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A REPRESENTATION OF THE COMMUTANT OF THE INITIAL VALUE
STURM—LIOUVILLE OPERATOR

NIKOLAI S. BOZINOV, IVAN H. DIMOVSKI

An explicit convolutional representation of a class of bounded linear operators M:C—C,
commuting with the Sturm —- Liouville operator D=d/df?—q(f) in the initial subspace

C?,-{f € C2:f(0)- f(0)=0} is found. The case when M acts on locally integrable functions is
also considered.

Let C denotes the space C|0, 7] or C|—T, T| of the continuous functions
in [0, 7] or [--T; T), respectively, or the spaces C[0, o) or C( oo, + o).
The exact meaning of C should be clear from the context. In the cases of
finite interval, C is considered as a Banach space with the usual uniform norm.
In the cases of infinite interval, C is considered as a Fréchet space with the
topology of the almost uniform convergence.

We consider an arbitrary, but fixed Sturm - Liouville operator

(1) D=ddtq(t), q¢C.

Let Co={f¢C?:f(0)=f(0)=0}. Our main aim is to find an explicit re-
presentation of all bounded linear operators M:C - C with M(Cg)c(,‘g, which
commute with 0 in C3, i. e.

(2) MDf=DMf for feCo.

Definition 1. Let L,:C —Cy be the initial right inverse operator of
D for the point t--0, i. e. DLyf  f, Lof(0)= (Lo f)(0)=0 for feC.
~ Let v, vy be the fundamental system of D for the point t-0, i. e.
Dy, 0,i-1,2 and y(0)=1, y;(0)=0; y,0)=0, y,(0)-1. Then, it is easy
to see that

3) LDf ~[—f(O, ['O)ys for feC*.

Lemma 1. A linear operator M:C — C with M((,‘?))c(.'g commutes with
D in Cj iff M commutes with L, in C.

Proof. Let MDf - DMf for each f¢Cq. Since Lof ¢ Cifor f¢C, then MDL,f
DML,f. Hence Mf -LML,f and, using (3), we obtain L, Mf=L,ML,f
ML, f. Conversely, let ML,f-L,Mf for f¢C. Then DMLyf- Mf. Now, we

put f- g for arbitrary g¢Ch, and by (3), we receive MDg—-DMLyg=DMg.

The lemma shows that it is enough to find a representation of all bounded

linear operators M:C - C commuting with L, in C. We reduce this problem

\
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to the simpler problem for finding of the commutant of the square /2 of the
integration operator

(4) If= Uf f(w)du.

In [1] is proved the similarity relation L,—X~—'/2X, where X is the well
known transmutation operator of Delsarte — Povzner [2, p. 13—26] and [3, p.
140—151]. Since X:C — C is a bounded operator, and X" has continuous inverse
X 'then M:C — C commutes with L, in C iff the bounded operator M= XMX~!
commutes with /2 in C. Hence our problem is reduced to the problem of ex-
plicit representation of the commutant of /2 in C.

1. Explicit representation of the commutant of /> in C. A basic role in
our considerations is plyed by the convolution

5) feg=[1(t—w)gwda.

It is well known that (5) is a bilinear, commutative and associative operation
in C. The operator / has the representation

(6) If=1xf.
We shall make use of a special case of the associativity relation, viz.
(7 L(f=@)=Uf)*g—[+(g)

Theorem 1. Let M:C — C be a bounded linear operator commuting with
the integration operator | in C. Then

(8) M(f+g)—=(Mf)=g=f+(Mg) for all f,gcC
and
(9) Mf=d/dt | M(1)=f]| for each f¢C.

Proof. We use the well known fact that the constant function {1} is a
cyclic element of the integration operator [/ (equivalent to Weierstrass’ appro--
ximation theorem). From the evident identity M(1)=1 1=M(1), by (7) and
using the commutation of M and /, we obtain MI"(1)=1"(1)=11"(1)+ MI"(1),
n,m—-0,1,2,... Hence the equality

(10) Mf«g [f=Mg

holds true for linear combinations of ("(1)- ¢"/n!, i. e. for polynomials. Since
the polynomials are dense in C, then (10) holds in C. Using (6), (7),(10)
and the associativity of (5), we get

LIM(fg)] 1eM(frg) M(1)s(f»g)~[M1)xf|rg 1« Mffxg=L[(Mf)=g]

Hence M(f+g)=(Mf)+g, and (8) is proved. Then (9) follows from (8). In fact,
IMf - 1=Mf - M(1) = f.

In order to have a complete description of the commutant of / in C, we
should characterize the class of the functions m¢ C with m«f¢C! for each
feC. A sufficient condition is m to be continuous function with bounded va-
riation in the case 7<=+ oo, or such a function in every finite subinterval in
the case 77 + o (see [4]). Let BV denotes the space of the function with
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bounded variation in the case 7< - oo, or the functions with bounded varia-
tion in each finite subinterval, in the noncompact case.
Theorem 2. Let C=C|0,T), T=-+~ and M:C—-C be a bounded

linear operator commuting with | in C. Then m™ M(1) belongs to BVNC
and the equivalent representations

(1 Mf = n1(0)f(t)+ff(t —u)dm (u)
(11 Mf--d/dt (m=f)

hold, where the integral is undersiood in the Riemann—Stieltjes sense. Con-
versely, for each me¢ BV N C the operator (11) or (11') is a bounded linear
operator, commating with [ in C.

Proof. Let f¢C'. From the universal formula (), we have

Mft)=71(0)m(t)+ _Iff (t—u)m (u)du,

hence M f(0)=m(0)f(0). The last formula is true for f¢C too, since M is a
continuous operator in C. Let us denote by M, the restriction of M to the
subspace C, —{ f¢ C:f(0)=0}. From Mf(0) - m(0)f (0) it follows that M,:Cy,—C,.
Evidently, (8) is true for M, and f, g¢ C,. Now we shall prove that M, com-
mutes with the shift operators

Al 0 telod
fi-a) tela,T]

in C,. A. are bounded linear operators in C,, commuting with /. By similar
considerarations as those used in the proof of theorem 1, we see that the rela-
tion (8), i. e. A, (f=g)=(A; f)=g=f=(A; g holds for f, g in C, too. Therefore

UMy A, [] 15 [My Ay 1= My (1) % Ay £~ Ay (M (1) =f]= (A, My) (1 %)
=A, Mylf =1A;, M, f.

Hence A, M, f— M, A. f for each f¢C,, 2 0. From a theorem, due to Weston
[5], it follows that there exists a function » ¢ BV with »(0)=0, and »(£—0) = » (f),
such that

. .
(12) Mof,:‘!‘f(t—ll)dl’(u)y f((:(.-
We shall prove that »(7)-= m(¢) for £>>0. Let f¢ C. Then f=f(0)+[f—£(0)],
where f f(0)¢C,.
Hence
4
Mf = FOM(1)+ Mo [ f—f (O =f(0) m (&) + [[f (£~ u)—f (0)] dv (u)
0
for each f¢C. Then

Im- LML)~ MI(L) - MUEY) — [(E— ) dv(a)— (E—up@) [+ [» () du— Iy

=0
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and, therefore, m (f)--»(f) in each point of continuity ¢ ot the fnnction ». But
v is normalized by the condition »(f—0)=»(f) for £>0. Hence, m(f)=»(¢) for
t>0. Let »,(f) be the jump function, defined as O for 7>>0, and as m (0) for
t=0. Obviously, m —» +», Hence

Mf=F O m )+ [ @)~ Oldm@)- [1 0)—F O] dv, (@)~ FO)m (&

— f(0) [m(t) —m(0)] + f[f(t -u)dm(u)—| f(t)— f(0)|m(0) = m(O)f(t)—?ff(t —u)dm(u).

Thus, the first part of the theorem is proved. Conversely, if m¢ BV NC then it
is clear that (11) gives a bounded operator in C. It is enough to prove the
commutating relation MIf=IMf in C* only. If f¢C!, then

u=0

Mf- m(0)f(t) ~f(t—u)ymu) —(fm(u)duf(t—u)

t
m () f(O)+ [f (£ uym(u)ydu  (m=f).
0

Hence IMf-—mx=f—(m=[)(0)= m=f—MIf.

Remark I. It M:C,[ 7,0] —Co[ T,0] is a bounded operator, which
commutes with /in C,[—7,0], then M can be represented by the Weston’s
formula (12) too. In this case »(0)- 0, »(¢£+0)=»(f) for £<0. This follows
immediately by the change of the variable u — —£.

Remark 2. Theorem 2, without any change, is true for the case
C-—C[T,0] too. '

Let 2 denotes the space of Lebesgue integrable functions in [0, 7’| or
|7, T] or the space of locally integrable functions in [0, -+ ~0) or (—cc, + o).
In the compact case £ is endowed with the usual Lebesgue norm. In the non-
compact case £ is considered as a Fréchet space with the family of semi-
norms

Pulfy- [ fI o Palfy=[ fln=1,2,..
in the cases [0, + ) or (— <, + ~o), respectively.
Corollary 1. Let C be C|0,T] or C[—T,0). If m¢c £ and m~=feC? for

cach [¢C, then m coincides, a. e. with a function m¢ BVNC. Then (m«+f)

can be expressed by the right part of (11) with m replaced by m. If meC,
then m¢ BV and (m+[) is expressable directly by the right part of (11).
Proof. Let

M drde (m f).
Then M:C —C and MI[—=IM. From the closed graph theorem it follows that

C C
M is a continuous operator in C. Indeed, let f, ~f and Mf, —g.Ononehand,

IMf, m=f, -C'mq' IMf, and on other hand, IMf, —lg. Therefore, Mf - g,i.e.
M is closed. Hence, M is a bounded operator. Then from theorem 2 and re-

mark 2 it follows r;z"" M(1)Ye BVNC. But M(1)=d/dt(Im) and hence M(l)=m
a. e. lf mecC, then M(1) m everywhere.
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Corollary 2. Let C, be C,|0, T) or Cy,[—T,0]. If mc 8 and m=f¢C!
for each fC,, then m, coincides a. e. with a function v from BV. Then

t
(13) (m=fY=[f(t—u)dv(u)-+»(0)f(f).

Proof. li Mf=d di(m=f), then M:C,— C. In the same way as in coro-
llary 1, it can be shown that MIf—IMf for f¢ C, and that M is a bounded

operator from C, to C. Now, we shall prove that M(Co)c C,. In fact, if f¢C,
={feC, f(0) 0}, then Mf=m(@)f(O)+m=f =m=f a. e ([4], th. 6). This
equality is true not only a. e, but everywhere, because its both sides are con-
tinuous functions ([4], th. 4). It is true especially for the point #—=0, i. e.

Mf(0)= 0 for f¢Co. But Cj is dense in C, with respect to the uniform norm
and M is continuous. Hence Mf(0)=0 for each f¢C, i. e. M:C,—C,. In the
same way as in theorem 3 and remark 3, it follows that M has the represen-
tation (13).

Corollary 3. If a bounded linear operator M:C,- - C commutes with
l, then M(Cy)< Cy. The operators M allow a bounded linear extension from
Co to C iff M({t})e CY, i. e. iff the function v in representation (12) is a con-
tinuous one.

Prooif. Let feC', f(0)=0. Then f-={f and Mf=MIf —IMf'. Hence
Mf0) 0. But from the continuity of M in C, it follows that Mf(0)--0 holds
in C too.

The second part follows irom the identity Mf(¢+0)— Mf(£—0) = fif) [»(t + 0)
—¥(t—0)).

(Ren}ark 3. Theorem 2 and corollaries 2, 3 hold true for C-C|—T7, T},
or even for C —|a, b] with a- 0=-6 too. We omit the evident modifications.

Theorem 3. Let M: C - C be an arbitrary bounded linear operator
Wwhich commutes with the integration operator ! in C. Then M can be extend-
ed as a bounded linear operator on £, commuting with | in 8.

This follows immediately from the representation (11), provided the inte-
gral is understood in Lebesgue —Stieltjes sense. Then (11) gives the desired
extension of M to £, which commutes with / in £.

Now, using corollary 3 and the representation formula (12), a similar theo-
rem about operators M:C, > C commuting with / can be proved.

Theorem 4. A bounded linear overator M:C — C, where C—=C|0,T),
commutes with the square oj the integration operator I® in C iff M com-
mutes with | in C. Then M has the representation (11).

Proof. We make use of the fact that the constant function {1} is a cyclic
element of /2, i. e. that the span of the functions /2*(1)—=#"'(2n), n 0,1, 2, ...
is dense in C. By the same argument as in the proof of theorem 1, it follows
that M satisfies the relation (8), i. e. it is a multiplier of the convolution (5).

The restriction € - C[0, 7] in above theorem is essential. The statement of
the theorem does not hold in the case C=C|--7, T|. Instead, it holds the
following :

Theorem 5. /f C-— C|—T,T), then a bounded linear operator M:C—C
commutes with 1* iff it admits a representation of the form

(14) Mf - ddt[m« f.|+d?/de2 [n« f,),

where m "' M) eBVNC, and n - M({t})is absolutely continuous function with
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n(0)=0 and n' ¢ BV. Here f.(t)=(12) [ At)+f—1t)| and f,(t)=(1/2)[f(t)—A—1)]
denote the even and odd part of [, respectively.

Proof. Let M2—-2M in C|—T7, T|. It is easy to see that the functions
{1} and {¢} are cyclic elements of /2 in the spaces C¢ and C° of even or odd
functions of C, respectively. As in the proof of theorem 1, we can show that
the identity Mf=g--f= Mg holds true when f, g¢C* or /,g¢ C°% Now, let f be
even. Then M(1)=f=1=Mf—IMf,i.e. Mf=d dt[M(1)= f]. If fis an odd func-
tion, then M({¢}) = f={¢} = Mf —[2Mf. Hence Mf=d?dr*(M({t})=f). 1t f is an
arbitrary function from C[—7, T), then by the decomposition f=f. 1-f, we
obtain (14) with m- M(1)¢ C and n=M({t})¢C.

Now we should characterize exactly the continuous functions m and ».
Let m+, m and nt, n— are the restrictions of m and » to [0, 7} and [— 7, O],
respectively. Let us introduce the auxilliary operators M*f-—d dt[m* = f]| and
M fd/dt\m = f| in C[0,T] or C[—T, 0], correspondingly. It is clear that
M+f=(Mf) o 7, where f is the even continuation of f¢C[0, T'| to [T, 7).
Analogously, M—f=(Mf) (7, o for feC|—T,0]. Hence M+~ and M are bound-
ed linear operators in C[0, 7] and C[—7,0], respectively. They commute
with / in the corresponding spaces C[0, /| and C[ 7,0]. From corollary 1 it
follows that m*+¢ BV(0, 7] and m—¢ BV [—T, 0]. Hence m¢ BV|[0, T}

The exact characterization of n(f) is more involved. First of all, we prove that
n(0)- 0. Let f be an arbitrary odd function from C?[—7, 7']. Obviously, f(0)=0.
Then Mf d? dt?|n=f] f(0)n(t)+n=f". Since Misbounded operator, then /Mf(0)
= n(0)f"(0)- A sup f(¢), when 7<Z 4 ~c. For the special choice f(7)=arctg(k?)

te(—71,T

we obtain 7(0) A= k for each natural k. Hence n(0)- 0. The non-compact
case can be settled in a similar way. Since A(0) 0, then we see easily that
Mf(0)=0 when f is odd, and f¢ C3[— T, T|. From the continuity of M we conclude
at once the desired relation Mf(0) 0 for each odd function f from C[—7,T|. Let
N @de (nt « f) and N=f " d¥de? (n +f) are defined for f in G, [0, T'] or
Co[—T7,0), respectively. It is clear that N*f- (MF) 1o, 1) and N—f (M fj‘[ 7.0

where / is the odd continuation of f¢Cy0, 7’| or f¢ Cy[—T,0]. Therefore,
N+:C,0, T] >Cyl0, T]; N-:C,[—T,0] ~C,[—T7,0] are bounded operators.
If fe€C?|0, T], f(0O)- O, then

INtf—(nrsfy (nt=fy0)=(n'=f)—ntO)f(0)—(n*«f)(0)=(nt=f)=N*f.

Then Nt commutes with [ in C,[0, 7], by the continuity of M. The same is
true for N. From (12) and from remark 1, it follows the existence of func-
tions v+ ¢ BV[0, T'| and »— ¢ BV [T, 0] with »*(0)=» (0) 0, such that

Ntf- .',;f([ wydvt(u), tel0, T
and
N1 [ft—wds @), t¢] T, 0]
Using integration by parts, we get N*V({¢}) it and N ({{}) & in

[0, T') or [—T, 0], respectively. Now, if » is defined as »'(¢) in [0, T}, and as
v—(t) in [—T7,0), then v¢ BV - T, T|,»(0) -0 and M({t})= I», since M({t}) (o, r|
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= N+({t}) and M({¢}) (—r,0,—=N—({£}). Hence the function ()= M({¢}) is absolute-
ly continuous, 7(0)—0, and »'¢ BV.

Conversely, if M is an operator, defined by (14), then M commutes with
I2in C[—T7, T), as it can be shown by a direct check. The boundness of M
is easily seen too.

Corollary 4. A bounded linear operator M:C| -1, T|—C[—T,T)]
commutes with [* iff it admits a representation of the form

(15) Mf=d|dt[m=f.]+ddt|v=f],

where m -M(1)« BV NC and »— M({t})) € BV.

This is another formulation of theorem 5. The idea to look for two func-
tions m and 7, needed for a representation of the commutant of /2 in C[— 7, T},
occurs to the authors from the interesting paper of I. Raichinov [10].

A representation of M in the form (11) can be obtained from (15), provid-
ed the function »= M(7)" be defined in an arbitrary manner in its points of dis-
continuity. We should note that in these points M(?¢) has right and left deri-
vatives. Then

(16) M= ml0) Fo (04> ) fo (O) + [t ) dm @)+ [F, (¢—u) dv (w)

Especially, it is convenient to define »(0)==m (0). Then (16) takes the
simpler form

(17) M7= mO)F(@) + [1. (6w dm @)+ 7, (¢~ w) dv @

Corollary 5. A bounded operator M:C|-— T, T|— C|—T, T|, commuting
with [?, commutes with | iff M(1)-—=M(ty, that is, when M and | commute
only on the function {1}.

Prooi. The conditions M(1)=M(¢) and MI(1)—IM(1) are equivalent
since by theorem 5, M({£})(0) -0. Now, let MI(1)=IM(l). It is not difficult
to prove that M/*(1) -I"M(1) for n=0,1,2,... Therefore, MI"(1)=1"(1)
—=1"(1)= MI™(1) for n, m=0,1,2,... . As in the proof of theorem 1, it follows
that M satisfies (8) in C | -7, 7'|. The converse statement is obvious.

If we transform (14) and (17) in the forms

(18) Mf=didt(m=f)+ddt(vo=f,)
and
(19) M= m ) fit)+ £ (¢—w) dm @)+ 1 (¢ ) dve (@)

with », =» —m = M(f) — M(1), then it is seen that the operator
4

(20) Mf- ddtvy=fo) [ fo(t—u)dr, (0),
0

where », is a function from BV, which does not vanish a. e. is an example of
an operator commuting with /2, which does not commute with /. The repre-
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sentation (20) is characteristic for this type of operators in the sense that each
operator, commuting with /2, but not commuting with /, is a sum of an ope-
rator of the type (20) and an operator, commuting with /. This follows from
(18) and (19).

2. The commutant of Z, in C.

Lemma 2. Let X:C—C be an arbttrary continuous and continuously

invertible linear similarity from L, to (*,i. e. with L,— X "'1*X. A bounded
linear operator M:C - - C commutes with Ly, in C iff the bounded operator

M XMX ' commutes with [ in C.

The proof is immediate and we omit it.

We shall use similarities, due to Delsarte — Povzner. First, let us consider
the one-sided case C—C|0, T). Let X;, i 1,2 are the Volterra’s second kind

operators
t
21) X f=f(t)+ K () [ () dn

with kernels of the form K, (f,7) A, [(1/2)(£+7), (1'2)(f 1)), where A, (u, v)
satisfies the integral equation [2; 25]

(22) A,(u,v)- — ;fq~ ; [g—2[d: f:q (E— A& n)dn— [dE[q(E— n)AE, n)dy
0 0 0 0 v 0

and Ag(u, v) satisfies the integral equation

l u

v u v
(23) A, (u, v)= qu fq~fd5(!'q (5—mALE, n)dy.

If y,, v, is the fundamental system of D-—d?/df* ¢(¢) for the point =0, then
X, y,=1and Xyy, {t}.
In [1] we had shown that the operation

(24) [+~ X1'[X.f=Xygl; [ g€ClO, T]

is a convolution of the operator L, in C, i. e. it is a bilinear, commutative and
associative operation in C with

(25) Lof~ya+f.

The next theorem gives two representation formulas of the commu-

tant of L,.
Theorem 6. Let C=C|0,7T), T+ . A linear bounded operator

M:C — C commutes with L, iff it has either the form
!
(26) Mf - XX (- a)d X my@)]+ mi(0) (0)
with mld" My, ¢ BVNnC, or
(27) Mf D[my+f|

with m, My,( C', and myc BVNC. All these operators can be extended as
bounded linear operators over £, commuting with [, in £.
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Proof. The proof uses some elementary properties of the similarities X,
X, and theorem 3. Let M:C — C commutes with L,. Then, by lemma 2, the

operators M, = X,MX;'i—1,2 commute with /2 in C. Therefore, M, is repre-
sented by (11) or (117). Hence

Mf=X7"M X f~ XTl[M,(l)(O)X,f+J'X,f(t—u)dM, (N @]

However, M, (1)=X,MX, ' (1)=X, My, - X, m ¢ BVNC and Xm,(0)=m,(0).
Therefore m, ¢ BV NC since K, is a smooth function, and thus we obtain (26).
Using (11’) and the similarity X,, M could be represented by means of the
convolution (24). Now, we can use (117):

M, f—dJdt [M1) =)= a2/ de2 [IMy(1) = f]=d2/dt? [ My(2) = f),

where M (1)= M., (X, y))  XoMy,=Xom,€ CL
From the formula

t
Xomg—my(t)+ [K, (&, uym,(w)du
v
it follows that my¢ C1, since K, is smooth and m,¢C. The formula

,»’ Kit, o) — 4q[:+,): ‘,q(';f)-i-F(t,r),

4
obtained from integral equation (23) with a smooth function F(Z, r) shows
that f¢ ' implies (7)) —f ¢C'. Indeed
t
(X 1 Kalt, 0 (0 + [Kae (6, 0 (1 e = — f(t)Jq 1 gq('f—)f(r)dv
t

; ;b;‘q(t;')ftr)dt%—jf:(t, 1)f(t)dt=—-~— f(t)fq (9)ds

= " ¢ Q25 —nde g :f'q () (t—28)ds + A‘F(t, 0 f (v)dr.

If we take /- m, we get
my—(Xmg)' +smooth function,

i.e.m/' ¢ BVNC since (Xm,)¢BVnC.
Let us now consider the two-sided case C=C{[—7, 7'}, T=- - co. Now we
shall use a Delsarte —Povzner similarity of the form

(28) X f(t)+ f' K(t, 9 f (3) v,

where the kernel K(Z, 1) is the solution of the Volterra integral equation

o +v))2 {4x) t—3)/2

(29) Kt ) "; ] ll(f)df" c.r < ." q(E—=n) K (E+n, E—n)dn.

The assumption g¢ C |mphes that K(f,t) is a smooth function, and X:C - C
is a linear isomorphism in € with X(C')~C'. As in the proof of theorem 6,

Il Cepanxa, xn, 2
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it is easily shown that f¢ C! implies (Xf) —f ¢ C'. Therefore, X maps C? on
C2 In [3; 140—151] is shown that in the case g¢ C!, the similarity relation

XDf= £ Xxf, fe 2

dt‘

is satisfied, and Xy, =1, Xy,={¢f}. The same is true in the case g¢C too, as
it can be shown by approximation.
The operation

frg=X1[Xf+ Xg]

is also a convolution for L, in C[—7, T}, and Ly f=y,=

Let us denote: DY X-'ddtX, L\? X—'IX Evtdentl), DV2:C — C,
Ly?:C — CY and (D'?)2=D, (L1**=L,, L*f yle i. e y,-. V1 Vs The ope-
rator L}? is a right inverse of the operator D}? and

L2 D2 f=f—f(0) y,.

The spaces C* and C° of even and odd functions in C[--7, 7’| are inva-
riant subspaces of L,and C ~C* ® C° Here it is convenient to introduce the
invariant subspaces C* X~!(C¢) and C%- X—'(C°) of the operator L, It is clear

that C-Ce®Co.
Let P, P°, P and P° are the projection operators of C over the spaces
, C°, C¢ and (9, respectively. It is not difficult to prove that

XPe—PeX and XP° P°X.

Theorem 7. Let C—~C|[—7, 7). A bounded linear operator M:C - C
commutes with 2, in C iff

(30) Mf=D"V2[m, * b'f]-}_[) [m?: 7)0} |
or, equivalently,
(30) Mf DL’ m, = P f+mg P°f),

where m, = My, ¢ BVNnC, m, o My, € AC, mqy(0) -0, and m,¢ BV.
Proof. Let us denote N=XMX—\. Obvnously, N is a bounded operator,
commuting with /2 in C. According to theorem 5, NV has the representation

Nf -~ d/dt[N(1)* fo] +d?/dt? [N (2) = f,),
where V(1)=XMX (1) XMy, Xm,¢BVNC,
N(t)~ XMX 1 (t) - XMy, = Xmy¢ AC with N(t)(0) 0, N({t}) ¢ BV.

As in the proof of theorem 6, it is seen that m, ¢ BV NC, m, ¢ AC, my(0)=0,
my¢ BV. Thus, we get

Mf - X INXf=Xd/dt [ Xm, » (Xf)e| + X1/ dt? | X, = (Xf)o)
DX [ Xmyw XPf|+ DX 1 [Xmg e XPOf| D2 [m, « f]+ D|mgsf).

Another representations are easily obtainable from (15) or (16). For
example, we have
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- . t

Mf —my (0)Pf+my (0)POf + X—1[Pe f(t—u)dXm,(u)

(31) !
t

= XU PO f (t—u)d (Xm.,) (u),
0

where (Xmy,) ¢ BV should be defined in an arbitrary manner in the points of
discontinuity of m,.

Thus, the problem for explicit characterization of all bounded linear ope-
rators M: C— C with M(C})c C} and MDf=DMf for f¢C? is solved. The
corresponding representation formulas are given by theorems 6 and 7 for
Cl0, ') and C[—T, T|, respectively.

3. Extension of above results for Lebesgue integrable, or locally integ-

rable functions. Let AC denote the space of absolutely continuous func-
de N de
tions, and ACY " { feCY, 7 € ACY, ACY " {f¢ ACY; f (0)=F(0)=0).
Now we assume that g¢£. Then the operator D-—d?/dt*—q(f) maps AC!
in 2. The problem could be stated in the following way. We search an expli-

cit representation of all continuous linear operators M:£ 8 with M(AC})
c AC}, which commute with 1) in A(IJ, i e

MDf~ DMf for f¢ ACS.

In the same way, as in the continuous case, let us introduce the right
inverse operator 7, of D, defined by the initial value problem

DL,f- f, Lof(0) (Lof)(0)=0; fe&.
The existence of L, is a well known fact, and L,: € — AC].

It is easy to see that the problem for an explicit representation of the
operators M, we are interested in,is reduced to the problem for finding of the
commutant of /2 in £. For this purpose we should use similarities of the same
kind as those used in section 2. Their kernels now are solutions of the same
integral equations (21), (22) and (29), but with g¢ £. In this case the kernels
Ki(t,v), i 1,2 and K(z,7) are continuous. It happens that the similarities X,
i 1,2 and X’ map C!' in C', and AC' in AC'. Now, the problem for the
commutant of /2 in £ can be solved in a similar way as in section 1. In the
one-side case [0, 7’| or [0, ~) we should use Dixmier [6] or Edwards [8]
representation formulas.

Theorem 8. (Dixmier, Edwards) Let £--£(0, 7], 7T occ. A bounded
linear operator M: £ — £ commutes with | in £ iff it can be represented in
the form

(32) MFEE (M) s )

with M(1)" “m¢ BV(0, T).
Proof. Following the lines of the proof of theorem 1, now we can prove
that M(f+g) " (Mf)sg ° f=(Mg) for f,g¢ L Then IMf=“M(1)+f. Dix-

mier (6] proved that M(1) == m¢eBV. Hence M(1)«f¢C (see [4]), and IMf
=M(1)«f everywhere. Thus (32) holds.
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Let me¢ BV[0, 7], and let us extend m on R!' as m(0) in (- oo, 0), and as
m(T) in (T, o), when 7<cc. Let u be the complex measure in R, defined by
the extension of m (for the construction of u, see [9], ch. 4). In [7] is proved
that if f¢£[0,7), and m¢ BV, then m=f¢ AC and the identity

(33) (m = f) =5 m0) f(6)+ ff (t—u) du (1)

in £[0, T'] holds. Thus, we obtain two eqivalent forms of (32):
(32) MF=m(0) £ ()+] f (¢ —u)du @)

and

(32) Mf=[1 (¢~ wdu, @),

where u, is the complex measure, defined by the function

mo(z)={m0(t)' :i((()) n,

Obviously, M[l]u"”& m,¢ BV. The Dixmier — Edwards representation is proved
in the form (32”).
Let « be a complex measure in [—7, 7]. We use the convention
' [ fdu for t-0
(0, 2] .

l [ fdu for t<0
(¢,0]

Theorem 9. Let =8 T, T) and T--+ . A bounded linear opera-
tor M :8 — 8 commutes with | in £ iff M admits the representation (32)

with M(1)"= m¢BV[—T, T| or equivalently,

t
J- fd!l def
0

(34) M H@O £+ [f(¢—u)du @), 1¢[~T, T]

in [—T, T| holds. Here u is the complex measure in (—7T,7T)|, determined
by the function m, and H is the step-function
m(0-—). tel0, 7|
Proof. In the same way as in the proof of theorem 1, we can prove that
M(t+g)" " (Mf)xg"" f+(Mg) holds for f,g¢ L. Hence

(36) IMFYS M(1)» f,

and BMf—IM(1)sf=MIL(1)«f= M(f)«f, everywhere. The above formulas show
that Xla, 8] {f€L:f“%0 in [a, p]} are invariant subspaces of M when
O¢[a, B|C[—T, 7). Let now M+ :£(0, 7|~ £(0, 7’| be the operator M*f - Mflo 1,
where /(£)“'f(¢), when £¢[0, T) and f(£)*' 0 when ¢¢|—T, 0). It is easy to
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prove that M+ is a bounded operator, which commutes with [ in £[0, T].
According to theorem 8, M({1}) jo.r)= MH(1)EEm+ ¢ BV[0,T], and ‘/\H({‘l’)} (=7, 0)
—0 since ¥_7,0 is an invariant subspace of M. Analogously, if fis the func-
tion f(£)*f(¢) in [—T,0], and f®)='0 in [0, T), where f¢£((—T7;0], then

M{1) |10 == m='€¢ BV[—T,0], and M{TY) 0, 12¢0. Then M(1)= M({1})
S M{1) e me¢ BV[—T, T). It is clear that (36) holds everywhere since the

both sides are continuous functions. Thus, we obtained (32). The representation
(34) follows from a formula, established in [7]:

(37) (m fYESHE) f O+ [fE—w) du @), =T, T}

where m¢BV|[—T,T), feL[—T,T) and H is defined by (35).

Let us note that in the {wo-side case £[— 7, 7] it is impossible to re-
present the operator M, f(t)= H(t)f (f) with a step-function (35) in the form (32”)
of Dixmier— Edwards, as it is possible by.means of Riemann—Stieitjes integral
in the continuous case C[—7, T]. Even the identity operator If(f)=f(¢) in
£[—T, T] cannot be represented in the form (32). It is easy to see that M
can be represented in the form (32") iff m(0—)+m(0+)=0. )

In this connection, let us note that it is possible to find a formula for M
similar to (32”). However, now, in general, M should be represented by means
of two measures in the form

|_ff(t——u)du1 (w), t=0, y
M 0

f: ¢
| [re-wduw, t<o

with 1, and ue, defined by the functions
{m(t), e, T) 0 , telo, T
0, te[—T,0) m(@), te[—T,0)

correspondingly. In general, it is impossible to consider u, and u, as restric-
tions of one measure u in [— 7, T] to [0, 7] and [ -7, 0], respectively.

Theorem 10. Let 8810, T}, T—=+occ. A bounded linear operator
M: 8- 8 commutes with 12 in 8 iff M commutes with | in 8 Then M(1)
“* m¢ BV, and the representations (32)—(32") hold.

The proof is as those of theorem 4.

Theorem 11. Let &~ £[0,7), T— +oco. A bounded lincar operator
M:8— 8 commutes with [* in £ iff M is representable in the form

(38) Mf =5 (M) s £+ G (M) 5 fo)

with M(1)*m¢ BV, and M(t)** n¢ AC, n(0)=0, n'¢ BV.

Proof. Let fand 7 denote the even and odd extension of /¢ £[0, 7] to
[~ T, T), respectively. 1t is evident that Bf - 1% and I#f=012] for fc &[0, Tl
Now let M+ f%' M7 0.1 N*f "' Mf |0, 7, for f¢ £[0, T). Then M+ and_N*
commute with 2 in £[0, 7). Indeed, M*+12 = M(B3f) ljo, ry= M) ljo, 1= M 0, 7

my(t) = mm={



166 N. S. BOZINOV, I. H. DIMOVSKI

=1 (MFf (o r)) =I?’M+f. Since the bounded operators M+ and N+ commute with
[ in 80, T| according to theorem 10, then M*(1)= M(1)o ;> m' ¢ BV, N+(1)
“Syvte BV, and M(t) o, 1 NH() =N+ (11) “SIN+(1)—Iv*. In a similar way we
can prove that M(1) 70> m ¢BV; M(t) —r,0* “Iy~, » ¢ BV. Hence
M) " m¢ BV and M(t)"5 Iy with »¢ BV.

Now, as in theorem 5, we can prove that f=(Mg)"“ (Mf)=g holds for
f,4€L8e and [, g¢ 8, where £, and £, denote the subspaces of even or odd
functions of €[—7, T'|. Hence if f¢£., then IMf M(1)=f holds everywhere,
and if ¢/, the P2Mf=M(t):f everywhere. Now, from the decomposition f - f. + f,
(38) follows.

Another representations can easily be obtained from (38), using (37).

Now, using Delsarte — Povzner transmutation operators, as in section 2
we immediately can obtain a complete solution of the representation problem
for the commutant of L, in £|0, 7’| or & -7, T|. Thus, the problem for re-

presentation of all bounded linear operators M: £ — € with M[AC)c ACy and
MDf - DMf for f¢ AC) is solved.
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