=4,
which contradicts the condition nw (X)>41). The existence of such a spectrum
is exactly equivalent to the existence of a completely regular space (X, S)
and a chain {S, :a<t} of strongly increasing completely regular topologies
such that S= |J{S.:a<t}, nw (X, S.)<4 for every a<r and nw (X, $)>4.

Now we construct a completely regular space Y and a strongly increasing
chain y, consisting of subspaces of a space Y such that y={Ya:a<z},
nw (Y, )< for every a<r and nw(Y)>2, where Y= uUy.

To do it we introduce the following agreement.

If (Z, o) is a topological space then Cy(Z, o), R) is a space of all conti-
nuous functions of X to R with topology of point-wise convergence.

1 Cepauka, |
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Put Y,=C,(X, S.), R) for every a<t and Y=C,((X,3), R). Then
nw(Y,)=nw(X, S,)<i for every «<<r and nw (Y)=nw(X,S)>1 (see [I, §1,
theorem 3J).

All spaces Y, and Y are completely regular ones. It is necessary to show
only that Y= U{Y.;a<<t} (all spaces Y, and Y are considered to be sub-
spaces of R¥).

Firstly we mention that ic (X, S)=2; this inequality follows from theorem
1 becaus2 ic(X,S.) nw(X, S.)<4 for every a<ltr. Let V be an open set in
(X, S). Then for every point x¢V there exists an ordinal a(x)<r and an open
set U, in a space (X, S.u) such that x:U,cV. We can choose a subfamily
{Ug: x:M} of the family {U,:x:V} of open in (X, S) sets such that V
— U{U,:xcM}y and M| _ic(X,S), where Mc V.

Let B be a set {a(x):x:M). Then B! | M <4, therefore there exists an
ordinal (V)< r such that a(x)<<a(V) for every x¢M. In fact, B'-=1, BcCry,
A<t and 7 is a regular cardinal. So, a set U, is open in a space (X, Syv))
for every xtM, therefore V is open in a space (X, S,u,)) also.

In such a way we proved that for every open set V in a space (X,S)
there exists an ordinal «(V)<r such that a set V is open in a space
(Xv LS‘a(V))'

Let us fix a countable base @B for the usual topology on R. Let f¢Y=
Co(X, 8), R). Put 0={f—'(U):UeB}. The set {a(V): Vibi} is countable, hence
there exists an ordinal a<<r such that a(V)<a for every Vib.

Therefore every element of a system § is open in a space (X, S.), so
feY., =C,((X, S.), R). Thus the proof is complete.

2. A note on Michael’s problem. Let @ be a cardinal function. We write
P X)y<r if @&(X") 1 for every ntw. Further, “¢(X)=rt means that any dis.
joint system of open sets in X has cardinality less than z. Analogously

‘ic (X)=rt means that for every open cover y of X there exists a subcover’
wCy such that | u < .

These agreements allow us to define functions ©¢* and T ic*. For exam-
ple, inequality “7ic*(X)=t means that “ic(X") - r for every ntw.

Lemma 5. Let X be T,-space and ®¢{c, ic, s, R, nw, y}. Then the
family Gu(X) of cardinals v such that there exists a set M.,c X with the
property M, |=®(M,) -1, is closed in the order topology of the class Card
of all cardinals.

Proof. The conclusion of this lemma is the statement that for every
set £ (Gp(X) a cardinal sup£ belongs to G,(X). Really, let {r,:atC} be a
strongly increasing transfinite sequence of cardinals, belonging to .8, which
is cofinal in £. Then C =< £ .

As 1,€Gp(X) for every atC, so there exists a set M, c X such that
‘M, =d(M,)=1,. Put M= U{M,:acC}. Then M =&(M)=supL and hence
sup LeUa(X). 1

Indeed it is necessary to verify only the equality @(M)=sup £. Firstly, al
functions in the list of this lemma are monotone, hence ®#(M) -z, for every
atC, that is @(M)=sup £. Secondly, the inequality @#(M)- sup £ follows from
the fact that if a space Y is represented in the form of a union of a chain »
of its subspaces and @ is a function from the list of this lemma, then @(Y)-
'y .sup {®(M): Mcy}. Thus, the lemma is proved.

Let (O be a hereditary class of spaces.
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Assertion 2. Let d¢{nw,y} and Gp(X)={wCard:r=D(X)} for every
Xe®. Then the functian @ is continuous in a class 0.

Proof. Let X¢@® and y be a canonical chain of subsets of X. We assume
that there exists a cardinal i such that &(M)<i for every Mcy, but &(X)>A.
Then it is easy to see that y >i. Let M;c X and M;|=®(M;)=A. The fact
that 1 is a canonical chain of a length greater than 1 implies that there exists
a set M¢y with the property M;c M. A monotony of a function @ implies the
inequality ®(M,)<®(M)<<i. This contradiction completes the proof.

Remark 4. Lemma 4 states that the function nw is continuous in the
class of all Hausdorff spaces (assuming GCH). As a matter of fact when prov-
ing lemma 4 we show something more. Namely, Guw(X)={t€ Card:r=nw(X)}
for every Hausdorif space X.

We assume now that the function nw is not continuous in the class of
all regular spaces. Then assertion 2 implies that there exists a regular space
X with the property F(X)={r¢Card:r=nw (X)\ Gaw(X) =+4. We put %=
min F(X).

Lemna 5 implies that G,.(X) is closed in the class Card, hence there
exists a cardinal 2 such that *=ji+. Further, M =nw(M)=R(M) for every
weakly extended space M, therefore R(X)- i (because any subspace of a weak-
ly extendedi space is weakly extended itself, so [Ro, R(X)] ={rtCard:Ro=
’SR(X)} c Gm\(X)

Moreover, we will show that R(X?*)=4 here.

Let us assume that R(X*)>4i. Then, there exists a weakly extended sub-
space MC X* such that M =it—7* It is obvious that McCll{n.(M):a<l4}
and |7, (M) = M|=1* for every a<<i, where X*=Il{X,:a<i}, X, is homeo-
morphic to X for every a<<iand n,:X* — X, is a natural projection. There-
fore, nw(a.(M))<<i for every a<i. Then, nw (Il{z,(M):a<i})=4, hence
nw(M)<4i and R(M)-4, which is a contradiction.

So, ic(x?) - $(X*) = R(X*) = i.

Particularly, if there exists a regular space X such that nw(X)={N,, but
nw(M)<y, for every subspace M of X with the property | M|=R, (or, which

is the same, R,§Gau(X)), then s(XN) .ic(XR0) - x,.
This reasoning leads to a interrelation between the concept of a “gap-
ness” of the function nw and the question about the existence of a regular

space X such that ic(/\’x")\;x0 and nw (X)>Ro-

The question was put and partially answered by E. Michael in [5]. We
used here the class of all regular spaces because there are examples of Haus-
dorif spaces without a countable net, a countable power of which is heredi-
tarily Lindelof.

Now we quote some simple proposition about the function Gpw, Where

def
Gaw(X)={r¢Card: there exists a set McX such that M|=nw(M)=1} for
every space X. :
onto

Proposition3. Let f:X — Y be a continuous mapping. Then
Gaw(Y) € Gaw(X). y

Proposition <. a) Let space X be a union of a family y of its sub-
sets and |y =Ro If Gow(M)={rcCard:r=nw(M)} for every Mcy, then Gu(X)=
{r¢Card :r<nw(X)}.
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b) If Gaw(X)—{zcCard: r=nw(X)} then Gnu(M)={x¢Card: r=nw(M)} for
every subspace Mc X with the property | X\.M|=x.

Proposition 5. If a space X is

a) metrizable;

b) locally compact,

then the equality U, (X)={r¢Card: r--nw(X)} takes place.

The point (b) of the previous proposition follows from the theorem 1.5
of [3] and the point (b) of proposition 4.

It is necessary to mention that Gs(X)={r¢Card: r—=@(X)} for every space
X and for every function @¢{c, s, ic, R}.

3. Finite powers of limit spaces. Let F be a functor defined in the ca-
tegory Top of all topological spaces and continuous mappings of them. Let
S~ {X., w?, acA} be an inverse spectrum consisting of topological spaces and
continuous mappings of them, where A is a directed set of indexes.

We put F(S)={F(X.), Flw?), acA}.

Definition 5. A functor F is called spectral if F(lim S):]‘iin F(S) for

—

every spectrum S, which was mentioned above.

For the further we need the following simple lemma.

Lemma 6. The functor F, of a raising to n-th power is spectral for
every niw.

Theorem 5. Let A be a regular cardinal and S={X., o, a<z} be a
continuous inverse spectrum with open projections such that “/c*(X,)—=4
for every a<x.

Then  c*(X)—i where X=1imS. Moreover, . ¢(X*)- i for every car-
dinal uw -1. **

Proof. Let ntw. We will consider the spectrum F,(S). Evidently, this
spectrum has the following properties:

1) F,(S) is a continuous inverse spectrum with open projections;

2) (X"~ for every a<rw.

Lemma 6 implies that X”—lim F,(S). Using properties (1) and (2) we will

—
show that ~¢(X")=A

Let » be a disjoint system of open sets in X”. We must show that
|y <. Let us prove it.

E. V. S¢epin showed (Lemma 2 from [6]) that open sets of finite type
form a base for a limit of any continuous spectrum with open projections.

Hence, without any loss of generality one can assume that a system y»
consists of the sets of finite type (with respect to a spectrum F,(S)). For
every Viy we define a set ¢(V) as a set of all ordinals a<r such that
(@) ', (V) + @.i(V), where w,: X" — X7 is a limit projection.

Then C(V) <R, for every Véy. Put £={c(V): Viy.

Now we assume that y» 4. The theorem A2.2 from [7]| implies that there
exists a subsystem y, cy such that a subfamily £,={c(V): Vey,} is quasidis-
joint and |y, =4. A quasidisjointness of a family £, means that there exists a
finite set /—r with the property MNN=/ for all M, N¢£,, M N. Let a>
max /. We state the w,(V,)Nw.(Vy)=4 for all V,, Viey,, V, V..

Assuming the contrary we find a point x,€X”, such that x,fw,(V,)N
w, (V,). Put B, - CV)\J, By c(V,)\/ and B=(B,UB,;)\a. If B= 4, then
A+w(x.)c V,NV, that is a contradiction.
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Let B={a(0),..., alm)} be a numeration of B such that a(i)<alj) for i<
j<m, méw. Let o be a mapping of the set {0,..., m} to {1, 2},

N L it  a(i)B,;
) {2, it a(i)cB,

The function ¢ is correctly defined because BN B,=A.

Then (0%9)~'X, Cwao(V))N@u)(V,), because there are no elements from
B, which belong to the segment [a, a(0)) ={g<r:a=B<a(0)].

For the sake of simplicity of writing we put /())—a(i)+1 for every
i=m. Evidently, there exists a point x0¢X7%, such that @A (X40)) =X a(0) and
X0 €og0( Vo 0)-

We assert that x,o€wuo0)f V)N wge(V,). Really, for example, if ¢(0)=1
then II(O)EBQ, hence, LU;}(O)( ‘/-2)’-5 (60‘::3;)_ 10)(.;0)( VQ‘OD(Q)‘:(((;‘))—IXE(O)}XMO). We note
again that (w;;{(‘,)))—‘xﬁ(u,Cwa(.)(V,)nw,,(,)(V.,), then we choose a point x,u)¢
(w;&‘,)))“xm), then xzi) and so on.

Finally, there exists a point xsm) € X%, such that Xsem) Cwgem{ V1) N wpamy(Vsy).
The equality /U B, UBy=¢c(Vy)UC(Vy)Cpi(m) implies that w7 (Xsm) < Vin V.

This contradiction means that the system @={w, (V): Vky,} of open sets
in X7 is disjoint. However, the cardinality of this system is not less than

|y, (we have already established that the system @ is disjoint) and |y, |=A.
So, @ =2 It contradicts the inequality _‘c(Xg)gL Consequently, 7 ¢(X")=1
for every ntw, that is © ¢*(X)=i. The last inequality implies tha Ve(Xr)=2
for every cardinal « =1, which is a simple generalization of the theorem of
Noble and Ulmer (which asserts that c*(X)-—4 implies ¢(X#) =42 for every car-
dinal «=1, where 1 is any infinite cardinal).

If follows from the fact, which we have just proved, because in a trivial
way a spgce X» is represented as a limit of a continuous inverse spectrum
with open projections. Transfinite induction on « completes the proof.

Remark 5. It is useful to note that the theorem of Erdos and Tarski
(see, for example, theorem 3.1 from [7]) is equivalent to the following state-
ment: Vc(X)=2 implies that ¢(X)<4 for every space X, where 1 is a singu-
lar cardinal.

Lemma 7. Let f:X — Y be a continuous closed mapping of a normal
space X into T,-space Y and a natural projection g XX X" — X" is
closed for every ncw. Then a mapping f": X* — ¥Y" is closed and continuous
for every ntw.

Proof. It is sufficient to verify that a mapping f* is closed for every
néw. We shall prove at first the following

Statement A. If f,:Xi— Y: is a continuous closed mapping and a
natural projection =;: Xy XX, — X; is closed, where ic{l, 2} and X, is a
normal space, then a mapping f=fiXfa: X; X Xy, — Y, XY, is continuous and
closed too.

For every point y,=(y,, ¥2)¢Y7XY, we have: N = )XfF() It
is necessary to prove that for every open set O in X, X X,, which contains a
set f-1(y), there exists an open set V' in Y,XY, such that ycVand fY(V)cO.

However, for every open set V3y in Y XY, there exist open sets V;
and V, in Y, and Y, respectively, such that y(V,, i=1, 2 and VXV V.

where i=m.
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Further, f~1(V, X V) =f7(V,)Xf; (V) and the fact that mappings f, and
f» are closed implies that the question whether the mapping f is closed is re-
duced to the question whether there exist two sets O, and O, such that O,
is open in X, f7'(y,))cO,;, i=1, 2 and O,X0,cO.

We put F,=f7"y;), i=1, 2. A mapping ¢,==, | 7;'(F,) is closed, ON
77 \(F,) is open in 7 (Fy) and ¢ Y(F)\)=ar'(F)Na; (Fy)=F,XF,c Ona;\(Fy),
hence there exists an open set W in X, such that F;,c W and ¢ (W)cC
O Na;(Fy).

As a space X, is a normal one, so there exists an open set O, in Xj such
that F,cO,c(0,]Jc W. Put @®=[0,]. Evidently, ¢;7(®)c On=;'(F,). We put
qy—n,| a7 (®). Then ¢, is a closed mapping. We have: g¢; ! (Fo)=a;y(®)n
a; (Fy) =@ X Fyca (@) N O, therefore ihere exists an open set O, in X, such
that F,c O, and ¢;(O,)Ca;(@)NO. Then F,XF,c0,X0,c®?x0,cO. So,
the statement A is proved.

Now we are beginning to prove our lemma by induction along . The
conclusion of the lemma is obvious for n=1. Let us assume that we have
already proved the fact that a mapping f” is closed for n—m. Then we will
prove that a mapping f” is closed for n=m+ 1.

Firstly we note that a natural projection w,: XXX"— X is closed for
every ntw, it follows from the equality w,.:= w,om,+;, where z,., is a closed
mapping (lemma’s condition).

So, let fm be a closed inapping. We have fm+!1: XX X™ — Y XY™ We put
X=X, Xo=X", Y, =Y, Yo=Ym™ fi=f and f,=f" Now we can apply the
statement A, which implies that f+! is a closed mapping. Lemma is proved.

Theorem 6. Let v be a regular cardinal and S—{X,, ’, a<z} be a
continuous inverse spectrum such that X, is a normal space, »f is a closed
mapping for all a, <1, a<l and for every ntw a natural projection of
X. X X" onto X" is a closed mapping too. Then the condition Vic(X.)=t
for every a<<t implies that <7ic(X)<r, where X=1imS.

—

Proof. Lemma 5 implies that for every ntw and for all a, <z, a<8, a
mapping («#)" is closed. Further, the conditions of the theorem, namely that a
projection X, X X" -~ X" is closed for every ntw and “ic(X, )=t imply that
vic(X")—t for every ntw (one can prove this statement by induction on 7),
therefore, “ic*(X,)=1 for every a<lw.

Now we consider a spectrum F,(S). It is a continuous inverse spectrum
(with closed projections) of a regular length r and ©V — index of compactness
of every non-limit space is not greater than z. In {8] B. A. Pasinkov prov-
ed that this properties of a spectrum imply that “ic (lim F,(S))=1t too. So,
we get lim F,(S) - F,(lim $) - (lim Sy' - X", hence TicH(X)< .

“—

Corollary 3. If the conditions of the previous theorem are satisfied
then ~ HC,(X, R))=r. Therefore, if t=Ai" then {C,X, R))- &

(We write (YY) ¢ if conditions Ac Y and y¢[A]y imply that there exists
a set Bc A such that y¢[B]y and | B |<x).

The previous theorem implies that < ic*(X)=7r, hence T/ C/(X, R))=
Vic*(X)= 1t (for the special cace of the inequality TC,(X, R))= Vic*X)
see theorems 2 and 2’ from § 1 of [1)).
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Question 1. Is it possible to prove a special continuity of the function
nw without any additional supposition (in the class of all completely regular
or Hausdoff spaces, for example)?

Question 2. Is it possible to prove a negation of a spectral continuity
of the function =w without any additional supposition (in the class of all
completely regular spaces)?

The author is deeply grateful to Professor A. V."Arhangel’skii for
putting the main problem and for his attention to this work.
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